Synthesis of All-Carbon, Quaternary Center-Containing Cyclohexenones through an Organocatalyzed, MultiComponent Coupling

Hua Yang and Rich G. Carter*
Department of Chemistry, Oregon State University, Corvallis, OR 97331.

Electronic Supplementary Information: Structures Appendix

Appendix to Table 2. Initial Exploration of Reaction Scope: Structures of Products with Yield, Enantioselectivity and Diastereoselectivity.

Entry a 35 a 56% yield

94.4:5.6 (>20:1)

93.6:6.4 (>20:1)

95.7:4.3 (>20:1)

Appendix to Scheme 3. Further Exploration of Reaction Scope: Structures of Products with Yield, Enantioselectivity and Diastereoselectivity.

Synthesis of All-Carbon, Quaternary Center-Containing Cyclohexenones through an Organocatalyzed, MultiComponent Coupling

Hua Yang and Rich G. Carter*
Department of Chemistry, Oregon State University, Corvallis, OR 97331.

General. Infrared spectra were recorded neat unless otherwise indicated and are reported in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectra were recorded in deuterated solvents and are reported in ppm relative to tetramethylsilane and referenced internally to the residually protonated solvent. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated solvents and are reported in ppm relative to tetramethylsilane and referenced internally to the residually protonated solvent. Chiral HPLC was performed with chiral columns (chirapak AD, OD, OJ, AS-H columns, (Daicel Chemical Ind., Ltd.)).

Routine monitoring of reactions was performed using EM Science DC-Alufolien silica gel, aluminum-backed TLC plates. Flash chromatography was performed with the indicated eluents on EM Science Gedurian 230-400 mesh silica gel.

Air and/or moisture sensitive reactions were performed under usual inert atmosphere conditions. Reactions requiring anhydrous conditions were performed under a blanket of argon, in glassware dried in an oven at $120^{\circ} \mathrm{C}$ or by flame, then cooled under argon. Dry THF and DCM were obtained via a solvent purification system. All other solvents and commercially available reagents were either purified via literature procedures or used without further purification. $4 \AA$ Molecular Sieves was grounded and heated in the oven at $120^{\circ} \mathrm{C}$ for 13 h before use.

2-(4-Methylphenl)-propanal 32^{1}, 2-(4-bromophenl)-propanal 33 ${ }^{2}$, 2-(4-chlorophenl)-propanal 34 ${ }^{2}$, 7-iodo-3-hepten-2-one $\mathbf{4 0}^{3}$, 3-octen-8-[[(4-methylphenyl)sulfonyl]oxy]-2-one $\mathbf{4 2}^{4}$, 8-[[(1,1-dimethylethyl)-dimethylsilyl]oxy]-3-octen-2-one 49^{5}, [(5-hexen-1-yloxy)methyl]-benzene $63^{6}, 6$-azido-1-hexene $64{ }^{7}$, and 8-bromo-3-octen-2-one $\mathbf{6 5}^{3}$ were prepared according to the reported procedure.

Sulfonamide 27: To a solution of 1-dodecanol ($9.30 \mathrm{~g}, 50 \mathrm{mmol}$) in DMF (100 mL) was added sulfonamide $26(5.03 \mathrm{~g}, 25 \mathrm{mmol})$, DMAP $(1.53 \mathrm{~g}, 12.5 \mathrm{mmol})$ and EDCI $(4.80 \mathrm{~g}, 25 \mathrm{mmol})$ respectively. The reaction mixture was stirred at room temperature for 48 h before being partitioned between $\operatorname{EtOAc}(150 \mathrm{~mL})$ and aq. $\mathrm{HCl}(50 \mathrm{~mL}, 1 \mathrm{~N})$. The organic layer was washed with brine ($3 \times 100 \mathrm{~mL}$). The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $5-25 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give sulfonamide $27\left(7.26 \mathrm{~g}, 19.7 \mathrm{mmol}, 79 \%\right.$) as a white solid. Mp: $105-106^{\circ} \mathrm{C}$; IR (neat) 3330, 2916, 2845, $1713,1282,1157,1124,765,738,694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.46(\mathrm{~m}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=$ 6.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.2,145.6,134.4,130.4,126.5,66.0,31.9,29.64,29.58$, 29.53, 29.4, 29.3, 28.6, 26.0, 22.7, 14.1; HRMS (EI+) calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+$), 369.1974 found 369.1971 .

