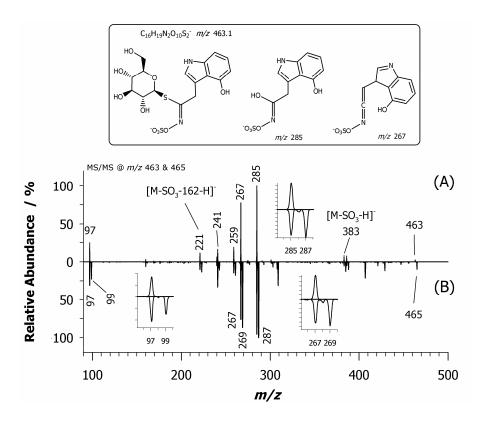
## Supplementary material as noted in the text.

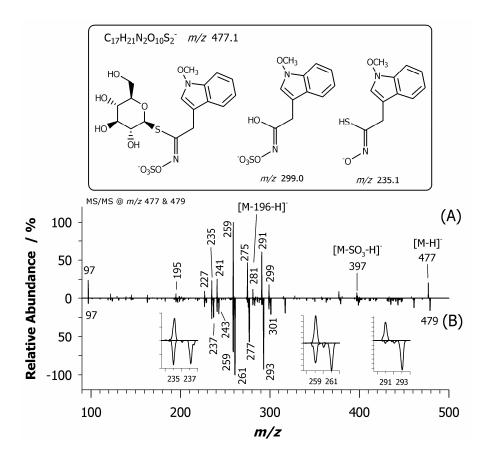

Supplemental Material: Figures S1-S6 and Tables S1-S6

## Collision-Induced Dissociation of the A+2 Isotope Ion Facilitates Glucosinolates Structure Elucidation by ESI-Tandem Mass Spectrometry with a Linear Quadrupole Ion Trap

Tommaso R. I. Cataldi,<sup>1,\*</sup> Filomena Lelario,<sup>2</sup> Donatella Orlando<sup>2</sup> and Sabino A. Bufo<sup>2</sup>

<sup>1</sup>Dipartimento di Chimica, Università degli Studi di Bari, Campus Universitario, Via E. Orabona, 4 - 70126 Bari, Italy <sup>2</sup>Dipartimento di Scienze dei Sistemi Colturali, Forestali e dell'Ambiente, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10 - 85100 Potenza, Italy

<sup>\*</sup> Author for correspondence, email: tommaso.cataldi@chimica.uniba.it

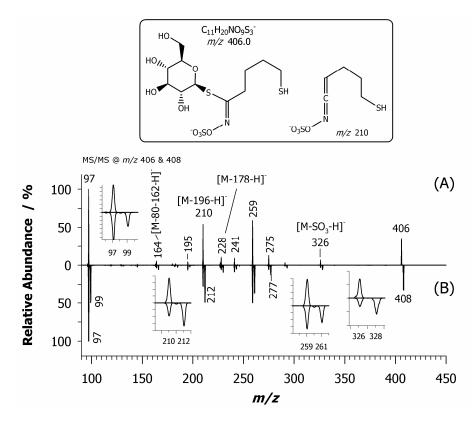



**Figure S1**. Product ion spectra obtained by LC-ESI-LTQ MS/MS in negative ion mode of (A) 4-hydroxy-glucobrassicin [1S] at m/z 463 and 20% collision energy. (B) The A+2 isotope peak at m/z 408 was fragmented at the same collision energy. See data reported in Table S1.

**Table S1.** Experimental and calculated ratios  $(I_A/I_{A+2})$  for the isotope abundances of the fragment ions as observed by CID of the +2 Da isotopomer of deprotonated 4-hydroxy-glucobrassicin [M-H]<sup>-</sup> at m/z 465 (C<sub>16</sub>H<sub>18</sub>N<sub>2</sub>O<sub>10</sub>S<sub>2</sub><sup>-</sup>+2).

| $g_{10} = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000000$ |                         |          |                                          |                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|------------------------------------------|----------------------|--|
| Ions A and A+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molecular               | Expected | Expected ratio counting                  | Measured             |  |
| (m/z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | formula (A)             | ratio    | only the contribution of <sup>34</sup> S | ratio ( <i>n</i> =5) |  |
| 97-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathrm{HSO}_{4}^{-}$  | 1.08     | 1 S : 1 S                                | $1.21\pm0.08$        |  |
| 259-261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_6H_{11}O_9S^-$       | 0.80     | 1 S : 1 S                                | $0.82 \pm 0.04$      |  |
| 267-269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_{10}H_7N2O_5S^-$     | 0.94     | 1 S : 1 S                                | 0.91±0.05            |  |
| 285-287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_{10}H_9N_2O_6S^-$    | 0.88     | 1 S : 1 S                                | $0.95 \pm 0.06$      |  |
| 383-385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_{16}H_{18}N_2O_7S^-$ | 0.70     | 1 S : 1 S                                | 0.62±0.10            |  |

