Supporting Information

UV Nonlinear Optical Crystals: Alkaline Beryllium Borate

NaBeB₃O₆ and ABe₂B₃O₇ (A = K, Rb)

Shichao Wang, Ning Ye*, Wei Li and Dan Zhao Fujian Institute of Research on the Structure of Matter, Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China Email: nye@fjirsm.ac.cn

1

atom	Х	у	Z	Wyckoff	$U_{eq}(\text{\AA}^2)$	occupancy
Na	0.67295(11)	0.38903(9)	0.2748(3)	4a	0.0284(3)	1
Be	0.9084(3)	0.4573(3)	-0.1701(8)	4a	0.0145(7)	1
B (1)	0.9309(3)	0.2446(2)	-0.1194(7)	4a	0.0156(6)	1
B(2)	0.5839(3)	0.1641(2)	0.5005(7)	4a	0.0154(6)	1
B(3)	0.7783(3)	0.1038(2)	0.1607(7)	4a	0.0153(6)	1
O(1)	0.88438(17)	0.33995(14)	-0.0019(4)	4a	0.0159(4)	1
O(2)	0.52980(18)	0.25971(14)	0.6370(5)	4a	0.0199(4)	1
O(3)	0.53778(16)	0.05886(13)	0.5668(4)	4a	0.0142(4)	1
O(4)	0.69571(17)	0.18778(14)	0.2990(4)	4a	0.0194(4)	1
O(5)	0.75483(16)	0.49623(13)	0.6835(5)	4a	0.0178(4)	1
O(6)	0.39676(18)	0.36262(14)	-0.0171(4)	4a	0.0209(5)	1

Table S1. Atomic Positions and Isotropic Displacement Factors for NaBeB₃O₆

Table S2. Atomic Positions and Isotropic Displacement Factors for α -KBe₂B₃O₇

atom	Х	У	Z	Wyckoff	$U_{eq}(\text{\AA}^2)$	occupancy
K	0	0.17903(5)	0.25	4e	0.0143(2)	1
Be	0.15472(19)	0.2094(2)	-0.1573(3)	8f	0.0083(4)	1
B (1)	0	0.4496(3)	-0.25	4e	0.0101(5)	1
B(2)	0.24832(17)	0.01919(17)	0.1830(3)	8f	0.0081(4)	1
O (1)	0	0.29746(15)	-0.25	4e	0.0083(3)	1
O(2)	0.22101(11)	0.16540(10)	0.11682(17)	8f	0.0078(3)	1
O(3)	0.38608(11)	-0.03378(11)	0.2360(2)	8f	0.0143(3)	1
O(4)	0.15051(11)	-0.07066(11)	0.19650(18)	8f	0.0106(3)	1

Table S3. Atomic Positions and Isotropic Displacement Factors for β-KBe₂B₃O₇

atom	Х	у	Z	Wyckoff	$U_{eq}(\text{\AA}^2)$	occupancy
K(1)	0.5	0.63740(4)	0.60735(16)	2a	0.02217(17)	1
K(2)	1	0.85304(4)	0.67704(16)	2a	0.0270(2)	1
Be(1)	0.8114(3)	0.54184(12)	1.1265(6)	4b	0.0082(4)	1
Be(2)	0.6760(3)	0.96271(13)	1.2717(6)	4b	0.0091(4)	1
B (1)	1	0.51993(14)	1.6236(8)	2a	0.0070(5)	1
B(2)	0.5	0.99094(16)	0.7656(7)	2a	0.0070(5)	1
B(3)	0.8397(3)	0.68439(13)	1.0455(5)	4b	0.0152(5)	1
B(4)	0.6653(3)	0.80692(12)	1.1722(7)	4b	0.0205(5)	1
O(1)	1	0.52718(10)	1.3114(4)	2a	0.0092(4)	1
O(2)	0.84267(14)	0.51336(7)	0.7755(3)	4b	0.0086(3)	1
O(3)	0.5	0.99116(10)	1.4518(4)	2a	0.0099(4)	1
O(4)	0.65529(15)	0.99270(8)	0.9196(3)	4b	0.0110(3)	1
O(5)	0.73767(16)	0.62808(6)	1.1379(4)	4b	0.0133(3)	1
O(6)	1	0.66921(10)	0.9056(5)	2a	0.0162(4)	1
O(7)	0.8026(2)	0.76114(8)	1.0715(6)	4b	0.0457(7)	1
O(8)	0.5	0.77556(11)	1.1303(8)	2a	0.0311(5)	1
O(9)	0.70627(18)	0.87378(7)	1.2860(4)	4b	0.0198(3)	1

