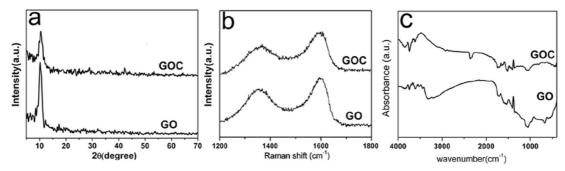
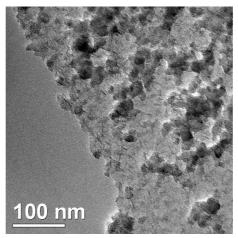
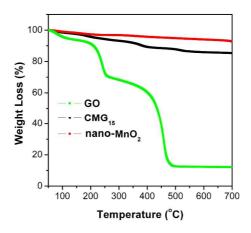
Graphene oxide-MnO₂ Nanocomposites for Supercapacitors

Sheng Chen, Junwu Zhu*, Xiaodong Wu, Qiaofeng Han, and Xin Wang*

Key Laboratory for Soft Chemistry and Functional Materials (Nanjing University of Science and Technology), Ministry of Education, Nanjing 210094, China

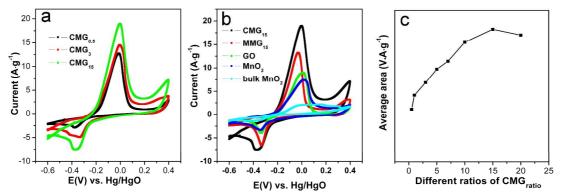

Figure 1S. (a)XRD patterns (b) Raman (c) FTIR spectra of GO and GOI.


Figure 2S. TEM images of as-obtained products *via* a similar procedure using only GO and KMnO₄ as the precursors.

Figure 3S. TG curves of GO, nano-MnO₂, and CMG₁₅ at a heating rate of 20 °C⋅min⁻¹ in air flow.

Figure 4S. CVs of (a) CMG_{0.5}, CMG₃, and CMG₁₅; (b) bulk MnO₂, GO, CMG₁₅, nano-MnO₂ and MMG₁₅ at 5 mV·s⁻¹ in 6 M KOH solution; (c) Plot of average area of CV curves as a function of different ratios of CMG_{ratio}.

Figure. 5S. TEM and FESEM images of CMG₃ (a, c) and CMG₁₅ (b, d).