Z-L-sulfonamide 29: To a solution of Z-L-proline 28 ($2.88 \mathrm{~g}, 11.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (58 mL) was added sulfonamide 27 ($4.27 \mathrm{~g}, 11.6 \mathrm{mmol}$), DMAP ($1.41 \mathrm{~g}, 11.6 \mathrm{mmol}$) and EDCI ($2.22 \mathrm{~g}, 11.6 \mathrm{mmol}$) respectively. The reaction mixture was stirred at room temperature for 4 d before being partitioned between DCM $(50 \mathrm{~mL})$ and aq. $\mathrm{HCl}(50 \mathrm{~mL}, 1 \mathrm{~N})$. The organic layer was washed with half-saturated brine $(3 \times 80$ $\mathrm{mL})$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10-60 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give Z-L-sulfonamide 29 ($5.06 \mathrm{~g}, 8.42 \mathrm{mmol}, 73 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}=-94.0^{\circ}\left(\mathrm{c}=3.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $3477,2922,2851,1718,1691,1615,1435,1266,1092,863$, $770,700,618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$
$7.29(\mathrm{~m}, 5 \mathrm{H}), 5.06(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.39(\mathrm{~m}, 2 \mathrm{H})$, 1.69-2.01 (m, 6H), 1.29-1.43 (m, 19H), $0.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4$, $156.2,146.1,136.3,133.2,129.6,128.4,127.9,127.7,127.0,67.3,65.5,62.8,46.9,31.9,29.7,29.6,29.4$, 28.7, 26.0, 24.3, 22.7, 14.1; HRMS (CI+) calcd. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}+1), 601.2947$ found 601.2921.

29

25

Sulfonamide 25: To a solution of Z-L-sulfonamide $29(3.72 \mathrm{~g}, 6.20 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(0.37 \mathrm{~g}, 10 \%)$. The mixture was stirred at rt for under an atmosphere of hydrogen. After 20 h , the reaction was filtered through celite and silica gel pad, and the filtrate was concentrated in vacuo to give white solid. The crude product was purified by chromatography over silica gel, eluting with $1-20 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give sulfonamide $25(2.37 \mathrm{~g}, 5.08 \mathrm{mmol}, 82 \%)$ as a white solid. Mp: $166-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-88.1^{\circ}$ $\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$; IR (neat) $3129,3074,2922,1729,1620,1560,1391,1266,857,732,618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.38(\mathrm{~m}, 3 \mathrm{H})$, $3.37-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.75-2.05(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.45(\mathrm{~m}, 19 \mathrm{H}), 0.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2$, 165.6, 146.9, 133.3, 129.8, 126.5, 65.7, 63.0, 46.8, 31.9, 29.9, 29.63, 29.55, 29.4, 29.3, 28.7, 26.0, 24.6, 22.7, 14.1; HRMS (CI+) calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+1), 467.2580$ found 467.2566.

General procedure for three-component reaction ($20 \mathrm{~mol} \%$ catalyst): The aldehyde (0.25 mmol), benzyl amine $(0.25 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(0.1 \mathrm{~g})$ were added to dichloroethane solution $(0.25 \mathrm{~mL})$ in a vial. After stirring at room temperature for 30 min , the corresponding enone ($0.75 \mathrm{mmol}, 3$ equiv.) and sulfonamide $\mathbf{2 5}$ ($23.3 \mathrm{mg}, 0.05 \mathrm{mmol}$) were added to it at room temperature. After stirring at same temperature, reaction was loaded directly onto silica gel and was purified by chromatography, eluting with EtOAc / hexanes, to give the corresponding product.

4,5-Dimethyl-4-phenyl-2-cyclohexen-1-one 20: Reaction time 60 h . Purified by chromatography over silica gel, eluting with 1-4\% EtOAc / hexanes, to give enone 20 ($37.3 \mathrm{mg}, 75 \%$, $94.6: 5.4 \mathrm{er},>20: 1 \mathrm{dr}$, colorless crystal). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, 99:1 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 13.3 min (major) and 16.1 min (minor)] to be $94.6: 5.4 \mathrm{er}$: $\mathrm{Mp}: 48-50^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-63.4^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.84-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.9,159.1,146.2,128.4,127.4,126.8,126.7,44.2,42.6,40.6,16.9,15.8 ;$ HRMS (CI+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}(\mathrm{M}+1), 201.1279$ found 201.1269.

4,5-Dimethyl-4-(4-methylphenyl)-2-cyclohexen-1-one 35a: Reaction time 60 h . Purified by
chromatography over silica gel, eluting with $1-4 \%$ EtOAc / hexanes, to give enone 35a ($30.1 \mathrm{mg}, 56 \%$, 94.4:5.6 er, $>20: 1 \mathrm{dr}$, colorless crystal). Enantiomeric excess was determined by chiral HPLC [4.6 X 250 mm Daicel OJ column, 95:5 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 9.89 min (major) and 18.5 min (minor)] to be $94.4: 5.6 \mathrm{er}$: Mp: $64-66^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-90.4^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right.$); IR (neat) 2961, 1680, 1455, 1385, 1276, 1116, 816, $778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.86-0.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.0,159.4,143.3,136.4,129.1,127.3,126.7,43.9,42.6,40.6,20.9,16.9,15.8$; HRMS (CI+) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}(\mathrm{M}+1), 215.1436$ found 215.1435 .

