La₂Co₂Se₂O₃: A Quasi-two-dimensional Mott insulator with Unusual Co Spin State and Possible Orbital Ordering

Cao Wang,[†] Ming-qiu Tan,[†] Chun-mu Feng,[¶] Zhi-feng Ma,[†] Shuai Jiang,[†] Zhu-an Xu,^{†,‡} and Guang-han Cao*^{†,‡}, Kazuyuki Matsubayashi,[§] and Yoshiya Uwatoko[§]

[†] Department of Physics, Zhejiang University, Hangzhou 310027, China

[‡] State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China

[¶] Test and Analysis Center, Zhejiang University, Hangzhou 310027, China

[§]Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581

* E-mail: <u>ghcao@zju.edu.cn</u>.

SUPPORTING INFORMATION PARAGRAPH

Supplementary Band-structure Calculation Result

In the main article, the density of states (DOS) of Co atoms in La₂Co₂Se₂O₃ were shown and discussed in details. Here we present supplementary plots of density of states (DOS) versus energy, as shown in figure S1. The total DOS clearly indicates a band gap of ~1.5 eV. No spin polarization is evident, consistent with the antiferromagnetic ground state. In the projected DOS for the oxygen within Co₂O planes, there exists a strong orbital polarization for the valence electrons near Fermi level. By contrast, the projected DOS for Se 4*p* has no such orbital polarization.

Figure S1. Supplementary plots of density of states (DOS) versus energy for $La_2Co_2Se_2O_3$ from LSDA+*U* calculations. (a) total DOS; (b) projected DOS for the oxygen within Co₂O planes; (c) projected DOS for the selenium atoms.