Synthesis of 1,2,4-triazolines and triazoles utilizing oxazolones

Rahman Shah Zaib Saleem and Jetze J. Tepe Department of Chemistry, Michigan State University, East Lansing, MI, 48823

Supporting information

Contents
Page \#
Synthetic procedures and chemical characterization S1-S6
X-ray structure of compound 14 S7
X-ray structure of compound 18 S8
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectrum of the compounds S9-S48

General Information: The reagents and solvents were purchased from commercial suppliers and used without further purification. Anhydrous methylene chloride, benzene, acetonitrile, and tetrahydrofuran were dispensed from a delivery system which passes the solvents through a column packed with dry neutral alumina. Synthesis of azlactones was carried out in flame dried flask under nitrogen atmosphere while the cycloaddition reactions were carried out in 20 mL disposable scintillation vials and during the reaction the vial caps were kept slightly loose. All reactions were magnetically stirred and monitored by TLC with $0.25 \mu \mathrm{~m}$ pre-coated silica gel plates using UV light to visualize the compounds. Column chromatography was carried out on Silica Gel 60 ($230-400$ mesh). Yields refer to spectroscopically pure compounds obtained after acid-base extraction. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and DEPT spectra were recorded on a $500 \mathrm{MHz}, 600 \mathrm{MHz}$ and 900 MHz spectrometers. Chemical shifts are reported relative to the residue peaks of the solvent $\left(\mathrm{CDCl}_{3}: 7.24 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$ and $\mathrm{CD}_{3} \mathrm{OD}: 3.30 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 49.0 ppm for ${ }^{13} \mathrm{C}$). The following abbreviations are used to denote the nature of the carbon atoms: $\mathrm{s}=$ tertiary, $\mathrm{d}=$ secondary, $\mathrm{t}=$ primary, $\mathrm{q}=$ quartnary. Melting points were obtained using a capillary melting point apparatus and are uncorrected.

Synthesis and characterization of starting oxazolones:

General procedure for synthesis of oxazolones: ${ }^{1} 1.3$ equivalents of TFAA was added to a suspension of N-benzoyl amino acid in anhydrous dichloromethane in a round bottom flask placed under nitrogen. The reaction mixture was stirred for 1.5 h at room temperature, after which the contents of the flask were poured into a separating funnel and washed with aqueous sodium bicarbonate solution three times to remove acid formed during the reaction. Subsequently, the reaction mixture was washed with brine, dried over sodium sulfate and placed on a rotary evaporator to evaporate the solvent. Residual solvent was removed under vacuum and previously reported oxazolones ($\mathbf{1}, \mathbf{5}, \mathbf{9}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 5}$) were matched with their reported data ${ }^{2}$.

2-(4-fluorophenyl)-4-methyloxazol-5(4H)-one (7): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta: 7.93(2 \mathrm{H}, \mathrm{m}), 7.10(2 \mathrm{H}, \mathrm{m}), 4.38$ $(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 178.5,166.4,164.4,164.3,160.6,130.2$ (s), 130.1 (s), 128.1, 128.0, 122.1, 122.0, 116.1 (s), 116.0 (s), 60.9 (s), 16.7 (t). IR (NaCl , neat): 3290, 1734, 1705, 1631. MS (ES+ $)^{\mathrm{m} / \mathrm{z}}:(\mathrm{M}+\mathrm{H})^{+} 194.1 \mathrm{mp} 128-130^{\circ} \mathrm{C}$. HRMS (ES+) calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 194.0617$ found: 194.0624.