4-(4-Bromophenyl)-4,5-dimethyl-2-cyclohexen-1-one 35b: Reaction time 60 h . Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 35b ($37.4 \mathrm{mg}, 54 \%$, 93.6:6.4 er, $>20: 1 \mathrm{dr}$, colorless crystal). Enantiomeric excess was determined by chiral HPLC [4.6 X 250 mm Daicel OJ column, 98:2 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 16.6 min (major) and 20.3 min (minor)] to be $93.6: 6.4$ er: Mp: $144-146^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-101.6^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$; IR (neat) 2976, 1685, 1457, $1081,808,792,716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.44(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.5,158.1,145.4,131.5,128.7,127.8,120.8,44.0,42.4,40.6,16.9,15.7$; HRMS $(\mathrm{CI}+)$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OBr}(\mathrm{M}+1), 279.0385$ found 279.0382.

4-(4-Chlorophenyl)-4,5-dimethyl-2-cyclohexen-1-one 35c: Reaction time 60 h. Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 35c ($30.6 \mathrm{mg}, 52 \%$, 93.6:6.4 er, $>20: 1 \mathrm{dr}$, light yellow crystal). Enantiomeric excess was determined by chiral HPLC [4.6 X 250 mm Daicel OJ column, 95:5 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 11.6 min (major) and 14.2 min (minor)] to be 93.6:6.4 er: Mp: 133-135 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-97.6^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$; IR (neat) 2965, 2927, 1685, 1484, 1457, 1271, 1005, 814, 732, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.28(\mathrm{~m}$, $2 \mathrm{H}), 6.79(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,158.3,144.8,132.7,128.5,128.3,127.7,44.0,42.5,40.6$, 16.9, 15.7; HRMS (CI+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OCl}(\mathrm{M}+1), 235.0890$ found 235.0883.

5-Butyl-4-methyl-4-phenyl-2-cyclohexen-1-one 35d: Reaction time 4 d . Purified by chromatography over silica gel, eluting with $1-3 \%$ EtOAc / hexanes, to give enone $\mathbf{3 5 d}(50.9 \mathrm{mg}, 84 \%, 95.7: 4.3 \mathrm{er},>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, 99.5:0.5 Hexanes / $i-\mathrm{PrOH}, 0.8 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 17.0 min (major) and 12.6 min (minor)] to be 95.7:4.3 er: $[\alpha]_{\mathrm{D}}{ }^{23}=-100.9^{\circ}\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $2253,2930,1680,1498,1373,1272,1023,762,704$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.39(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{dd}, J=16.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.92-1.30(\mathrm{~m}, 7 \mathrm{H}), 0.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,159.5,146.3,128.4,127.2,127.0,126.7,45.4,44.4,39.6,29.2,29.1$, 22.4, 16.9, 13.8; HRMS $(\mathrm{CI}+)$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}(\mathrm{M}+1), 243.1749$ found 243.1748.

5-Butyl-4-methyl-4-(4-methylphenyl)-2-cyclohexen-1-one 35e: Reaction time 3 d. Purified by chromatography over silica gel, eluting with $1-4 \%$ EtOAc / hexanes, to give enone 35e ($48.9 \mathrm{mg}, 76 \%$, 91.5:8.5 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel AS-H column, 98:2 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 33.9 min (major) and 38.1 min (minor)] to be $91.5: 8.5 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-97.4^{\circ}\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $2954,2927,1685,1457,1266,1124$, $1021,814,776,721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=16.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.94-1.29$ $(\mathrm{m}, 6 \mathrm{H}), 0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,159.8,143.3,136.3,129.1,127.0$, $126.8,45.3,44.1,39.6,29.3,29.1,22.5,20.9,17.0,13.8$; HRMS (CI+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}(\mathrm{M}+1), 257.1905$ found 257.1910.

4-(4-Bromophenyl)-5-butyl-4-methyl-2-cyclohexen-1-one $\mathbf{3 5 f}$: Reaction time 3 d. Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone $\mathbf{3 5 f}$ ($54.5 \mathrm{mg}, 68 \%$, 95.9:4.1 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [$4.6 \times 250 \mathrm{~mm}$ Daicel AS-H column, 90:10 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 36.8 min (major) and 28.2 min (minor)] to be $95.9: 4.1 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-125^{\circ}\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right.$); IR (neat) 2953, 2930, 1680, 1490, 1077, 1003, $816,723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=16.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.89-1.31$ $(\mathrm{m}, 6 \mathrm{H}), 0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6,158.6,145.4,131.5,128.8,127.5$, $120.8,45.4,44.3,39.5,29.3,29.1,22.4,16.9,13.8$; $\mathrm{HRMS}\left(\mathrm{CI}+\right.$) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OBr}(\mathrm{M}+1), 321.0854$ found 321.0860 .

4,5-Diphenyl-4-methyl-2-cyclohexen-1-one 38: Reaction time 4 d . Purified by chromatography over silica gel, eluting with 1-4\% EtOAc / hexanes, to give enone 38 ($31.1 \mathrm{mg}, 47 \%, 97.5: 2.5 \mathrm{er},>20: 1 \mathrm{dr}$, white solid). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, 99:1 Hexanes / i $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 29.1 min (major) and 23.8 min (minor)] to be $97.5: 2.5 \mathrm{er}: \mathrm{Mp}$: 104$106^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}=-102.9^{\circ}\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$; IR (neat) $3020,2971,1669,1495,1446,1266,798,770,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$
$(\mathrm{dd}, J=16.8,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.9, 158.8, 145.5, 138.9, 129.0, 128.2, 127.6, 127.19, 127.17, 127.0, 126.9, 52.2, 45.4, 40.1, 17.3; HRMS $(\mathrm{CI}+)$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}(\mathrm{M}+1), 263.1436$ found 263.1437.

