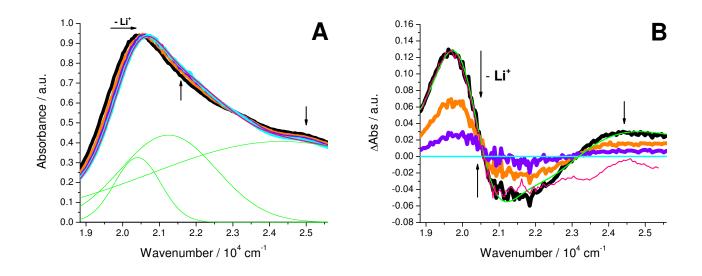
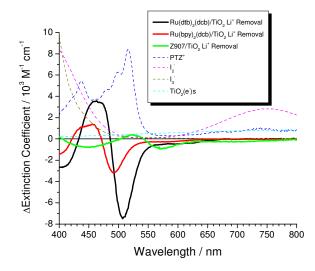

Supporting Information For:


Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO₂ Nanocrystallites

Shane Ardo¹, Yali Sun², Aaron Staniszewski¹, Felix N. Castellano^{2*}, and Gerald J. Meyer^{1*} ¹Departments of Chemistry and Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA ²Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA castell@bgnet.bgsu.edu; meyer@jhu.edu


Figure S1 – (**A**) UV-Vis absorption spectra of $[Ru(dtb)_2(dcb)]^{2+}$ anchored to TiO₂ thin films in neat CH₃CN and after introduction of 100 mM LiClO₄ highlighting the differences in the spectra, λ_{max} , and isosbestic points for the Li⁺-induced spectral changes as a function of the indicated surface coverage. (**B**) Fraction growth of the spectroscopic changes monitored at 505 nm as a function of the concentration of LiClO₄ in solution. Overlaid on the data are fits to the Langmuir isotherm model: a best fit (green) and a range of fits that bracket the spectroscopic data (orange) that result in the adduct formation constants shown.

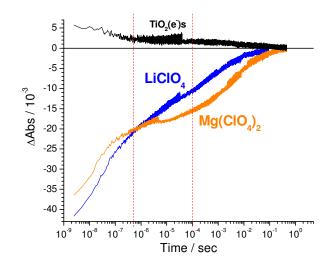

Figure S2 – (A) UV-Vis absorption spectra of $[Ru(dtb)_2(dcb)]^{2+}$ anchored to a TiO₂ thin film in 500 mM LiClO₄/CH₃CN (black) and after four (orange; 31 mM), eight (violet; 2.0 mM), and ten (cyan; 0.49 mM LiClO₄) 1:2 dilutions of the solution electrolyte. The spectra were converted from wavelength to wavenumber space by a well-known correction based on the change of variables theorem. The most dilute spectrum depicted was initially modeled as a sum of three Gaussians in energy in the 18835 – 25582 cm⁻¹ (390.9 – 530.9 nm) range. The collective Gaussian fit is overlaid in pink and individual Gaussian components are shown in light green. (B) Difference absorption spectra with the same color scheme as in Panel A referenced to the most dilute spectrum (*i.e.*, cyan spectrum in panel A). Overlaid on the spectra at 500 mM LiClO₄ (black) are spectral simulations using the difference between (a) the most dilute spectrum from Panel A and the same spectrum shifted 220 cm⁻¹ (pink) and (b) the original and scaled & shifted (210 cm⁻¹) versions of the Gaussians from panel A (light green).

Figure S3 – Extinction coefficient spectra of $TiO_2(e^{-})s$ and the sensitizers and oxidized donors required for spectral modeling in this study. Spectroelectrochemical reduction, chemical oxidation with Br₂, and Li⁺ titration were all employed in order to obtain these difference spectra.

Figure S4 – Absorption difference spectra at 510 nm after pulsed 532 nm excitation of a $Ru(dtb)_2(dcb)/TiO_2$ thin film in 500 mM TBAI/CH₃CN with either 500 mM LiClO₄ or 500 mM Mg(ClO₄)₂. Also shown is a representative TiO₂(e⁻) spectrum at 750 nm, as both were within error the same.

Complete reference 7: Kroon, J. M.; Bakker, N. J.; Smit, H. J. P.; Liska, P.; Thampi, K. R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M.; Hinsch, A.; Hore, S.; Würfel, U.; Sastrawan, R.; Durrant, J. R.; Palomares, E.; Pettersson, H.; Gruszecki, T.; Walter, J.; Skupien, K.; Tulloch, G. E. *Prog. Photovolt. Res. Appl.* **2007**, *15*, 1-18.