General procedure for the cycloaddition reactions:

One equivalent of the azodicarboxylate was added to solution of oxazolone $(0.5-0.8 \mathrm{mmol})$ in 10 mL of acetonitrile in a 20 mL scintillation vial. The reaction mixture was stirred at room temperature for $4-22$ hours. The contents of the vial were transferred into a separating funnel containing aqueous sodium bicarbonate and dichloromethane. The product was extracted into the aqueous bicarbonate layer and the dichloromethane layer was discarded. The aqueous sodium bicarbonate layer was acidified with HCl , and the product extracted four times with 40 mL of dichloromethane. The dichloromethane fractions were combined and dried over sodium sulfate. The organic solvent was removed using a rotary evaporator to provide the product, which was further dried over vacuum and analyzed.

[^0]

1,2-bis(ethoxycarbonyl)-3-methyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (2): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta: 7.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.36(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{m}), 4.10(2 \mathrm{H}, \mathrm{m}), 1.76(3 \mathrm{H}, \mathrm{s})$, $1.21(3 H, t, J=7 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.5,158.8,154.3,152.8,131.7$ (s), 129.7 (s$), 128.6,127.7$ (s), $90.2,63.9$ (d), 62.8 (d), 22.6 (t , 14.1 (t), 13.7 (t . IR (NaCl , neat): 1759, 1700,1631. MS $(\mathrm{ES}+)^{\mathrm{m} / \mathrm{z}}:(\mathrm{M}+\mathrm{H})^{+}$350.1 HRMS (ES +) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 350.1352$ found: 350.1354 .

1,2-bis(isopropoxycarbonyl)-3-methyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (3): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{m}), 4.83(1 \mathrm{H}, \mathrm{m}), 1.78$ $(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR/DEPT (125 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 172.3,159.4,153.5,152.3,131.7(\mathrm{~s}), 129.8(\mathrm{~s}), 128.7,127.7(\mathrm{~s}), 89.7,72.4(\mathrm{~s}), 71.2(\mathrm{~s}), 22.6(\mathrm{t}), 21.9$
 (ES+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 378.1665$ found: 378.1667.

1,2-bis(ethoxycarbonyl)-3-methyl-5-(4-nitrophenyl)-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (6): ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 8.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 1.78$ $(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.06(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.7,157.5,154.1,152.6$, 149.6, 130.8 (s), 122.9 (s$), 90.5,64.5$ (d), 63.2 (d), 22.5 (t), 14.1 (t), 13.8 (t). IR (NaCl, neat): 3100 (br), 1761, 1653, 1599, 1527. MS (ES +$)^{\mathrm{m} / 2}:(\mathrm{M}+\mathrm{H})^{+} 395.1 \mathrm{mp} 134-136{ }^{\circ} \mathrm{C}$. HRMS (ES+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+}: 395.1203$ found: 395.1212.

1,2-bis(ethoxycarbonyl)-5-(4-fluorophenyl)-3-methyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (8): ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 7.80(2 \mathrm{H}, \mathrm{m}), 7.04(2 \mathrm{H}, \mathrm{m}), 4.20(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 7.73(3 \mathrm{H}, \mathrm{s}), 1.22(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.06(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.7,165.9,163.9,158.1,154.0,152.7$, $132.2(\mathrm{~s}), 132.1$ (s), 124.5, 124.4, 155.1 (s), 155.0 (s), 89.8, 64.1 (d), 62.9 (d), 22.4 (t), 14.1 (t), 13.7 (t). IR (NaCl, neat): 3200 (br), $1759,1633,1604,1510$. MS (ES +$)^{\mathrm{m} / \mathrm{z}}:(\mathrm{M}+\mathrm{H})^{+} 368.1 \mathrm{mp} 46-48{ }^{\circ} \mathrm{C}$. HRMS (ES+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~F}$ $(\mathrm{M}+\mathrm{H})^{+}: 368.1258$ found: 368.1264 .

1,2-bis(ethoxycarbonyl)-5-(4-methoxyphenyl)-3-methyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (10): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta: 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 4.20(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz})$, $3.80(3 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.8$, $162.5,158.7,154.0,153.0,131(\mathrm{~s}), 120.4,113.1$ (s), 89.4, 63.9 (d), 62.8 (d), 55.3 (t), 22.4 (t), 14.1 (t), 13.7 (t). IR (NaCl,
 $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}: 380.1458$ found: 380.1461 .