5-(4-Chlorophenyl)-4-phenyl-4-methyl-2-cyclohexen-1-one 39: Reaction time 4 d. Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 39 ($32.2 \mathrm{mg}, 43 \%$, 87.8:12.2 er, $>20: 1 \mathrm{dr}$, light yellow crystal). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel AS-H column, $90: 10$ Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 44.5 min (major) and 37.6 \min (minor)] to be $87.8: 12.2 \mathrm{er}$: Mp: $106-108^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-150.2^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) 3031, 2976, $1685,1495,1255,1097,1015,830,759,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.28-7.34 (m, 3H), $7.11(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,158.6,145.1,137.4,132.9,130.2,128.3,127.8$, 127.2, 127.1, 51.6, 45.2, 39.9, 17.1; HRMS (CI+) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{OCl}(\mathrm{M}+1)$, 297.1046 found 297.1044.

5-(3-Bromopropyl)-4-methyl-4-phenyl-2-cyclohexen-1-one 44: Reaction time 4 d. Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 44 ($42.2 \mathrm{mg}, 55 \%$, 63.8:36.2 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, $98: 2$ Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 20.0 min (major) and 24.0 min (minor)] to be 63.8:36.2 er: $[\alpha]_{\mathrm{D}}{ }^{23}=-26.7^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right.$); IR (neat) $2926,1684,1660,1501,770,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-$ $3.29(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=16.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.57(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,159.2,145.8,128.6,127.2,127.0,126.9,45.1,44.4,39.7,33.2,30.3,28.5$, 16.9; HRMS (EI+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{OBr}(\mathrm{M}+), 306.0619$ found 306.0618.

5-(3-Iodopropyl)-4-methyl-4-phenyl-2-cyclohexen-1-one 45: Reaction time 4 d. Purified by chromatography over silica gel, eluting with $1-3 \%$ EtOAc / hexanes, to give enone 45 ($57.6 \mathrm{mg}, 65 \%$, 56.6:43.4 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, 99:1 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 23.9 min (major) and 19.8 min (minor)] to be 56.6:43.4 er: IR (neat) 2957, 2918, 2848, 1680, 1455, 1369, 1276, 1023, 781, 766, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-$ $3.07(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, J=16.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.57(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,159.2,145.8,128.6,127.2,127.0,126.9,44.8,44.3,39.7,31.0,30.8,16.9$, 6.0; HRMS (CI+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{OI}(\mathrm{M}+), 354.0481$ found 354.0478.

4-Methyl-4-phenyl-5-(3-tosyloxylbutyl)-2-cyclohexen-1-one 46: Reaction time 4 d . Purified by chromatography over silica gel, eluting with $2-20 \%$ EtOAc / hexanes, to give enone 46 ($31.8 \mathrm{mg}, 32 \%$, 88.3:11.7 er, $16: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel AD column, 90:10 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 36.7 min (major) and 30.2 min (minor)] to be $88.3: 11.7 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-24.6^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $2957,2926,1677,1357,1178,953$, $918,816,762,704,661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 7 \mathrm{H})$, $6.78(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.88(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.31(\mathrm{~m}$, $2 \mathrm{H}), 1.61-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.29(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,159.1,145.8$, $144.8,133.1,129.8,128.6,127.9,127.1,127.0,126.8,70.1,45.2,44.3,39.4,26.5,25.9,21.7,17.0$; HRMS $(\mathrm{CI}+)$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+), 398.1552$ found 398.1543 .

4-Methyl-5-(4-pentenyl)-4-phenyl-2-cyclohexen-1-one 47: Reaction time 4 d . Purified by chromatography over silica gel, eluting with 1-3\% EtOAc / hexanes, to give enone 47 ($50.2 \mathrm{mg}, 79 \%, 92.6: 7.4 \mathrm{er},>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [$4.6 \times 250 \mathrm{~mm}$ Daicel OD column, 99.5:0.5 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 13.5 min (major) and 17.6 min (minor)] to be 92.6:7.4 er: $[\alpha]_{\mathrm{D}}{ }^{23}=-78.5^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right.$); IR (neat) 3058, 3023, 2926, 2852, 1684, 1498, 1459, 1264, 1023, 992, 914, 789, 762, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.86(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=16.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.76-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.05-1.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,159.4$, $146.2,138.2,128.4,127.2,127.0,126.8,114.6,45.3,44.4,39.6,33.3,29.0,26.1,16.9$; HRMS (CI+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}(\mathrm{M}+), 254.1671$ found 254.1663.

