An Enantiospecific, Biosynthetically-Inspired Formal Total Synthesis of Liphagal

Jonathan H. George,* Jack E. Baldwin and Robert M. AdlingtonDepartment of Chemistry, Chemical Research Laboratory, University of Oxford, MansfieldRoad, Oxford OXI 3TA.
Supporting Information
Table of Contents

1. Experimental Procedures 2
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 9

Alcohol 15

15
A solution of α, β-unsaturated aldehyde $14(1.00 \mathrm{~g}, 4.54 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(0.34 \mathrm{~g}, 9.08 \mathrm{mmol})$ was added. The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , before being quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (15 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resultant residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 20:1 as eluent) to give alcohol 15 ($0.83 \mathrm{~g}, 3.73$ $\mathrm{mmol}, 82 \%)$ as a white solid. Data for 15: $\mathrm{R}_{\mathrm{f}} 0.20$ (petrol/EtOAc, 5:1); $[\alpha]_{\mathrm{D}}{ }^{25}\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$ +114.6 ${ }^{\circ}$; IR (KBr disc): 3323, 2941, 1434, 1374, 1301, $999 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $0.85(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.72$ (s, 3H), 1.89 (br d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (m, 2H, 4.04 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.85, 18.92, 19.3, 20.7, 21.6, 33.22, 33.24, 33.7, 36.8, 38.0, 41.6, 51.7, 58.3, 132.4, 140.9; HRMS ($\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ONa}, \mathrm{ESI}$): calculated 245.1876 $[\mathrm{M}+\mathrm{Na}]^{+}$, found 245.1878.

Epoxides 16 and 17

16

17

To a solution of alcohol $\mathbf{1 5}(1.07 \mathrm{~g}, 4.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $m \mathrm{CPBA}(70 \%$, $1.78 \mathrm{~g}, 7.22 \mathrm{mmol}$). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , then diluted with $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. The organic layer was separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ $\mathrm{mL})$. The combined organics were washed with saturated aqueous NaHCO_{3} solution (30 mL) and brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The reside was purified by flash chromatography on silica gel (hexanes/EtOAc, 20:1 \rightarrow 10:1) as eluent) to give alcohol 16 ($0.79 \mathrm{~g}, 3.31 \mathrm{mmol}, 69 \%$). Data for 16: $\mathrm{R}_{\mathrm{f}} 0.25$ (petrol/EtOAc, 3:1); $[\alpha]_{\mathrm{D}}{ }^{25}\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)+58.2^{\circ}$; IR (film): 3482, 2926, 1459, 1380, 1241, $1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.80(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 16.1, 17.1, 18.3, 21.4, 21.5, 29.3, 32.9, 33.4, 33.9, 37.1, 41.3, 43.1, 56.9, 64.5, 71.2; HRMS $\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}, \mathrm{ESI}\right)$: calculated $261.1825[\mathrm{M}+\mathrm{Na}]^{+}$, found 261.1825. Further elution gave alcohol $17(0.25 \mathrm{~g}, 22 \%)$. Data for 17: $\mathrm{R}_{\mathrm{f}} 0.15$ (petrol/EtOAc, $3: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)+35.6^{\circ}$; IR (film): 3467, 2951, 1464, 1375, 1241, $1048 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.79(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.26(\mathrm{~m}$, $2 \mathrm{H}), 1.32-1.74(\mathrm{~m}, 7 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 16.68, 16.71, 19.4, 20.0, 21.8, 33.1, 33.7, 35.4, 35.8, 37.6, 41.3, 53.6, 61.1, 64.9, 71.8; HRMS ($\left.\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}, \mathrm{ESI}\right)$: calculated $261.1825[\mathrm{M}+\mathrm{Na}]^{+}$, found 261.1825.

Diol 18

18
To a solution of epoxide 16 ($270 \mathrm{mg}, 1.13 \mathrm{mmol}$) in anhydrous THF (20 mL) at room temperature was added LiAlH_{4} (2.0 M in THF, $2.27 \mathrm{mmol}, 4.54 \mathrm{mmol}$). The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then cooled to room temperature and quenched by careful dropwise addition of $\mathrm{EtOAc}(5 \mathrm{~mL})$ followed by 1 N aqueous HCl (5 mL). The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organics were washed with water (30 mL) and brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resultant residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 10:1 as eluent) to give 18 ($236 \mathrm{mg}, 0.98 \mathrm{mmol}, 87 \%$) as a colourless oil. Data for 18: $\mathrm{R}_{\mathrm{f}} 0.50$ (petrol/EtOAc, 2:1); $[\alpha]_{\mathrm{D}}{ }^{25}\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right)+5.5^{\circ}$; IR (KBr disc): 3374, 2936, 1459, 1380, 1262, 1145, $978 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.87$ (s, $3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.58(\mathrm{~m}, 10 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.0,4.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 15.6, 16.4, 18.6, 21.6, 22.0, 31.3, 31.9, 32.3, 33.6, 35.6, 41.6, 41.9, 46.4, 63.5, 75.5; HRMS $\left(\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}, \mathrm{ESI}\right)$: calculated $263.1982[\mathrm{M}+\mathrm{Na}]^{+}$, found 263.1985.

