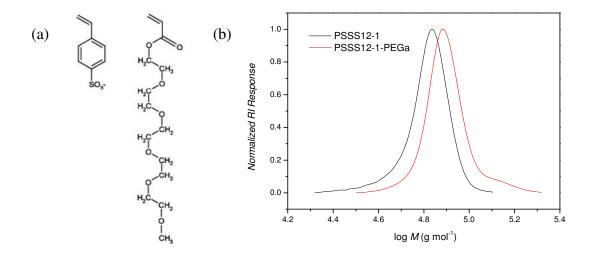
Multilayer Buildup and Biofouling Characteristics of PSS-*b*-PEG Containing Films


Christina Cortez,¹ John F. Quinn,¹ Xiaojuan Hao,^{2,3} Chakravarthy S. Gudipati,² Martina H. Stenzel,² Thomas P. Davis,² and Frank Caruso^{1,*}

¹ Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia

² Centre for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia

³Current address: CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, Private Bag 10, Clayton South MDC, Victoria 3169, Australia

*Corresponding author. Email: fcaruso@unimelb.edu.au

Figure S1. (a) Structures of styrene sulfonate (left) and PEG (right) monomers. (b) GPC trace of PSS macroRAFT agent (black line) and P(SS-*b*-PEG) block copolymer (red line). Increase in the molecular weight is indicative of successful chain extension with the second monomer.

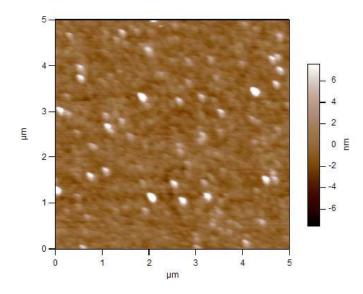
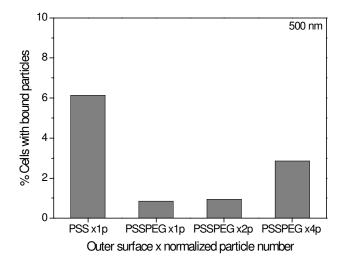



Figure S2. AFM image of a PEI-(PSS-*b*-PEG/PAH)_{10.5} multilayer film.

Figure S3. Flow cytometry data showing the binding of 500 nm fluorescently labeled PSS-*b*-PEG- or PSS-terminated particles to LIM1215 human colorectal cancer cells. Particle number of $\times 1p$ represents 100 particles cell⁻¹. The y axis shows the percentage of live cells with bound particles after 1 h incubation at 4 °C.