4-Methyl-4-phenyl-5-(4-phenylmethoxybutyl)-2-cyclohexen-1-one 53: Reaction time 4 d . Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 53 ($59.2 \mathrm{mg}, 68 \%$, 92.7:7.3 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [$4.6 \times 250 \mathrm{~mm}$ Daicel OJ column, 85:15 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 20.9 min (major) and 29.2 min (minor)] to be 92.7:7.3 er: $[\alpha]_{\mathrm{D}}{ }^{23}=-51.3^{\circ}\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right)$; IR (neat) 2926, 2852, 1680, 1451, 1097, 758, 735, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.39(\mathrm{~m}, 10 \mathrm{H}), 6.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.28-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=16.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.02-1.46(\mathrm{~m}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,159.4,146.2,138.5,128.43,128.35,127.6,127.5,127.2,127.0$, 126.8, 72.9, 69.9, 45.4, 44.4, 39.6, 29.5, 29.4, 23.6, 16.9; HRMS (EI+) calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}(\mathrm{M}+), 348.2089$ found 348.2085.

5-[4-[(1,1-Dimethylethyl)dimethylsilyl]oxybutyl]-4-methyl-4-phenyl-2-cyclohexen-1-one 54: Reaction time 5 d . Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone $\mathbf{5 4}$ ($62.9 \mathrm{mg}, 68 \%$, 89.7:10.3 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OJ column, $85: 15$ Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 11.8 min (major) and 14.7 min (minor)] to be $89.7: 10.3 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-59.0^{\circ}\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2949, 2930, 2852, 1684, $1470,1385,1252,1101,1027,836,774,704,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.39(\mathrm{~m}, 5 \mathrm{H})$, $6.80(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=16.0,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23-2.34 (m, 2H), 1.46(s, 3H), $1.37(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}),-0.005(\mathrm{~s}, 3 \mathrm{H}),-0.008(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,159.5,146.2,128.4,127.2,126.9,126.8,62.7,45.5,44.4,39.6,32.5,29.4,26.0,23.2$, 18.3, 16.9, -5.32; HRMS (CI+) calcd. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+1), 373.2563$ found 373.2549.

5-(4-Azidobutyl)-4-methyl-4-phenyl-2-cyclohexen-1-one 55: Reaction time 4 d (no light). Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 55 ($38.2 \mathrm{mg}, 54 \%$, 91.4:8.6 er, >20:1 dr, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, $98: 2$ Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 20.0 min (major) and 25.8 min (minor)] to be $91.4: 8.6$ er: $[\alpha]_{\mathrm{D}}{ }^{23}=-67.9^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; IR (neat) $2934,2860,2093,1684,1260,766,700$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=16.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.05-1.45(\mathrm{~m}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.5,159.3,146.0,128.5,127.2,126.9,51.0,45.3,44.4,39.6,29.0,28.5$, 24.0, 16.8; HRMS (EI+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+), 283.1685$ found 283.1677.

5-(4-Iodobutyl)-4-methyl-4-phenyl-2-cyclohexen-1-one 56: Reaction time 4 d. Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 56 ($57.1 \mathrm{mg}, 62 \%$, 81.6:18.4 er, $>20: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 X 250 mm Daicel OD column, 99:1 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 18.1 min (major) and 23.5 min (minor)] to be $81.6: 18.4 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-27.3^{\circ}\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right.$); IR (neat) $2926,2856,1680,1498,1459,1369$, 1101, 1027, 766, $707 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.42(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=16.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.65(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.6, 159.3, 146.0, 128.5, 127.2, 126.9, 45.2, 44.4, 39.6, 32.9, 28.4, 27.8, 16.8, 6.23; HRMS (EI+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{OI}(\mathrm{M}+), 368.0638$ found 368.0625.

4-Methyl-4-phenyl-5-(4-phenylsulfonyl)-2-cyclohexen-1-one 57: Reaction time 5 d. Purified by chromatography over silica gel, eluting with $5-20 \%$ EtOAc / hexanes, to give enone 57 ($37.2 \mathrm{mg}, 39 \%$, 98.8:1.2 er, $15: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 x 250 mm Daicel OD column, 90:10 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 37.2 min (major) and 28.2 min (minor)] to be $98.8: 1.2 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-55.9^{\circ}\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right)$; IR (neat) 2922, 2867, 1677, 1447, 1307, 1143, 1085, 766, 707, 684, $598 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.26-$ $7.39(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=$ $16.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.02-1.60(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,159.2,145.9$, 139.1, 133.7, 129.3, 128.6, 128.0, 127.2, 127.0, 126.9, 55.8, 45.1, 44.3, 39.5, 29.0, 25.6, 22.3, 16.8; HRMS (EI+) calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+), 382.1603$ found 382.1584 .