atom	Х	У	Z	Wyckoff	$U_{eq}(\text{\AA}^2)$	occupancy
K(1)	0.36979(18)	0.55848(7)	0.76653(12)	2a	0.0219(3)	1
K(2)	0.37906(17)	0.91092(7)	0.76614(13)	2a	0.0201(3)	1
K(3)	0.0018(3)	0.48280(13)	1.0054(2)	2a	0.0364(3)	1
Be(1)	-0.0238(9)	0.3960(3)	0.5867(7)	2a	0.0075(11)	1
Be(2)	0.0308(8)	0.5626(4)	0.4230(6)	2a	0.0081(11)	1
Be(3)	0.3969(8)	0.5634(4)	0.4157(6)	2a	0.0081(11)	1
Be(4)	0.6001(9)	0.3954(3)	0.5781(6)	2a	0.0092(12)	1
Be(5)	0.3988(6)	0.2275(5)	0.4084(5)	2a	0.0082(8)	1
Be(6)	0.0277(6)	0.2304(5)	0.4107(5)	2a	0.0074(8)	1
B (1)	0.2361(8)	0.3961(3)	0.4638(6)	2a	0.0102(11)	1
B(2)	0.2359(5)	0.7289(4)	0.4737(4)	2a	0.0067(7)	1
B(3)	-0.2339(7)	0.5650(3)	0.5389(5)	2a	0.0058(9)	1
B(4)	0.3445(8)	0.6439(4)	0.1520(6)	2a	0.0149(10)	1
B(5)	0.1912(5)	0.7375(5)	-0.0875(4)	2a	0.0144(8)	1
B(6)	0.3578(7)	0.8237(4)	0.1575(5)	2a	0.0105(9)	1
B(7)	0.3111(5)	0.2282(5)	0.0879(4)	2a	0.0135(8)	1
B(8)	0.1560(8)	0.3227(4)	-0.1495(6)	2a	0.0157(11)	1
B(9)	0.1590(8)	0.1415(4)	-0.1569(6)	2a	0.0188(12)	1
O(1)	-0.0809(3)	0.5123(2)	0.5271(3)	2a	0.0090(5)	1
O(2)	0.0864(4)	0.34526(19)	0.4822(3)	2a	0.0091(5)	1
O(3)	0.2208(3)	0.16531(18)	0.4306(3)	2a	0.0087(5)	1
O(4)	0.3945(3)	0.34626(19)	0.4625(3)	2a	0.0085(5)	1
O(5)	0.6017(3)	0.5121(2)	0.5169(3)	2a	0.0087(5)	1
O(6)	0.2283(3)	0.49909(18)	0.4528(3)	2a	0.0084(5)	1
O(7)	0.3972(3)	0.67712(19)	0.4821(3)	2a	0.0077(5)	1
O(8)	0.0923(3)	0.67583(19)	0.4966(3)	2a	0.0075(5)	1
O(9)	0.2277(3)	0.83195(19)	0.4534(3)	2a	0.0089(5)	1
O(10)	0.1123(4)	0.7407(3)	-0.2358(3)	2a	0.0187(6)	1
O(11)	0.2335(5)	0.6468(2)	-0.0059(4)	2a	0.0168(8)	1
O(12)	0.2441(6)	0.8272(3)	-0.0002(4)	2a	0.0195(8)	1
O(13)	0.3562(6)	0.5613(2)	0.2331(4)	2a	0.0131(7)	1
O(14)	0.4393(4)	0.7320(3)	0.2146(3)	2a	0.0194(6)	1
O(15)	0.3765(6)	0.9044(2)	0.2445(4)	2a	0.0148(8)	1
O(16)	0.3992(4)	0.2256(3)	0.2367(3)	2a	0.0154(6)	1
O(17)	0.2693(5)	0.1400(3)	-0.0005(4)	2a	0.0181(8)	1
O(18)	0.2648(6)	0.3213(2)	0.0076(4)	2a	0.0202(9)	1
O(19)	0.1074(5)	0.0597(2)	-0.2426(4)	2a	0.0127(7)	1
O(20)	0.0830(6)	0.2331(4)	-0.2145(3)	2a	0.0630(13)	1
O(21)	0.1083(6)	0.4061(2)	-0.2311(4)	2a	0.0132(7)	1

