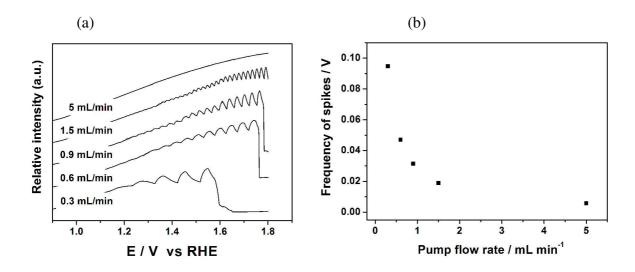
Combining voltammetry with HPLC: application to electro-oxidation of glycerol

Youngkook Kwon, Marc T. M. Koper*

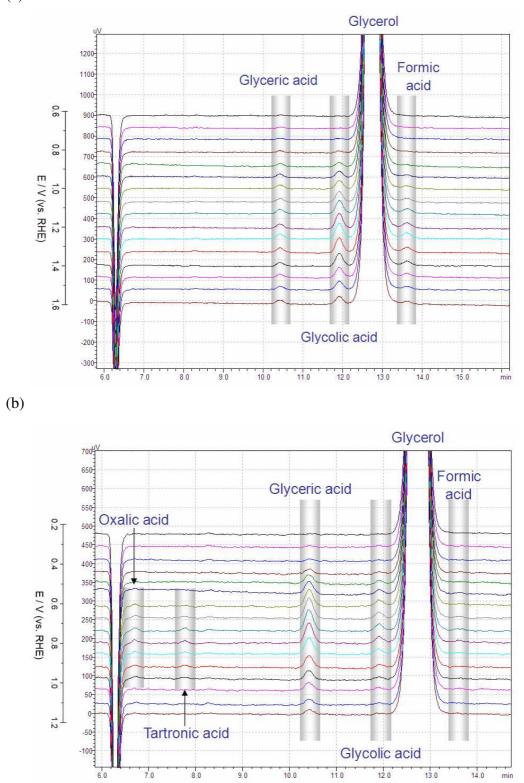
Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

List of supporting information:

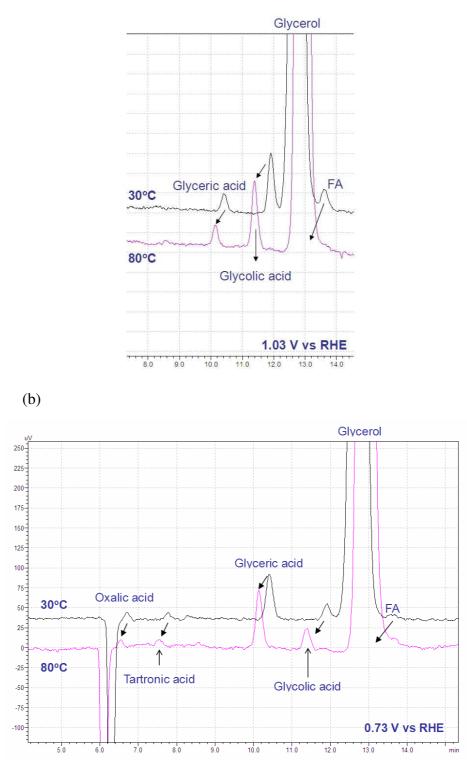
-Figure S1.


-Figure S2.

-Figure S3.


-Figure S4.

-Table S1.


*To whom all correspondence should be addressed. E-mail: <u>m.koper@chem.leidenuniv.nl</u>

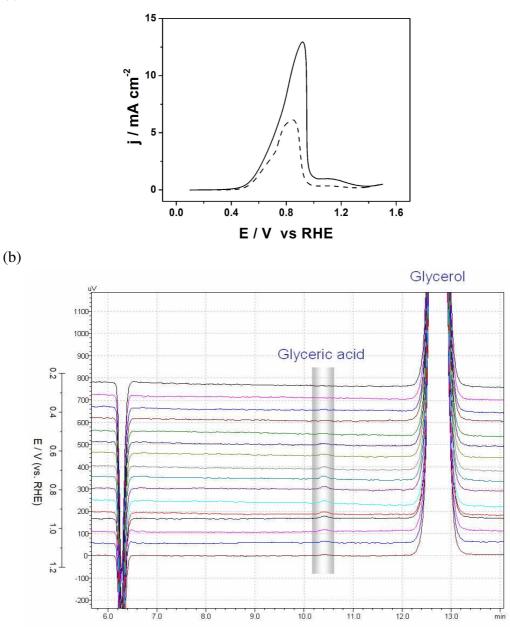

Figure S1. The relationship between pump flow rate of sample collection and frequency of spikes during glycerol oxidation on Au electrode. Scan rate is 10 mV/s.

Figure S2. Chromatograms from HPLC analysis at 30°C with collected samples during voltammetry on (a) Au and (b) Pt electrodes.

Figure S3. Chromatograms from HPLC analysis at 30°C and 80°C to separate, especially glyceric acid and glyceraldehyde on (a) Au and (b) Pt electrodes.

Figure S4. Effect of high scan rate (10 mV/s) and sample collecting flow rate (0.6 μ L/min) on (a) the current density during linear sweep voltammetry on Pt electrode and (b) chromatograms at 30°C. Scan rate and flow rate of sample collection are 1 mV/s with 0.06 μ L/min (dashed line) and 10 mV/s with (solid line), respectively. Especially, (a) charges transferred during glycerol oxidation on 1 and 10 mV/s are 2.936 × 10⁻¹ C and 5.912 × 10⁻² C, respectively, therefore only ca. 20 % of glycerol oxidation products can be collected with 10 mV/s compared to 1 mV/s. To confirm this, (b) the concentration of glyceric acid at 0.79 V (RHE) is 0.151 mM, which is ca. 24 % of glyceric acid in Figure S2 at the same potential.

Chemical	Retention time (min)	
	30°C	80°C
Oxalic acid	6.694	6.533
Tartronic acid	7.765	7.534
Glyceric acid	10.414	10.138
Glyceraldehyde	10.475	11.063
Glycolic acid	11.904	11.386
Glycerol	12.725	12.892
Formic acid	13.611	12.916

Table S1. Retention time of glycerol oxidation products at 30° C and 80° C