4-Methyl-4-phenyl-5-(6-phthalimidohexyl)-2-cyclohexen-1-one 60: Reaction time 5 d. Purified by chromatography over silica gel, eluting with $1-6 \%$ EtOAc / hexanes, to give enone $60(61.3 \mathrm{mg}, 61 \%$, 96.9:3.1 er, $8: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [4.6 X 250 mm Daicel OD column, 90:10 Hexanes / $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 26.4 min (major) and 24.5 min (minor)] to be $96.9: 3.1 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-38.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); IR (neat) 2933, 2851, 1767, 1718, 1680, 1467, 1391, 1369, 1064, 765, 721, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H})$, $6.78(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=16.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.00-2.33 (m, 3H), 1.10-1.64 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,168.4,159.4,146.2,133.9$, $132.2,128.4,128.3,127.9,127.1,126.9,126.8,123.2,45.4,44.4,39.6,37.8,29.5,28.3,26.63,26.56,16.9$; HRMS (EI+) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3}(\mathrm{M}+), 401.1991$ found 401.183.

5-(5-Iodopentyl)-4-methyl-4-phenyl-2-cyclohexen-1-one 61: Reaction time 5 d. Purified by chromatography over silica gel, eluting with $1-5 \%$ EtOAc / hexanes, to give enone 61 ($52.6 \mathrm{mg}, 55 \%$, 92.8:7.2 er, $16: 1 \mathrm{dr}$, colorless oil). Enantiomeric excess was determined by chiral HPLC [$4.6 \times 250 \mathrm{~mm}$ Daicel OD column, 99:1 Hexanes / i - $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, retention times 16.9 min (major) and 21.9 min (minor)] to be $92.8: 7.2 \mathrm{er}:[\alpha]_{\mathrm{D}}{ }^{23}=-64.2^{\circ}\left(\mathrm{c}=2.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $2922,2851,1685,1451,1364,1260$, $1168,1026,787,765,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.08(\mathrm{dd}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.33(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.7,159.4,146.1,128.5,127.2,126.94$, $126.86,45.3,44.4,39.6,33.0,30.1,20.3,25.8,16.9,6.84$; HRMS (EI+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{OI}(\mathrm{M}+), 382.0794$ found 382.0809 .

7-Iodo-3-hepten-2-one $\mathbf{4 1}^{8}$: To a solution of bromide $\mathbf{4 0}(0.397 \mathrm{~g}, 2.08 \mathrm{mmol})$ in acetone (6.0 mL) was added $\mathrm{NaI}(0.934 \mathrm{~g}, 6.23 \mathrm{mmol})$. The reaction mixture was heated to reflux. After 36 h , the reaction was cooled to rt and the solvent was removed in vacuo. The reaction mixture was loaded directly onto silica gel and was purified by chromatography, eluting with $2-10 \%$ Ether / hexanes, to give the iodide 41 (0.423 g , $1.78 \mathrm{mmol}, 85 \%)$ as colorless liquid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}$, $J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 198.2, 145.4, 132.1, 33.0, 31.5, 27.1, 5.26.

3, 8-Nonadien-2-one $\mathbf{4 4}^{9}$: To a solution of 5-hexen-1-ol $\mathbf{6 2}(0.5 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(1.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added N-methylmorpholine- N-oxide $(1.17 \mathrm{~g}, 10 \mathrm{mmol})$ and TPAP ($87.8 \mathrm{mg}, 0.25$ mmol). After 6 h , the suspension was diluted with hexanes $(5 \mathrm{~mL})$, filtered through silica gel pad, washed with 20% EtOAc in hexanes, and then concentrated in vacuo to give crude aldehyde. The crude aldehyde was immediately redissovled in THF (25 mL), and 1-(triphenylphosphoranylidene)-2-propanone ($1.91 \mathrm{~g}, 6.0$ mmol) was added to the solution. The resulting mixture was heated to reflux. After 16 h , the reaction was concentrated in vacuo and loaded directly onto silica gel. It was purified by chromatography, eluting with 2$15 \%$ Ether / hexanes, to give ($0.491 \mathrm{~g}, 3.55 \mathrm{mmol}, 71 \%$) as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.79(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.81(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.26$ $(\mathrm{m}, 5 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.6,148.0,137.9$, 131.5, 115.2, 33.1, 31.7, 27.2, 26.8.

8-(Phenylmethoxy)-3-octen-2-one 48: To a solution of alkene $63(0.760 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added $2^{\text {nd }}$ Gen. Grubbs catalyst ($84.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 3-penten-2-one ($1.01 \mathrm{~g}, 1.8 \mathrm{~mL}, 12.0 \mathrm{mmol}$, 65% pure). After stirring at $40^{\circ} \mathrm{C}$ for 24 h , the reaction was concentrated in vacuo and loaded directly onto silica gel. It was purified by chromatography, eluting with $1-20 \%$ EtOAc / hexanes, to give $48(0.824 \mathrm{~g}, 3.54$ $\mathrm{mmol}, 89 \%$) as colorless oil: IR (neat) $2938,2856,1696,1673,1621,1455,1361,1252,1101,984,739$, $696,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dt}, J=$ $16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 5 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.8,148.1,138.5,131.5,128.4,127.63,127.58,73.0,69.9,32.2,29.3,26.9,24.8$; HRMS (EI+) calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M}+), 232.1463$ found 232.1467.