3-benzyl-1,2-bis(ethoxycarbonyl)-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (12): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{J}=7$ $\mathrm{Hz}), 7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.28(2 \mathrm{H}, \mathrm{m}), 3.73(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 1.29$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.7,159.8,154.9,151.4,133.6,131.5$
 neat): 3200 (br), $1757,1718,1686,1635$. MS (ES +) ${ }^{\mathrm{m} / \mathrm{z}}:(\mathrm{M}+\mathrm{H})^{+} 426.2 \mathrm{mp} 61-64^{\circ} \mathrm{C}$. HRMS (ES+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}$ $(\mathrm{M}+\mathrm{H})^{+}: 426.1665$ found: 426.1666.

1,2-bis(ethoxycarbonyl)-3-isopropyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (14): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 7.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.15(4 \mathrm{H}, \mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{m}), 1.20($ $3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.05(6 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR/ DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.6,158.7$, $155.5,152.4,131.6(\mathrm{~s}), 129.6(\mathrm{~s}), 128.6,127.7(\mathrm{~s}), 96.1,63.7(\mathrm{~d}), 62.9(\mathrm{~d}), 33.1(\mathrm{~s}), 17.2(\mathrm{t}), 16.2(\mathrm{t}), 14.0(\mathrm{t}), 13.8(\mathrm{t})$. IR $\left(\mathrm{NaCl}\right.$, neat): $1759,1635 . \mathrm{MS}(\mathrm{ES}+)^{\mathrm{m} / 2}:(\mathrm{M}+\mathrm{H})^{+} 378.1 \mathrm{mp} 98-99^{\circ} \mathrm{C}$. HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 378.1665 found: 378.1665 .

3-((1H-indol-3-yl)methyl)-1,2-bis(ethoxycarbonyl)-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (16): ${ }^{1} \mathrm{H}$ NMR (500 MHz$)\left(\mathrm{CDCl}_{3}\right) \delta: 8.28(1 \mathrm{H}, \mathrm{br}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.27$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{m}), 3.69(2 \mathrm{H}, \mathrm{s}), 3.45(1 \mathrm{H}, \mathrm{m})$, $2.96(1 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 0.59(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR/DEPT $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 171.2,159.7,154.8$, 152.3, 135.6, 131.5 (s), 129.3 (s), 128.7, 128.4, 127.7 (s), 124.5 (s), 121.5 (s), 119.4 (s), 119.2 (s), 110.8 (s), 107.3, 93.4, 63.2 (d), 62.9 (d), 30.4 (d), 14.2(t), 13.1 (t). IR (NaCl , neat): 3391, 2984, 1753, 1633, 1458, 1327, 1259. MS (ES+) m / z : $(\mathrm{M}+\mathrm{H})^{+} 465.2 \mathrm{mp} 97-99^{\circ} \mathrm{C}$. HRMS (ES +) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 465.1774$ found: 465.1776 .