Aldehyde 19

19
DMSO ($0.10 \mathrm{~mL}, 1.45 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and the resultant solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Oxalyl chloride ($0.06 \mathrm{~mL}, 0.72 \mathrm{mmol}$) was added, and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . A solution of diol $18(58 \mathrm{mg}, 0.241 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was then added dropwise and the reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for a further $10 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.40 \mathrm{~mL})$ was then added, and the reaction mixture was allowed to warm to room temperature over 30 min before being quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The product was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resultant residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 20:1 as eluent) to give 19 ($51 \mathrm{mg}, 0.214 \mathrm{mmol}, 89 \%$) as a colourless oil. Data for 19: $\mathrm{R}_{\mathrm{f}} 0.55$ (petrol/EtOAc, 5:1); $[\alpha]_{\mathrm{D}}{ }^{25}$ (c 0.55, CHCl_{3}) -30.7°; IR (film): 3498, 2939, 1714, 1461, 1365, $1153,1053,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$, $0.85(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.66(\mathrm{~m}, 9 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 3.27$ $(\mathrm{s}, 1 \mathrm{H}), 9.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 15.6, 17.1, 18.2, 21.3, 22.1, 30.4, 30.6, 33.1, 33.3, 33.5, 41.5, 42.4, 45.0, 83.8, 207.7; HRMS ($\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$, ESI): calculated $261.1825[\mathrm{M}+\mathrm{Na}]^{+}$, found 261.1827.
α-Hydroxy ketone 22

22
Aryl bromide 20 ($266 \mathrm{mg}, 0.84 \mathrm{mmol}$) was dissolved in anhydrous THF (2 mL) and the resultant solution was cooled to $-78{ }^{\circ} \mathrm{C} . t$ - $\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.52 \mathrm{~mL}, 0.84 \mathrm{mmol})$ was added dropwise, and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . A solution of aldehyde $19(50 \mathrm{mg}, 0.21 \mathrm{mmol})$ in anhydrous THF (2 mL) was then added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 10 min , then allowed to warm to room temperature over 30 min . The reaction mixture was quenched by addition of a saturated
$\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 10:1 as eluent) to give 22 (20 $\mathrm{mg}, 40 \%$) as a colourless oil. Data for 22: $\mathrm{R}_{\mathrm{f}} 0.40$ (petrol/EtOAc, $10: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}$ (c 0.52 , CHCl_{3}) $+7.5^{\circ}$; IR (film): 3448, 2930, 1695, 1460, 1380, $1085 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $2.12(\mathrm{~m}, 0.6 \mathrm{H}, 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{br} \mathrm{d}, J=6.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.91(\mathrm{br} \mathrm{d}, J=5.4 \mathrm{~Hz}$, 0.4 H), 4.13 (br s, 0.6 H), 4.26 (br s, 0.4 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 16.0, 18.36, 18.42, 18.6, 19.7, 19.9, 21.4, 21.69, 21.74, 21.8, 28.7, 32.26, 32.29, 32.6, 32.8, 33.7, 34.4, 34.6, 41.4, 41.6, 42.0, 42.5, 42.6, 45.6, 49.4, 52.2, 82.4, 84.7, 216.4, 217.0; HRMS ($\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$, ESI): calculated $261.1825[\mathrm{M}+\mathrm{Na}]^{+}$, found 261.1829.

Aldehyde 23

23
Alcohol $16(0.79 \mathrm{~g}, 3.31 \mathrm{mmol})$ was dissolved in anhydrous DMSO $(15 \mathrm{~mL})$ and the resultant solution cooled to $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , then quenched by addition of a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution (10 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 $\mathrm{mL})$. The combined organic extracts were washed with a saturated NaHCO_{3} solution (10 mL) and brine (10 mL), then dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 30:1 as eluent) to give 23 ($0.65 \mathrm{~g}, 2.75 \mathrm{mmol}, 83 \%$) as a colourless oil. Data for 23: $\mathrm{R}_{\mathrm{f}} 0.60$ (petrol/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}{ }^{25}$ (c 1.09, CHCl_{3}) -10.9 ${ }^{\circ}$; IR (film): 2927, 1726, 1460, 1382, 1073, $832 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.84(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.66(\mathrm{~m}$, $8 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $16.8,17.1,18.1,21.3,21.4,28.6,32.8,33.4,35.2,36.5,41.3,42.0,64.3,75.3,201.7$; HRMS $\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}, \mathrm{ESI}\right)$: calculated $259.1669[\mathrm{M}+\mathrm{Na}]^{+}$, found 259.1663.