8-Azido-3-octen-2-one 50: To a solution of alkene $64(0.292 \mathrm{~g}, 2.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added $2^{\text {nd }}$ Gen. Hoveyda-Grubbs catalyst ($36.5 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 3-penten-2-one $(0.587 \mathrm{~g}, 1.05 \mathrm{~mL}, 6.99$ $\mathrm{mmol}, 65 \%$ pure). After stirring in the dark at rt for 6 h , the reaction was concentrated in vacuo and loaded directly onto silica gel. It was purified by chromatography, eluting with $2-10 \%$ Ether / hexanes, to give $\mathbf{5 0}$ ($0.167 \mathrm{~g}, 1.0 \mathrm{mmol}, 43 \%$) as colorless oil: IR (neat) 2941, 2864, 2093, 1673, 1622, 1365, 1252, $976 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=6.4$
$\mathrm{Hz}, 2 \mathrm{H}), 2.26-2.31(\mathrm{~m}, 5 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 198.4, 147.1, 131.7, 51.1, 31.8, 28.4, 26.9, 25.2.

8-Iodo-3-octen-2-one 51 ${ }^{10}$: To a solution of bromide $\mathbf{6 5}(0.282 \mathrm{~g}, 1.38 \mathrm{mmol})$ in acetone (4.2 mL) was added $\mathrm{NaI}(0.620 \mathrm{~g}, 4.13 \mathrm{mmol})$. The reaction mixture was heated to reflux. After 36 h , the reaction was cooled to rt and the solvent was removed in vacuo. The reaction mixture was loaded directly onto silica gel and was purified by chromatography, eluting with $2-6 \%$ Ether / hexanes, to give the iodide $\mathbf{5 1}(0.318 \mathrm{~g}, 1.26$ $\mathrm{mmol}, 91 \%$) as colorless liquid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=$ $16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,147.2,131.7,32.8,31.3,28.9,27.0,6.15$.

(5-Hexen-1-ylsulfonyl)-benzene ${ }^{11}$: To a solution of 6-bromo-hexene $\mathbf{6 6}(1.63 \mathrm{~g}, 10.0 \mathrm{mmol})$ in DMF (10 $\mathrm{mL})$ was added $\mathrm{NaSO}_{2} \mathrm{Ph}(1.97 \mathrm{~g}, 12.0 \mathrm{mmol})$. After 6 h , diethyl ether $(30 \mathrm{~mL})$ was added to the reaction mixture. The resulting solution was washed with brine ($3 \times 30 \mathrm{~mL}$). The dried ($\mathrm{Na}_{2} \mathrm{SO} 4$) extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $2-10 \% \mathrm{EtOAc} /$ hexanes, to give sulphone $67(1.51 \mathrm{~g}, 6.73 \mathrm{mmol}, 67 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.65-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.07-$ $3.11(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.2,137.5,133.7,129.3,128.0,115.3,56.1,33.0,27.4,22.1$.

8-(Phenylsulfonyl)-3-octen-2-one 52: To a solution of alkene 67 ($0.448 \mathrm{~g}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) was added $2^{\text {nd }}$ Gen. Grubbs catalyst $(42.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 3-penten-2-one $(0.504 \mathrm{~g}, 0.899 \mathrm{~mL}, 6.0$ $\mathrm{mmol}, 65 \%$ pure). After stirring at rt for 13 h , the reaction was concentrated in vacuo and loaded directly onto silica gel. It was purified by chromatography, eluting with $10-30 \% \mathrm{EtOAc} /$ hexanes, to give enone 52 ($0.498 \mathrm{~g}, 1.87 \mathrm{mmol}, 93 \%$) as colorless oil: IR (neat) $2941,2871,1696,1673,1626,1447,1365,1303,1147$, $1089,980,750,692,563 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.61(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{dt}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dt}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 2 \mathrm{H})$, 2.20-2.26 (m, 5H), 1.57-1.82 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.3,146.4,139.1,133.8,131.8$, 129.4, 128.0, 55.9, 31.8, 27.0, 26.7, 22.3; HRMS ($\mathrm{EI}+$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+), 266.0977$ found 266.0972 .

2-(6-Hepten-1-yl)-1H-isoindole-1,3(2H)-dione 69: To a solution of TBAI ($36.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and potassium phthalimide $(1.85 \mathrm{~g}, 10 \mathrm{mmol})$ in benzene $(40 \mathrm{~mL})$ was added 7-bromo-1-heptene $68(0.886 \mathrm{~g}, 5.0$ mmol) dropwise. The resulting mixture was heated at $95^{\circ} \mathrm{C}$ for 24 h . The suspension was cooled to rt, diluted with ether (50 mL), filtered through celite, then concentrated in vacuo. It was purified by chromatography, eluting with $5-15 \%$ Ether / hexanes, to give $69(1.18 \mathrm{~g}, 4.85 \mathrm{mmol}, 97 \%)$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.87(\mathrm{~m}, 4 \mathrm{H}), 5.76-5.86(\mathrm{~m}, 1 \mathrm{H}), 4.93-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.10$ $(\mathrm{m}, 2 \mathrm{H}), 1.71(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,138.7,133.8$, 132.2, 123.1, 114.5, 38.0, 33.5, 28.4, 26.3.