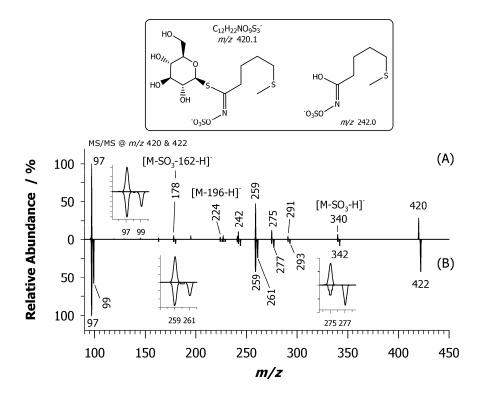
[1S] 4-hydroxy-glucobrassicin is an indole glucosinolate (see Agerbirk N, De Vos M, Kim JH, Jander G. Indole glucosinolate breakdown and its biological effects *Phytochem Rev.* 2009; 8: 101).




**Figure S2**. Product ion spectra obtained by LC-ESI-LTQ MS/MS in negative ion mode of (A) neoglucobrassicin (1-methoxy-3-indolylmethyl glucosinolate)  $[M-H]^-$  at m/z 477 and 20% collision energy. (B) The A+2 isotope peaks at m/z 479 (A+2) was fragmented at the same collision energy. See data reported in Table S2.

|                                                   | of one of the           | 2 Du 15010p | conter of acprotonated neograe      |                 |
|---------------------------------------------------|-------------------------|-------------|-------------------------------------|-----------------|
| <i>m/z</i> 479 (C <sub>17</sub> H <sub>21</sub> N | $I_2O_{10}S_2^- + 2).$  |             |                                     |                 |
| Ions A and A+2                                    | Molecular               | Expected    | Expected ratio counting only        | Measured ratio  |
| (m/z)                                             | formula (A)             | ratio       | the contribution of <sup>34</sup> S | ( <i>n</i> =5)  |
| 97-99                                             | $HSO_4^-$               | 1.08        | 1 S : 1 S                           | LSs             |
| 235-237                                           | $C_{11}H_{11}N_2O_2S^-$ | 1.11        | 1 S : 1 S                           | $1.07 \pm 0.04$ |
| 241-243                                           | $C_6H_9O_8S^-$          | 0.90        | 1 S : 1 S                           | $0.88 \pm 0.04$ |
| 259-261                                           | $C_6H_{11}O_9S^-$       | 0.84        | 1 S : 1 S                           | $0.80 \pm 0.04$ |
| 275-277                                           | $C_6H_{11}O_8S_2^-$     | 0.11        | 0 S : 1 S                           | 0.10±0.02       |
| 291-293                                           | $C_6H_{11}O_9S_2^-$     | 0.09        | 0 S : 1 S                           | $0.09 \pm 0.02$ |
| 299-301                                           | $C_{11}H_{11}N_2O_6S^-$ | 0.84        | 1 S : 1 S                           | 0.80±0.03       |

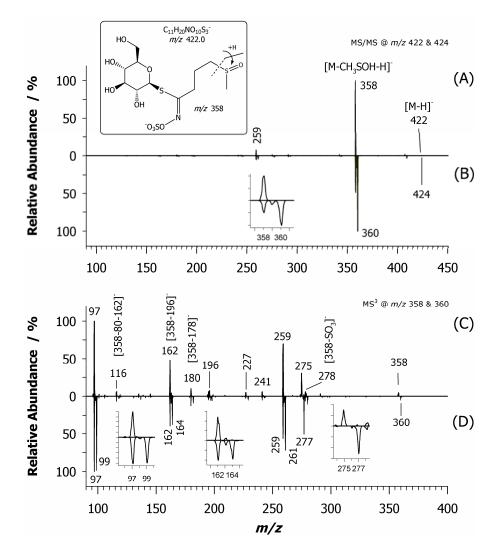
**Table S2.** Experimental and calculated ratios  $(I_A/I_{A+2})$  for the isotope abundances of the fragment ions as observed by CID of the +2 Da isotopomer of deprotonated neoglucobrassicin [M-H]<sup>-</sup> at m/z 479  $(C_{17}H_{21}N_2O_{10}S_2^- + 2)$ .