(Trimethylsilyl)methyl 1-methyl-5,7-dioxo-3,6-diphenyl-1,5,6,7-tetrahydro-[1,2,4]triazolo[1,2-a][1,2,4]triazole-1carboxylate (17): 4-methyl-2-phenyloxazol-5(4H)-one (1, 175mg, 1 mmol) was dissolved in 10 mL of acetonitrile in a 20 mL scintillation vial and PTAD $(175 \mathrm{mg}, 1 \mathrm{mmol})$ was added to the reaction mixture. The addition of PTAD turned the solution scarlet red in color. The reaction mixture was stirred for 4 hours, which lead to the disappearance of the color. At this point the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and (trimethylsilyl)diazomethane ($1.5 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to the solution in drop wise manner. The reaction mixture was stirred for 15 minutes and then methanol (3 mL) was added in drop wise manner. The reaction was further stirred at $0^{\circ} \mathrm{C}$ for 3 h and then the reaction temperature was allowed to come to ambient temperature. Subsequently, the reaction mixture was concentrated to minimal residue and purified by running silica-gel column using ethyl acetate: hexanes (1:4) to obtain (trimethylsilyl)methyl 1-methyl-5,7-dioxo-3,6-diphenyl-1,5,6,7-tetrahydro-[1,2,4]triazolo[1,2-a][1,2,4]triazole-1-carboxylate as viscous liquid ($370 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta: 8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.46(6 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.09$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 2.06(3 \mathrm{H}, \mathrm{s}), 0.07(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR/DEPT ($\left.150 \mathrm{MHz},-10^{\circ} \mathrm{C}\right)\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta:$ 167.5, 153.7, 153.5, 148.1, 133.3 (s), 130.9, 130.3 (s), 129.2 (s), 128.7 (s), 128.4 (s), 125.9 (s), 125.0, $90.8,60.9$ (d), 23.4 (t), -3.2 (t). IR (NaCl, neat): 1794, 1740, 1616, 1500, 1450, 1398, 1329, 1251. MS (ES) m/z: (M+H) 437.2 HRMS (ES +) calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 437.1645$ found: 437.1653.

General procedure for conversion of triazolines to triazoles:

The triazoline ($0.5-1 \mathrm{mmol}$) was dissolved in 25 mL ethanol in 100 mL flask. Four equivalents of sodium hydroxide were added to this solution and the solution was heated to reflux for 2 hours. The temperature of the flask was allowed to cool down to room temperature. The excess base in the solution was neutralized with aqueous HCl . The ethanol was removed on a rotary evaporator and the residue was dissolved in ethyl acetate. The ethyl acetate solution was washed with brine and dried over sodium sulfate. Subsequently, the ethyl acetate was removed on a rotary evaporator and silica-gel column chromatography was performed using ethyl acetate to obtain the triazole ${ }^{3}$.

Synthesis of 5-methyl-3-phenyl-1H-1,2,4-triazole (18): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta: 7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.42$ $(3 \mathrm{H}, \mathrm{m}), 2.45(3 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}$ NMR/ DEPT ($150 \mathrm{MHz},-10^{\circ} \mathrm{C}$) $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 162.7,155.5,131.7,130.6(\mathrm{~s}), 1129.8(\mathrm{~s}), 127.2(\mathrm{~s})$, 11.6 (t) IR (NaCl, neat): 3500 (br), $1700,1720 \mathrm{MS}(\mathrm{ES})^{\mathrm{m} / \mathrm{z}}$: (M) ${ }^{+} 159.1 \mathrm{~m} . \mathrm{p} .144-145^{\circ} \mathrm{C}$ HRMS (ES+) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}: 160.0875$ found: 160.0880

5-methyl-3-(4-nitrophenyl)-1H-1,2,4-triazole(19):

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 8.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 8.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 2.51(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(150 \mathrm{MHz})$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 149.6,138.0,129.9,128.0,125.0,11.7$. IR (NaCl , neat): 3034(br), 1603, 1508. MS (ES +) ${ }^{\mathrm{m} / 2}:(\mathrm{M}+\mathrm{H})^{+} 205.1$ $\mathrm{mp} 232-234{ }^{\circ} \mathrm{C}$. HRMS (ES+) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 205.0726$ found: 205.0726.

[^1]${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.96(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5 \mathrm{~Hz}, 7 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}), 2.49(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR/ DEPT $(150 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 165.8,164.1,160.7,156.9,129.4,129.3,127.8,127.7,116.7,116.6,11.9$. IR (NaCl, neat): 3055 (br), 1603, 1560, 1533, 1473, 1219. MS (ES) ${ }^{\mathrm{m} / 2}:(\mathrm{M}+\mathrm{H})^{+} 178.1 \mathrm{~m} . \mathrm{p} .279-283^{\circ} \mathrm{C}$. HRMS (ES+) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FN}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}: 178.0781$, found: 178.0783.

