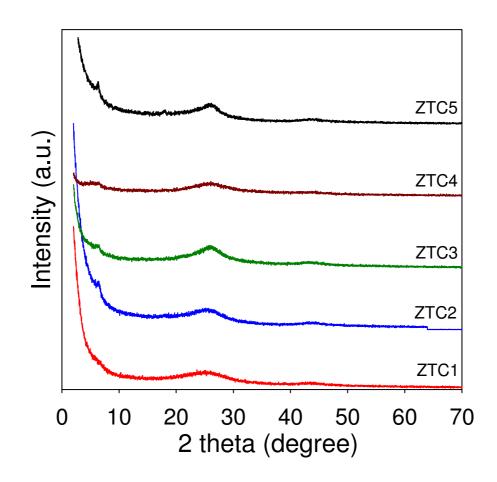
**Supplementary Information** 

## Enhancement of hydrogen storage capacity of zeolite-templated carbons by chemical activation

Marta Sevilla<sup>a,b</sup>, Nurul Alam<sup>a</sup> and Robert Mokaya<sup>a,\*</sup>

<sup>a</sup> School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD,

*U. K.* 


<sup>b</sup> Instituto Nacional del Carbón (CSIC), P.O. Box 73, 33080 Oviedo, Spain

\*r.mokaya@nottingham.ac.uk

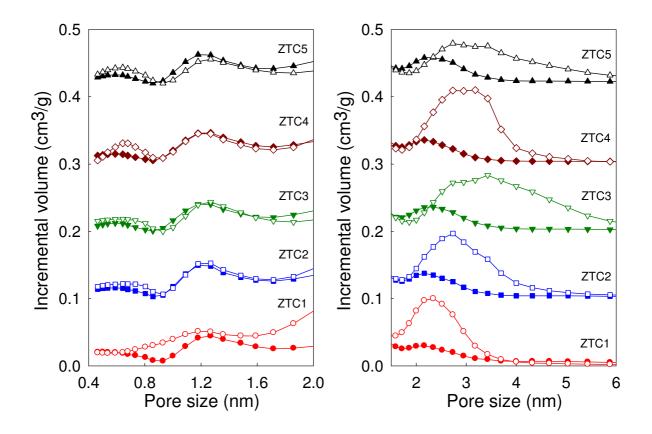
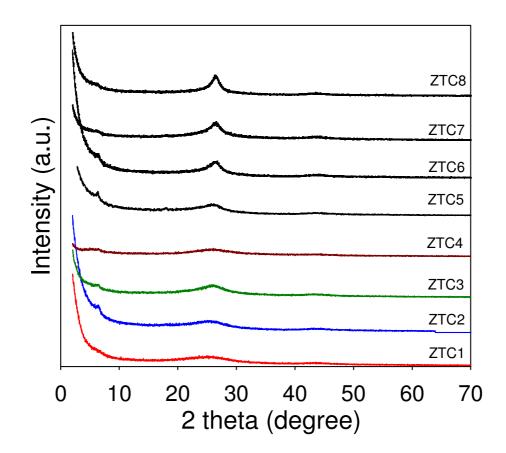
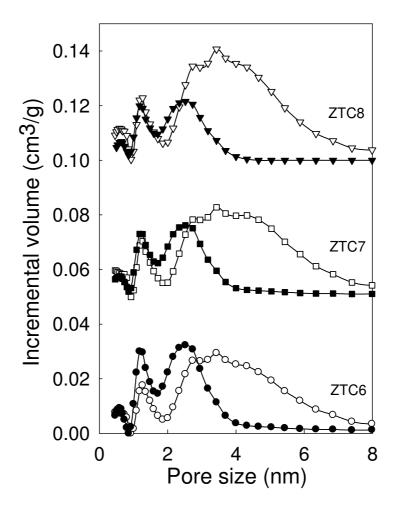

