Supplemental Table 1. Irreversible rate constants ($\mathrm{k}_{\mathrm{obs}}$) for formation of open complexes as a function of of $[\mathrm{RNAP}]_{\text {total }}$ and $\left[\mathrm{Na}^{+}\right]$in Cl^{-}Buffer at $25^{\circ} \mathrm{C}^{\mathrm{a}}$

$\left[\mathrm{Na}^{+}\right]$ (M)	$\begin{gathered} \text { RNAP } \\ (\mathrm{nM}) \end{gathered}$	$\mathrm{k}_{\text {obs }}\left(\mathrm{s}^{-1}\right)$	$\begin{gathered} {\left[\mathrm{Na}^{+}\right]} \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} \text { RNAP } \\ \text { (nM) } \\ \hline \end{gathered}$	$\mathrm{k}_{\text {obs }}\left(\mathrm{s}^{-1}\right)$
0.15	($(4.9 \pm 0.3) \times 10^{-2}$	0.25	7	$(7.7 \pm 0.7) \times 10^{-3}$
	5	$(1.9 \pm 0.1) \times 10^{-1}$			
	15.6	$(2.7 \pm 0.1) \times 10^{-1}$			
	56.7	$(3.2 \pm 0.1) \times 10^{-1}$			
	100	$(3.2 \pm 0.2) \times 10^{-1}$			
0.17	5	$(9.6 \pm 0.7) \times 10^{-2}$	0.27	7	$(4.2 \pm 0.2) \times 10^{-3}$
	12.9	$(2.1 \pm 0.1) \times 10^{-1}$			
	30	$(2.3 \pm 0.1) \times 10^{-1}$			
	100	$(2.8 \pm 0.1) \times 10^{-1}$			
0.19	7	$(5.7 \pm 0.7) \times 10^{-2}$			
	25	$(1.61 \pm 0.08) \times 10^{-1}$			
	50	$(2.1 \pm 0.1) \times 10^{-1}$			
	80	$(2.3 \pm 0.2) \times 10^{-1}$			
	120	$(2.3 \pm 0.1) \times 10^{-1}$			
0.21	7	$(3.1 \pm 0.3) \times 10^{-2}$			
	25	$(8.0 \pm 0.6) \times 10^{-2}$			
	50	$(1.3 \pm 0.1) \times 10^{-1}$			
	80	$(1.63 \pm 0.09) \times 10^{-1}$			
	129	$(1.85 \pm 0.09) \times 10^{-1}$			
0.23	1	$(1.4 \pm 0.2) \times 10^{-3}$			
	2	$(1.9 \pm 0.2) \times 10^{-3}$			
	3	$(4.6 \pm 0.3) \times 10^{-3}$			
	5	$(7.0 \pm 0.4) \times 10^{-3}$			
	10	$(1.6 \pm 0.1) \times 10^{-2}$			
	20	$(3.0 \pm 0.2) \times 10^{-2}$			
	31	$(4.3 \pm 2.0) \times 10^{-2}$			
	31	$(4.3 \pm 0.3) \times 10^{-2}$			
	43.7	$(6.7 \pm 0.6) \times 10^{-2}$			
	48	$(7.0 \pm 0.6) \times 10^{-2}$			
	59.8	$(7.6 \pm 0.6) \times 10^{-2}$			
	67.4	$(8.3 \pm 0.7) \times 10^{-2}$			
	90	$(9.0 \pm 0.6) \times 10^{-2}$			
	133	$(1.04 \pm 0.07) \times 10^{-1}$			

${ }^{\text {a }}$ Concentrations of RNAP are active. Values of $\mathrm{k}_{\text {obs }}$ determined by fitting the fraction of promoter DNA bound in open complexes as a function of time to eq 1 . With the exception of 31 nM RNAP at $0.23 \mathrm{M} \mathrm{Na}^{+}, \mathrm{k}_{\text {obs }}$ was determined once for each [RNAP]; associated error is from the fitting program. Otherwise, the reported error is calculated from the standard deviation ($\delta(\mathrm{n}-1)$) of multiple values of $\mathrm{k}_{\text {obs }}$. At $0.23 \mathrm{M} \mathrm{Na}^{+}$, the first seven entries for $\mathrm{k}_{\mathrm{obs}}$ were determined using manual mixing, the remaining were determined using rapid quench mixing. At 0.25 and $0.27 \mathrm{M} \mathrm{Na}^{+} \mathrm{k}_{\text {obs }}$ was determined using manual mixing.