Table S4. Atomic Positions and Isotropic Displacement Factors for γ -KBe₂B₃O₇

atom	Х	у	Z	Wyckoff	$U_{eq}(\text{\AA}^2)$	occupancy
Rb(1)	1	0.64218(3)	0.44656(12)	2a	0.0179(2)	1
Rb(2)	1.5	0.85076(3)	0.42415(15)	2a	0.0210(2)	1
Be(1)	0.6871(6)	0.5402(3)	0.9290(16)	4b	0.0093(10)	1
Be(2)	0.8256(7)	0.9632(3)	0.8578(12)	4b	0.0091(12)	1
B (1)	0.5	0.5190(3)	0.434(2)	2a	0.0063(12)	1
B(2)	1	0.9912(4)	0.3606(15)	2a	0.0075(15)	1
B(3)	0.6588(7)	0.6825(3)	1.0173(12)	4b	0.0165(14)	1
B(4)	0.8367(6)	0.8065(3)	0.9279(18)	4b	0.0182(11)	1
O(1)	0.5	0.5263(2)	0.7440(9)	2a	0.0097(9)	1
O(2)	0.6566(3)	0.51255(16)	1.2819(7)	4b	0.0088(7)	1
O(3)	1	0.9895(2)	0.6743(10)	2a	0.0093(9)	1
O(4)	0.6550(3)	1.00622(17)	0.7083(7)	4b	0.0085(6)	1
O(5)	0.7571(4)	0.62598(14)	0.9224(9)	4b	0.0133(6)	1
O(6)	0.5	0.6690(3)	1.1603(11)	2a	0.0164(10)	1
O(7)	0.6977(4)	0.75778(16)	0.9895(14)	4b	0.0433(13)	1
O(8)	1	0.7740(2)	0.9574(14)	2a	0.0237(10)	1
O(9)	0.7955(4)	0.87553(18)	0.8501(8)	4b	0.0187(8)	1

Table S5. Atomic Positions and Isotropic Displacement Factors for RbBe₂B₃O₇

Table S6. ICP Elemental Analysis and Stoichiometry for $NaBeB_3O_6$ and $ABe_2B_3O_7$ (A = K, Rb)

, ,						
	Na	К	Rb	Be	В	
NaBeB ₃ O ₆	1			0.96	3.08	
a-KBe ₂ B ₃ O ₇		1.12		1.94	3	
β-KBe ₂ B ₃ O ₇		1		2.11	2.99	
γ-KBe ₂ B ₃ O ₇		1.06		2	2.91	
RbBe ₂ B ₃ O ₇			0.96	2	3.02	
						_

a. DTA trace for the compositions of NaBeB₃O₆

b. DTA trace for the compositions of $KBe_2B_3O_7$

c. DTA trace for the compositions of RbBe₂B₃O₇

Figure S1. DTA trace for the compositions of $NaBeB_3O_6$ and $ABe_2B_3O_7$ (A = K, Rb)

a. As-grown NaBeB₃O₆ crystal

b. As-grown α -KBe₂B₃O₇ crystal

c. As-grown β -KBe₂B₃O₇ crystal

d. As-grown γ -KBe₂B₃O₇ crystal

e. As-grown RbBe₂B₃O₇ crystal

Figure S2. The crystal pictures of $NaBeB_3O_6$ and $ABe_2B_3O_7$ (A = K, Rb)

a. X-ray powder diffraction patterns of $NaBeB_3O_6$

b. X-ray powder diffraction patterns of α -KBe₂B₃O₇

c. X-ray powder diffraction patterns of $\beta\text{-}KBe_2B_3O_7$

d. X-ray powder diffraction patterns of $\gamma\text{-}KBe_2B_3O_7$

e. X-ray powder diffraction patterns of RbBe₂B₃O₇

Figure S3. X-ray powder diffraction patterns of NaBeB₃O₆ and ABe₂B₃O₇ (A = K, Rb) (a) crystal sample and (b) simulation results

a. Diffuse reflectance absorption curve of the powder sample of $NaBeB_3O_6$

b. Diffuse reflectance absorption curve of the powder sample of β -KBe₂B₃O₇

c. Diffuse reflectance absorption curve of the powder sample of γ -KBe₂B₃O₇

d. Diffuse reflectance absorption curve of the powder sample of $RbBe_2B_3O_7$

Figure S4. Diffuse reflectance absorption curve of the powder sample of NaBeB₃O₆, β -KBe₂B₃O₇, γ -KBe₂B₃O₇ and RbBe₂B₃O₇