| Sample  | Surface area $(m^2/g)^a$ | Increase in<br>surface area<br>(%) <sup>b,c</sup> | Pore volume $(cm^3/g)^d$ | Pore size maxima (nm) <sup>e</sup> |
|---------|--------------------------|---------------------------------------------------|--------------------------|------------------------------------|
| ZTC6    | 1084 (792)               |                                                   | 0.66 (0.37)              | 1.2/2.5                            |
| ZTC7    | 916 (667)                |                                                   | 0.57 (0.31)              | 1.3/2.5                            |
| ZTC8    | 720 (551)                |                                                   | 0.41 (0.26)              | 1.2/2.5                            |
| Ac-ZTC6 | 867 (138)                | -20(-82)                                          | 0.75 (0.06)              | 1.3/3.4                            |
| Ac-ZTC7 | 980 (156)                | 7 (-77)                                           | 0.85 (0.07)              | 1.3/3.5                            |
| Ac-ZTC8 | 1112 (146)               | 40 (54)                                           | 0.91 (0.06)              | 1.3/3.4                            |

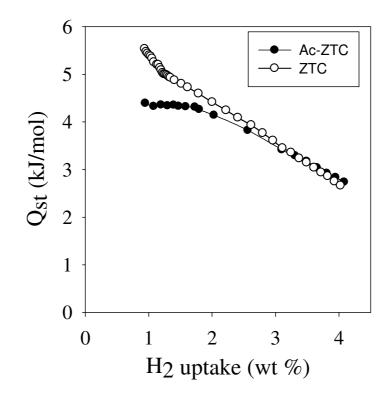
Table S1. Textural properties and hydrogen uptake capacity of zeolite templated carbons (ZTC) and their activated derivatives (Ac-ZTC).


<sup>a</sup>Values in parenthesis are micropore surface area. <sup>b</sup>Percentage increase in surface area after chemical activation. <sup>c</sup>Values in parenthesis are percentage change in micropore surface area after chemical activation. <sup>d</sup>Values in parenthesis are micropore volume. <sup>e</sup>Maxima of the DFT pore size distribution.

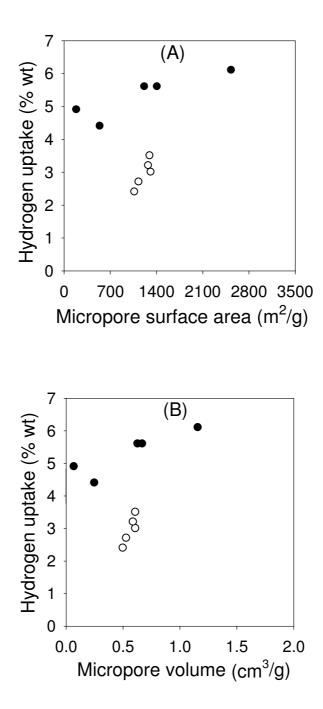



Supporting Figure S1. Powder XRD patterns of zeolite-templated carbon.




**Supporting Figure S2.** Pore size distribution curves of zeolite-templated carbons before (filled symbols) and after (open symbols) chemical activation with KOH.




**Supporting Figure S3.** Powder XRD patterns of zeolite-templated carbon showing that samples ZTC6, ZTC7 and ZTC8 (prepared at CVD temperature of 950 and 1000 °C) are relatively more graphitic (according to the peak at  $2\theta = 26^{\circ}$ , which is ascribed to the (002) diffraction from turbostratic/graphitic carbon)



**Supporting Figure S4.** Pore size distribution curves of zeolite-templated carbons with higher levels of graphitisation, before (filled symbols) and after (open symbols) chemical activation with KOH.



**Supporting Figure S5.** Evolution of the isosteric heat of hydrogen adsorption  $(Q_{st})$  as a function of hydrogen uptake of zeolite-templated carbon before (O) and after ( $\bullet$ ) chemical activation with KOH.



Supporting Figure S6. Plot of hydrogen storage capacity as a function of (A) micropore surface area or (B) micropore volume of zeolite-templated carbons before (O) and after
(●) chemical activation with KOH.