Highly Oxygenated Monoterpene Acylglucosides from Spiraea cantoniensis

Kaori Yoshida,[†] Atsuyuki Hishida,[‡] Osamu Iida,[‡] Keizo Hosokawa,[§] and Jun Kawabata^{*,†}

Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, Tsukuba Division, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Tsukuba 305-0843, Japan, and Department of Nutritional Management, Faculty of Health Sciences, Hyogo University, Kakogawa 675-0195, Japan.

Contents

Page 1) Figure S1. ¹H NMR spectrum of kodemarioside A (1; 500 MHz, acetone- d_6) 2 2) Figure S2. ¹³C NMR spectrum of kodemarioside A (1; 125 MHz, acetone- d_6) 3 3) Figure S3. ¹H NMR spectrum of kodemarioside B (2; 500 MHz, acetone- d_6) 4 4) Figure S4. ¹³C NMR spectrum of kodemarioside B (2; 125 MHz, acetone- d_6) 5 5) Figure S5. ¹H NMR spectrum of kodemarioside C (3; 500 MHz, acetone- d_6) 6 6) Figure S6. ¹³C NMR spectrum of kodemarioside C (3; 125 MHz, acetone- d_6) 7 7) Figure S7. ¹H NMR spectrum of kodemarioside D (4; 500 MHz, acetone- d_6) 8 8) Figure S8. ¹³C NMR spectrum of kodemarioside D (4; 125 MHz, acetone- d_6) 9 9) Figure S9. ¹H NMR spectrum of kodemarioside E (5; 500 MHz, acetone- d_6) 10 10) Figure S10. ¹H NMR spectrum of kodemarioside F (6; 500 MHz, acetone- d_6) 11 11) Figure S11. ¹H NMR spectrum of 7 (500 MHz, acetone- d_6) 12 12) Figure S12. ¹H NMR spectrum of 8a (500 MHz, chloroform-d) 13 13) **Figure S13.** ¹H NMR spectrum of **8b** (500 MHz, chloroform-*d*) 14 14) Figure S14. ¹H NMR spectrum of 9 (500 MHz, chloroform-*d*) 15 15) **Figure S15.** ¹H NMR spectrum of **10R** (500 MHz, chloroform-*d*) 16 16) Figure S16. ¹H NMR spectrum of 10S (500 MHz, chloroform-*d*) 17

Figure S1. ¹H NMR spectrum of kodemarioside A (1; 500 MHz, acetone- d_6)

Figure S2. ¹³C NMR spectrum of kodemarioside A (1; 125 MHz, acetone- d_6)

Figure S3. ¹H NMR spectrum of kodemarioside B (**2**; 500 MHz, acetone- d_6)

Figure S4. ¹³C NMR spectrum of kodemarioside B (**2**; 125 MHz, acetone- d_6)

Figure S5. ¹H NMR spectrum of kodemarioside C (**3**; 500 MHz, acetone- d_6)

Figure S6. ¹³C NMR spectrum of kodemarioside C (3; 125 MHz, acetone- d_6)

Figure S7. ¹H NMR spectrum of kodemarioside D (**4**; 500 MHz, acetone- d_6)

Figure S8. ¹³C NMR spectrum of kodemarioside D (4; 125 MHz, acetone- d_6)

Figure S9. ¹H NMR spectrum of kodemarioside E (**5**; 500 MHz, acetone- d_6)

Figure S10. ¹H NMR spectrum of kodemarioside F (**6**; 500 MHz, acetone- d_6)

Figure S11. ¹H NMR spectrum of **7** (500 MHz, acetone- d_6)

Figure S12. ¹H NMR spectrum of **8a** (500 MHz, chloroform-*d*)

Figure S13. ¹H NMR spectrum of **8b** (500 MHz, chloroform-*d*)

Figure S14. ¹H NMR spectrum of **9** (500 MHz, chloroform-*d*)

Figure S15. ¹H NMR spectrum of 10R (500 MHz, chloroform-*d*)

Figure S16. ¹H NMR spectrum of **10S** (500 MHz, chloroform-*d*)