LSs= low signals.



**Figure S3**. Product ion spectra obtained by LC-ESI-LTQ MS/MS in negative ion mode of (A) 4-mercaptobutyl-GLS  $[M-H]^-$  at m/z 406 and 25% collision energy. (B) The A+2 isotope peak at m/z 408 was fragmented at the same collision energy. See data reported in Table S3.

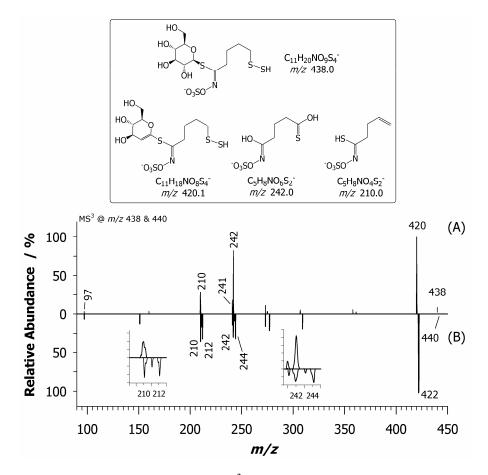
| $408 (C_{11}H_{20}NO_9S)$ | <b>b</b> <sub>3</sub> +2). |          |                                     |                 |
|---------------------------|----------------------------|----------|-------------------------------------|-----------------|
| Ions A and A+2            | Molecular                  | Expected | Expected ratio counting only        | Measured ratio  |
| (m/z)                     | formula (A)                | ratio    | the contribution of <sup>34</sup> S | ( <i>n</i> =5)  |
| 97-99                     | $\mathrm{HSO_4}^-$         | 1.89     | 2 S : 1 S                           | 1.85±0.04       |
| 210-212                   | $C_5H_8NO_4S_2^-$          | 0.57     | 1 S : 2 S                           | $0.55 \pm 0.05$ |
| 259-261                   | $C_6H_{11}O_9S^-$          | 1.40     | 2 S : 1 S                           | $1.42 \pm 0.06$ |
| 275-277                   | $C_6H_{11}O_8S_2^-$        | 0.44     | 1 S : 2 S                           | $0.46 \pm 0.06$ |
| 326-328                   | $C_{11}H_{20}NO_6S_2^-$    | 0.47     | 1 S : 2 S                           | $0.46 \pm 0.03$ |


**Table S3.** Experimental and calculated ratios  $(I_A/I_{A+2})$  for the isotope abundances of the fragment ions as observed by CID of the +2 Da isotopomer of deprotonated 4-mercaptobutyl-GLS at m/z 408  $(C_{11}H_{20}NO_9S_3^-+2)$ .



**Figure S4**. Product ion spectra obtained by LC-ESI-LTQ MS/MS in negative ion mode of (A) glucoerucin (4-methylthiobutyl glucosinolate)  $[M-H]^-$  at m/z 420 and 20% collision energy. (B) The A+2 isotope peak at m/z 422 was fragmented at the same collision energy. See data reported in Table S4.

| <b>Table S4.</b> Experimental and calculated ratios $(I_A/I_{A+2})$ for the isotope abundances of the fragment |
|----------------------------------------------------------------------------------------------------------------|
| ions as observed by CID of the +2 Da isotopomer of deprotonated glucoerucin [M-H] <sup>-</sup> at m/z 422      |
| $(C_{12}H_{21}NO_9S_3^-+2).$                                                                                   |


| (0121121110903 | <i>2</i> ).             |          |                                     |                 |
|----------------|-------------------------|----------|-------------------------------------|-----------------|
| Ions A and A+2 | Molecular               | Expected | Expected ratio counting only        | Measured ratio  |
| (m/z)          | formula (A)             | ratio    | the contribution of <sup>34</sup> S | ( <i>n</i> =5)  |
| 97-99          | $\mathrm{HSO}_{4}^{-}$  | 1.89     | 2 S : 1 S                           | 1.86±0.05       |
| 178-180        | $C_6H_{12}NOS_2^-$      | 0.67     | 1 S : 2 S                           | $0.63 \pm 0.08$ |
| 242-244        | $C_6H_{12}NO_5S_2^{-1}$ | 0.54     | 1 S : 2 S                           | $0.60 \pm 0.04$ |
| 259-261        | $C_6H_{11}O_9S^-$       | 1.41     | 2 S : 1 S                           | $1.46 \pm 0.05$ |
| 275-277        | $C_6H_{11}O_8S_2^-$     | 0.45     | 1 S : 2 S                           | $0.48 \pm 0.04$ |
| 340-342        | $C_{12}H_{21}NO_6S2^-$  | 0.46     | 1 S : 2 S                           | 0.41±0.05       |
|                |                         |          |                                     |                 |



