Supplementary Information for

TiO₂ nanowire growth driven by phosphorous-doped nanocatalysis

Myung Hwa Kim^{1,3,6}, Jeong Min Baik^{1,4,6}, Jing-Ping Zhang^{2,5}, Christopher Larson¹, Youli Li², Galen D. Stucky^{1,2}, Martin, Moskovits¹*, and Alec M. Wodtke¹*

¹Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.

²Department of Materials, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.

³*Current address: Department of Chemistry & Nano Science, Ewha Womans University, Seoul, 120-750, Korea.*

⁴*Current address: School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology, Gumi Gyungbuk, 730-701, Korea.*

⁵*Current address: Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, China.*

⁶*These authors contributed equally to this work.*

*To whom correspondences should be addressed. Email: <u>mmoskovits@ltsc.ucsb.edu</u>, <u>wodtke@chem.ucsb.edu</u>

Figure 1S. Energy-dispersive X-ray spectroscopy (EDXS) line-scan across the interface of the TiO_2 nanowire and Ni catalyst particle. The head particle is composed of solid Ni. It has a thin amorphous TiO_x film surrounding it. Only Ti and O are found in the nanowire.

Figure 2S. The phase diagram of Ni-P binary system. (The figure was adapted from ref.1)

Figure S3. TEM images of the head parts of nanowires in various diameters. A thin layer of TiO_x can clearly be seen.

Reference

1. Schmetterer, C.; Vizdal, J.; Ipser, H. Intermetallics, 2009, 17, 826.