3-((3-phenyl-1H-1,2,4-triazol-5-yl)methyl)-1H-indole(21):

${ }^{1} \mathrm{H}$ NMR (600 MHz) ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.44(4 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{s}), 7.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ $\mathrm{Hz}), 6.98(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR/ DEPT (226 MHz) (CD ${ }_{3} \mathrm{OD}$) $\delta: 160.8,138.3,131.2,130.8,129.8$, 128.3, 127.4, 124.5, 122.6, 120.0, 119.2, 112.4, 110.5, 24.2. IR (NaCl, neat): 3333, 3128 (br), 1558, 1471. MS (ES+) m/z: $(\mathrm{M}+\mathrm{H})^{+} 275.1 \mathrm{mp} 241-243^{\circ} \mathrm{C}$. HRMS (ES +) calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H})^{+}: 275.1297$ found: 275.1307.

FIGURE 3. X-ray crystal structure of 18

2-(4-methoxyphenyl)-4-methyloxazol-5(4H)-one (9)

4-isopropyl-2-phenyloxazol-5(4H)-one (13)

1,2-bis(iso propoxycarbonyl)-3-methyl-5-phenyl-
2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (3)

1,2-bis(ethoxycarbonyl)-3-methyl-5-(4-nitrophenyl)-
2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (6)
$\boldsymbol{\sim}$

1,2-bis(ethoxycarbonyl)-5-(4-fluorophenyl)-3-methyl-2,3-dihydro-1H-1,2,4-triazole-3-c arbo xylic acid (8)

1,2-bis(ethoxycarbonyl)-5-(4-methoxyphenyl)-
3-methyl-2,3-dihydro-1H-1,2,4-triazole-3-carbo xylic acid (10)

3-benzyl-1,2-bis(ethoxycarbonyl)-5-pheny
1-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (12):

1,2-bis(ethoxycarbonyl)-3-isopropyl-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (14)

3-((1H-indol-3-yl)methyl)-1,2-bis(ethox ycarbonyl)-5-phenyl-2,3-dihydro-1H-1,2,4-triazole-3-carboxylic acid (16):

iI

5-methyl-3-phenyl-1H-1,2,4-triazole (18)

5-methyl-3-(4-nitrophenyl)-1H-1,2,4-triazole(19)

5-methyl-3-(4-nitrophenyl)-1H-1,2,4-triazole(19)

[^0]: ${ }^{1}$ Kahlon, D. K.; Lansdell, T. A.; Fisk, J. S.; Hupp, C. D.; Friebe, T. L.; Hovde, S.; Jones, A. D.; Dyer, R. D.; Henry, R. W.; Tepe, J. J. J. Med. Chem. 2009, 2, 1302-1309
 ${ }^{2}$ a) Chen, F. M. F.; Kuroda, K.; Benoiton, N. L. Synthesis, 1978, 12, 928. b) Peet, N. P.; Burkhart, J. P.; Angelastro, M. R.; Giroux, E. L.; Mehdi, S.; Bey, P.; Kolb, M.; Neises, B.; Schirlin D. J.Med. Chem. 1990, 33, 394. c) Peddibhotla, S.; Tepe, J. J. Synthesis, 2003, 9,1433.

[^1]: ${ }^{3}$ a) Perez, M. A.; Dorado, C. A.; Soto, J. L. Synthesis, 1983, 6, 483. b) Santus, M. Pol. J. Chem.1980, 54, 1067c) Konetzki, I.; Bouyssou, T.; Pestel, S.; Schnapp, A. PCT Int. Appl. 2008, 105pp. d) Yeung, K.; Farkas, M.; E. Kadow,; J. F. Meanwell, N. A. Tetrahedron Lett. 2005, 46, 3429