**Figure S5**. Product ion spectra obtained by LC-ESI-LTQ MS/MS in negative ion mode of (A) glucoiberin (3-methylsulfinylpropyl glucosinolate)  $[M-H]^-$  at m/z 422 (20% collision energy). The main product ion is due to the characteristic loss of methanesulfenic acid (CH<sub>3</sub>SOH, 64 Da) from the side chain of glucoiberin. (B) The A+2 isotope peak at m/z 424 was fragmented at the same collision energy. Fragment ions (25% collision energy) at m/z 414 and m/z 416 were selected as precursor ions for a further stage of fragmentation (MS<sup>3</sup>) and the resulting mass spectra are illustrated in plots (C) and (D), respectively. See data reported in Table S5.

**Table S5.** Experimental and calculated ratios  $(I_A/I_{A+2})$  for the isotope abundances of the fragment ions as observed by CID of the +2 Da isotopomer of deprotonated glucoiberin [M-H]<sup>-</sup> at m/z 424 ( $C_{11}H_{20}NO_{10}S_3^-$  + 2) and subsequent fragmentation of the prominent A+2 ion at m/z 360.

| Ions A and A+2                                                                                                | Molecular               | Expected | Expected ratio counting only        | Measured ratio  |  |
|---------------------------------------------------------------------------------------------------------------|-------------------------|----------|-------------------------------------|-----------------|--|
| (m/z)                                                                                                         | formula (A)             | ratio    | the contribution of <sup>34</sup> S | ( <i>n</i> =5)  |  |
| 358-360                                                                                                       | $C_{10}H_{16}NO_9S_2^-$ | 0.41     | 1 S : 2 S                           | 0.43±0.05       |  |
| MS <sup>3</sup> at $m/z$ 360 (C <sub>10</sub> H <sub>16</sub> NO <sub>9</sub> S <sub>2</sub> <sup>-</sup> +2) |                         |          |                                     |                 |  |
| 97-99                                                                                                         | $\mathrm{HSO_4}^-$      | 1.04     | 1 S : 1 S                           | $1.01 \pm 0.03$ |  |
| 162-164                                                                                                       | $C_4H_4NO_4S^-$         | 1.06     | 1 S : 1 S                           | $1.03 \pm 0.05$ |  |
| 259-261                                                                                                       | $C_6H_{11}O_9S^-$       | 0.70     | 1 S : 1 S                           | 0.73±0.05       |  |
| 275-277                                                                                                       | $C_6H_{11}O_8S_2^-$     | 0.03     | 0 S : 1 S                           | $0.02 \pm 0.02$ |  |



**Figure S6**. Product ion spectra (MS<sup>3</sup>) of deprotonated 4-( $\beta$ -D-glucopyranosyl-disulfanyl)butyl-GLS at 30% collision energy. Fragment ions at m/z 438 and m/z 440 were selected as precursor ions, plots (A) and (B), respectively. See data reported in Table S6.

**Table S6.** Experimental and calculated ratios  $(I_A/I_{A+2})$  for the isotope abundances of the fragment ions as observed by CID of the +2 Da isotopomer of the fragment ion at m/z 440  $(C_{11}H_{20}NO_9S_4^- +2)$  which is a product ion  $(MS^3)$  of deprotonated 4-( $\beta$ -D-glucopyranosyl-disulfanyl)butyl-GLS [M-H]<sup>-</sup> (see Figure 6).

| disultallyijoutyi |                         | e i iguie 0). |                                     |                 |
|-------------------|-------------------------|---------------|-------------------------------------|-----------------|
| Ions A and A+2    | Molecular               | Expected      | Expected ratio counting only        | Measured ratio  |
| (m/z)             | formula (A)             | ratio         | the contribution of <sup>34</sup> S | ( <i>n</i> =5)  |
| 97-99             | $HSO_4^-$               | 2.93          | 3 S : 1 S                           | LSs             |
| 210-212           | $C_5H_8NO_4S_2^-$       | 1.03          | 1 S : 1 S                           | $1.04 \pm 0.04$ |
| 242-244           | $C_5H_8NO_6S_2^-$       | 0.95          | 1 S : 1 S                           | $0.96 \pm 0.05$ |
| 420-422           | $C_{11}H_{18}NO_8S_4^-$ | 0.01          | 0 S : 1 S                           | 0.01±0.02       |
|                   |                         |               |                                     |                 |

LSs= low signals.