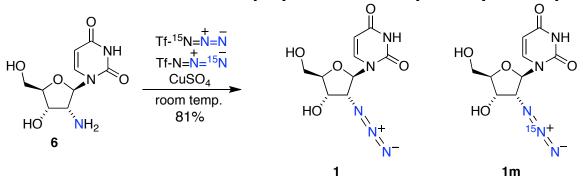
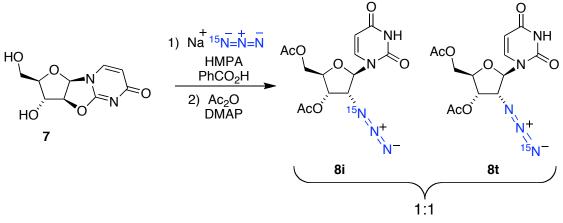
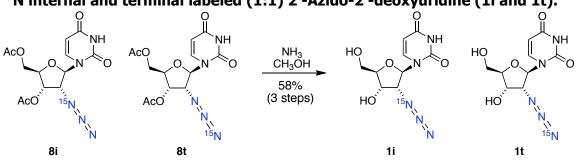
A Sensitive Multispectroscopic Probe for Nucleic Acids

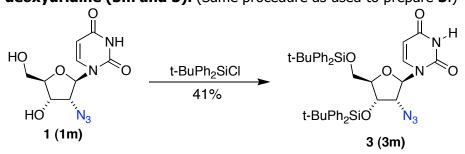

J. Phys. Chem. B Xin Sonia Gai, Edward E. Fenlon* and Scott H. Brewer*

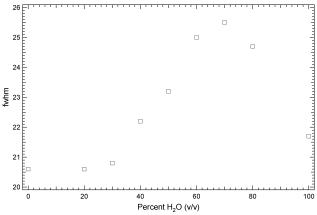
Supporting Information


1. Synthetic Schemes (Procedures are given in the paper.)


Internal and terminal labeled (1:1) trifluoromethanesulfonic azide (triflic azide).[#] $Tf_{2O} Na^{+15}N=N=N$ $\xrightarrow{+} Tf^{-15}N=N=N$ $Tf^{-15}N=N=N$ $Tf^{-15}N=N=N$

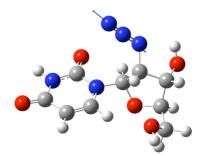
¹⁵N middle labeled and unlabeled (1:1) 2'-Azido-2'-deoxyuridine (1m and 1).¹


¹⁵N internal and terminal labeled (1:1) 3', 5'-Bis-*O*-(acetyl)-2'-Azido-2'-deoxyuridine (8i and 8t).³



¹⁵N internal and terminal labeled (1:1) 2'-Azido-2'-deoxyuridine (1i and 1t).

3',5'-Bis-O-(tert-butyldiphenylsilyl)-2'-azido-2'-deoxyuridine (3). ¹⁵N middle labeled and unlabeled 3',5'-Bis-O-(tert-butyldiphenylsilyl)-2'-azido-2'deoxyuridine (3m and 3). (Same procedure as used to prepare 3.)



2. Experimental IR Data

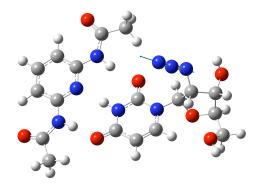


Figure S1. The dependence of the full-width half-maximum (fwhm) of the IR absorbance band of the azide stretch of **1** on the amount of water in the water-THF solvent mixtures (open squares).

3. DFT Calculations Figures and Table

Figure S2. Eigenvector projection for the 2297.58 cm⁻¹ vibrational mode of **1** as a monomer comprised primarily of an N_3 asymmetric stretch.

Figure S3. DFT calculation model for the 2297.23 cm⁻¹ vibrational mode of **1** forming a dimer with compound **4** comprised primarily of an N_3 asymmetric stretch.

Figure S4. DFT calculation model for the 2274.9 cm⁻¹ vibrational mode of (*2R*, *4R*) 2-methyl-4-azidotetrahydrofuran (**9**) comprised primarily of an N_3 asymmetric stretch.

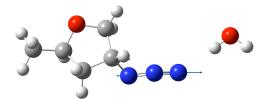
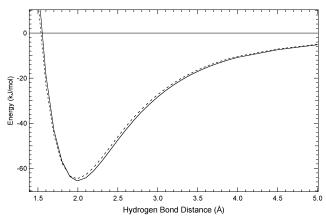
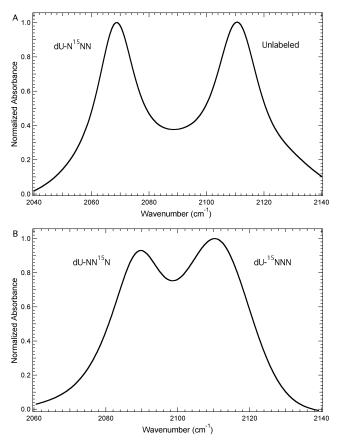


Figure S5. DFT calculation model for the 2283.39 cm⁻¹ vibrational mode of (2R, 4R) 2-methyl-4-azidotetrahydrofuran (9) with one explicit water molecule comprised primarily of an N_3 asymmetric stretch.




Figure S6. Potential energy surface (PES) corresponding to the energy of interaction between N₃-dU (1) and 5 (dashed line) and 2'-deoxyuridine and 5 (solid line) formed by modulating the distance between the imino N-H group of N_3 -dU /2'-deoxyuridine and the pyridine nitrogen of 5 allowing all other coordinates to be optimized. The energy at a hydrogen bond distance of 10 Å was subtracted from all other calculated energies to determine the energy of interaction between the molecules.

dU upon heterodimer formation with 4					
	Terminal N atom (ppm)	Middle N atom (ppm)	Internal N atom (ppm)		

Table S1. DFT calculation results of the change in ¹⁵ N NMR chemical shift of triply-labeled N ₃	;-
dU upon heterodimer formation with 4	

	Terminal N atom (ppm)	Middle N atom (ppm)	Internal N atom (ppm)
Δδ	0.292	0.469	0.3923

4. Experimental Isotopic Shifts of 1m/1 and 1t/1i

Figure S7. FTIR absorbance spectra of (A) **1m** and **1**, and (B) **1t** and **1i** in THF recorded at 293 K. The spectra were normalized to a maximum absorbance of unity. The concentrations were 50 mM.