2-(8-Oxo-6-nonen-1-yl)-1H-isoindole-1,3(2H)-dione 58: To a solution of alkene $\mathbf{6 9}$ ($0.365 \mathrm{~g}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added 2nd Gen. Grubbs catalyst ($31.8 \mathrm{mg}, 0.0375 \mathrm{mmol}$) and 3-penten-2-one (0.375 g , $0.675 \mathrm{~mL}, 4.5 \mathrm{mmol}, 65 \%$ pure). After stirring at $45^{\circ} \mathrm{C}$ for 36 h , the reaction was concentrated in vacuo and loaded directly onto silica gel. It was purified by chromatography, eluting with 5-30\% Ether / hexanes, to give enone $58(0.293 \mathrm{~g}, 1.03 \mathrm{mmol}, 68 \%$) as colorless oil: IR (neat) 2938, 2860, 1770, 1712, 1669, 1618, $1439,1361,1252,1047,980,875,797,723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.86(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{dt}$, $J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{t}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.26(\mathrm{~m}, 5 \mathrm{H}), 1.71(\mathrm{p}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.54(\mathrm{p}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.6,168.4,148.0$, 133.9, 132.1, 131.5, 123.2, 37.7, 32.2, 28.3, 27.6, 26.9, 26.3; HRMS (EI+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}(\mathrm{M}+)$, 285.1365 found 285.1376 .

9-Bromo-3-nonen-2-one 71: To a solution of alkene $70(1.24 \mathrm{~g}, 7.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL) was added $2^{\text {nd }}$ Gen. Grubbs catalyst ($297 \mathrm{mg}, 0.35 \mathrm{mmol}$) and 3-penten-2-one ($0.588 \mathrm{~g}, 1.05 \mathrm{~mL}, 7.0 \mathrm{mmol}, 65 \%$ pure). After 48 h , the reaction was concentrated in vacuo and loaded directly onto silica gel. It was purified by chromatography, eluting with $1-20 \%$ Ether / hexanes, to give enone $71(792 \mathrm{mg}, 3.6 \mathrm{mmol}, 52 \%)$ as colorless oil: IR (neat) 2938, 2856, 1677, 1626, 1431, 1361, 1256, 980, $731,645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.80(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dt}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.26$ (m, 5H), 1.85-1.94 (m, 2H), 1.47-1.55 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,147.8,131.5,33.6$, 32.5, 32.2, 27.7, 27.2, 27.0; HRMS (EI+) calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OBr}(\mathrm{M}+), 218.0306$ found 218.0302.

9-Iodo-3-nonen-2-one 59: To a solution of bromide $71(0.371 \mathrm{~g}, 1.69 \mathrm{mmol})$ in acetone (5.1 mL) was added $\mathrm{NaI}(0.760 \mathrm{~g}, 5.07 \mathrm{mmol})$. The reaction mixture was heated to reflux. After 36 h , the reaction was cooled to rt and the solvent was removed in vacuo. The reaction mixture was loaded directly onto silica gel and was purified by chromatography, eluting with $2-10 \%$ Ether / hexanes, to give iodide $59(0.413 \mathrm{~g}, 1.55 \mathrm{mmol}$, 92%) as colorless liquid: IR (neat) 2933, 2856, 1677, 1626, 1427, 1361, $1256,1198,980,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.24-2.30(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,147.7$, 131.5, 33.1, 32.2, 30.0, 27.0, 26.9, 6.53; HRMS (EI+) calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OI}(\mathrm{M}+), 266.0168$ found 266.0176.

References

[1] Yang, H.; Carter, R. G. Tetrahedron 2010, in press. DOI: 10.1016/j.tet.2010.01.094
[2] Baumann, T.; Vogt, H.; Bräse, S. Eur. J. Org. Chem. 2007, 266-282.
[3] Krafft, M. E.; Seibert, K. A.; Haxell, T. F. N.; Hirosawa, C. Chem. Commun. 2005, 46, 5772-5774.
[4] Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 779-781.
[5] Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dolgonos, G.; Grela, K. J. Am. Chem. Soc. 2004, 126, 9318-9325.
[6] Rawat, V.; Chouthaiwale, P. V.; Suryavanshi, G.; Sudalai, A.. Tetrahedron: Asymm. 2009, 20, 21732177.
[7] Yuan, H.; He, R.; Wan, B.; Wang, Y.; Pauli, G. F.; Franzblau, S. G.; Kozikowski, A. P. Bioorg. Med. Chem. Lett. 2008, 18, 5311-5315.
[8] Bunce, R. A.; Allison, J. C. Syn. Commun. 1999, 29, 2175-2186.
[9] Pandey, G.; Hajra, S.; Ghorai, M. K. Tetrahedron Lett. 1994, 35, 7837-40.
[10] Cooke, M. P., Jr. J. Org. Chem. 1984, 49, 1144-1146.
[11] Chandrasekhar, S.; Yu, J.; Falck, J. R.; Mioskowski, C. Tetrahedron Lett. 1994, 35, 5441-5444.