Benzylic alcohol 24

24
Aryl bromide 20 ($671 \mathrm{mg}, 2.116 \mathrm{mmol}$) was dissolved in anhydrous THF (10 mL) and the resultant solution was cooled to $-78{ }^{\circ} \mathrm{C} . t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $1.49 \mathrm{~mL}, 2.54 \mathrm{mmol})$ was added dropwise, and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . A solution of aldehyde 23 ($200 \mathrm{mg}, 0.846 \mathrm{mmol}$) in anhydrous THF (5 mL) was then added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 10 min , then allowed to warm to room temperature over 30 min . The reaction mixture was quenched by addition of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 5:1 $\rightarrow 3: 1$ as eluent) to give $\mathbf{2 4}$ ($378 \mathrm{mg}, 94 \%$) as a white foam. ${ }^{1} \mathrm{H}$ NMR showed a complex mixture of four diasteroisomers so 24 was not characterised fully. Partial data for 24: $\mathrm{R}_{\mathrm{f}} 0.40$ (petrol/EtOAc, 2:1); HRMS $\left(\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na}, \mathrm{ESI}\right)$: calculated 497.2874 [M+Na] ${ }^{+}$, found 497.2872.

Diol 10

10
To a solution of $24(200 \mathrm{mg}, 0.421 \mathrm{mmol})$ in anhydrous THF (10 mL) was added $\mathrm{LiAlH}_{4}(2.0$ M in THF, $2.11 \mathrm{~mL}, 4.21 \mathrm{mmol}$) at room temperature. The reaction mixture was then warmed to 60 C and stirred at this temperature for 1 h . The reaction mixture was then cooled to room temperature and quenched by careful dropwise addition of EtOAc (5 mL) followed by a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (10 mL). The mixture was extracted with EtOAc (3 x 20 $\mathrm{mL})$. The combined organics were washed with water (30 mL) and brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to give $\mathbf{1 0}(210 \mathrm{mg})$ as a white
foam, which was used in the next step without further purification. Partial data for 24: $\mathrm{R}_{\mathrm{f}} 0.40$ (petrol/EtOAc, 2:1); HRMS $\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}\right.$, ESI): calculated $499.3030[\mathrm{M}+\mathrm{Na}]^{+}$, found 499.3029.

Benzofuran 7

7
To a solution of diol $\mathbf{1 0}(210 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added TFA (0.16 mL , 2.11 mmol). The reaction mixture was allowed to gradually warm to room temperature over 30 min . A dark red solution was formed. The reaction mixture was quenched with a saturated NaHCO_{3} aqueous solution (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 20:1 as eluent) to give 7 ($110 \mathrm{mg}, 0.309 \mathrm{mmol}, 73 \%$ over 2 steps) as a white solid. Data for 7: $\mathrm{R}_{\mathrm{f}} 0.25$ (petrol/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}{ }^{25}$ (c 0.83, $\left.\mathrm{CHCl}_{3}\right)+14.3^{\circ}$; IR (KBr disc): 2931, 1624, 1488, 1390, 1318, 1213, $1137 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.96(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.89(\mathrm{~m}, 8 \mathrm{H}), 2.17(\mathrm{td}, J=6.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (app br d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{sxt}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, 7.17 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.9, 20.2, 21.9, 22.0, 24.3, 33.3, 33.6, 34.8, 35.2, 39.5, 40.3, 42.0, 53.6, 56.1, 57.0, 94.9, 105.5, 120.3, 125.3, 144.8, 146.8, 148.4, 155.8; HRMS $\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}\right.$, ESI): calculated 379.2244 [M+Na] ${ }^{+}$, found 379.2242.

Dimethyl-liphagal 26

26

Benzofuran 7 ($80 \mathrm{mg}, 0.224 \mathrm{mmol}$) was dissolved in anhydrous THF (5 mL) and the resultant solution was cooled to $0^{\circ} \mathrm{C}$. TMEDA $(0.07 \mathrm{~mL}, 0.449 \mathrm{mmol})$ and $n-\operatorname{BuLi}(1.6 \mathrm{M}, 0.28 \mathrm{~mL}$, 0.449 mmol) were added dropwise, and the resultant pale yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . DMF ($0.17 \mathrm{~mL}, 2.24 \mathrm{mmol}$) was then added dropwise, and the reaction mixture was allowed to warm to room temperature over 20 min . The mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 20:1 as eluent) to give 26 ($75 \mathrm{mg}, 0.195 \mathrm{mmol}, 87 \%$) as a white solid. Data for 26: $\mathrm{R}_{\mathrm{f}} 0.20$ (petrol/EtOAc, $10: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}\left(\mathrm{c} 0.89, \mathrm{CHCl}_{3}\right)+11.1^{\circ}$; IR (KBr disc): 2932, 2864, 1695, 1606, 1468, 1389, 1331, 1242, 1124, 1052, $980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.95(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{td}, J=13.4,3.3 \mathrm{~Hz}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{app} \mathrm{br} \mathrm{d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{sxt}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 10.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.9, $20.2,22.0,22.1,24.0,33.3,33.5,34.8,39.4,40.3,41.9,53.4,57.3,62.8,113.0,114.8,124.6$, 125.3, 146.3, 147.9, 149.5, 158.8, 188.4; HRMS ($\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}$, ESI): calculated 407.2193 $[\mathrm{M}+\mathrm{Na}]^{+}$, found 407.2190.

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

180	160	140	120	100	80	60	40	20
				Sh				

200	180	160	140	120	100	80	60	40	20	0
				hemi	(ppm)					

