Diastereoselective Intramolecular Additions of Allyl- and Propargylsilanes to Iminium Ions: Synthesis of Cyclic and Bicyclic Quaternary Amino Acids

Santos Fustero, ${ }^{\boldsymbol{*}, \dagger, \ddagger}$ Natalia Mateu, ${ }^{\dagger, \ddagger}$ Antonio Simón-Fuentes ${ }^{\dagger}$ and José Luis Aceña*,キ
${ }^{\dagger}$ Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain
${ }^{\ddagger}$ Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain.

SUPPORTING INFORMATION

Table of contents:

General methods S2
Synthesis and characterization of new compounds S3
Copies of NMR spectra S15

GENERAL METHODS.

All reactions were carried out under argon or nitrogen atmosphere. The following solvents were purified prior to use: THF was distilled from sodium/benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride. All other solvents and reagents were used as received. The reactions were monitored with the aid of thin-layer chromatography (TLC) on 0.25 mm E. Merck precoated silica gel plates. Visualization was carried out with UV light and vainillin or potassium permanganate stains. Flash column chromatography was performed with the indicated solvents on silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$). Melting points were measured on a Büchi B-540 apparatus and are uncorrected. Optical rotations were measured on a Jasco P-1020 polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 MHz Bruker AC300 spectrometer. Chemical shifts are given in ppm (δ), referenced to the residual proton resonances of the solvents. Coupling constants (J) are given in Hertz (Hz). The letters m, s, d, t, and q stand for multiplet, singlet, doublet, triplet, and quartet, respectively. The letters br indicate that the signal is broad. High-resolution mass spectra were carried out by the Universidad de Valencia Mass Spectrometry Service.

Microwave experiments were carried out on sealed vials using an Initiator ${ }^{\text {TM }} 2.0$, by Biotage. The equipment contains an IR probe in order to control the internal temperature of the reaction mixture. The solutions were pre-stirred before the irradiation was started. The absorbance of the solvent was set as "normal" and the reaction time was initiated as soon the system reached the input temperature. At the end of the irradiation, the mixture was cooled to room temperature with an air flow, and the pressure was liberated with a needle before removing the vial cap.

SYNTHESIS AND CHARACTERIZATION OF NEW COMPOUNDS

Synthesis of ethyl 2-oxooct-7-enoate (S1).

A solution of 6-bromo-1-hexene $(3.00 \mathrm{~g}, 18.18 \mathrm{mmol})$ in THF (30 mL) was added dropwise to a dry flask containing magnesium ($1.47 \mathrm{~g}, 60.60 \mathrm{mmol}$) and iodine (3 mg). After 2 h stirring vigorously, the resulting Grignard reagent was added dropwise to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of diethyl oxalate ($1.64 \mathrm{~mL}, 12.12 \mathrm{mmol}$) in THF $(12 \mathrm{~mL})$. After 1 h , the reaction was quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 2.21 g of S1 ($>99 \%$ yield) as a colorless oil. R_{f} : 0.30 (hexane/EtOAc, 10:1). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.97-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.88-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.67-$ $5.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.8,22.2,28.0,33.2,38.9,62.2,114.7$, 138.0, 161.1, 194.4. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right.$: 184.1099; found: 184.1102.

Synthesis of (R)-3-(hex-5-enyl)-5-phenyl-5,6-dihydro-2H-1,4-oxazin-2-one (4b).

A solution of (R)-phenylglycinol ($825 \mathrm{mg}, 6.0 \mathrm{mmol}$) and $\mathbf{S 1}$ $(1.11 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(18 \mathrm{~mL})$ in the presence of powdered, activated $3 \AA$ molecular sieves (3 g) was heated under microwave irradiation at $100^{\circ} \mathrm{C}$ for 50 min . The crude product was filtered through Celite, concentrated at reduced pressure and purified by column chromatography on silica to afford 1.10 g of $\mathbf{4 b}\left(71 \%\right.$ yield) as a colorless oil. $R_{f}: 0.35$ (hexane/EtOAc, 5:1). $[\alpha]^{25}{ }_{\mathrm{D}}-156.4$ (c 1.3, CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46-$
$1.57(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.79(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.81(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=$ $11.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.90(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.5,28.4,33.4,34.2,59.5,71.4,114.6,127.0,128.2,128.8,136.9$, 138.5, 155.3, 163.1. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 257.1416$; found: 257.1407.

Synthesis of (R)-5-phenyl-3-(6-(trimethylsilyl)hex-4-enyl)-5,6-dihydro-2H-1,4-oxazin-2-one (5a).

Grubbs 2nd generation catalyst ($506 \mathrm{mg}, 10 \mathrm{~mol} \%$) and allyltrimethylsilane ($1.89 \mathrm{~mL}, 11.92 \mathrm{mmol}$) were added to a solution of $4 \mathbf{a}^{1}(1.45 \mathrm{~g}, 5.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(29.8$ mL). The mixture was heated at reflux for 12 h and then it was allowed to cool down to room temperature and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 1.49 g of $\mathbf{5 a}$ as a mixture of trans and cis isomers (ca. 90:10 ratio as determined by ${ }^{1} \mathrm{H}$ NMR) as a colorless oil (76% yield). R_{f} : 0.30 (hexane/EtOAc, 6:1). Data of the trans isomer: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00$ (s, 9H), $1.42(\mathrm{dq}, J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.81$ (m, 2H), $4.19(\mathrm{dd}, J=11.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.89(\mathrm{~m}$, $1 \mathrm{H}), 5.20-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.50(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-2.0,22.6,26.4,32.3,33.9,59.5,71.3,127.0,127.2,127.7,128.2,128.8$, 137.0, 155.3, 163.3. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 329.1811$; found: 329.1819.

[^0]
Synthesis of (R)-5-phenyl-3-(7-(trimethylsilyl)hept-5-enyl)-5,6-dihydro-2H-1,4-oxazin-2-one (5b).

 Following the same procedure as for $\mathbf{5 a}$, starting from $2.20 \mathrm{~g}(8.55 \mathrm{mmol})$ of $\mathbf{4 b}, 2.02 \mathrm{~g}$ of $5 \mathbf{b}$ were obtained as a mixture of trans and cis isomers (ca. 90:10 ratio as determined by ${ }^{1} \mathrm{H}$ NMR) as a colorless oil (69% yield). $R_{f}: 0.25$ (hexane/EtOAc, 5:1). Data of the trans isomer: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.02(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.52(\mathrm{~m}$, 4H), 1.63-1.80 (m, 2H), 1.97-2.12 (m, 2H), 2.65-2.83 (m, 2H), 4.19 (dd, $J=11.5,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.90(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.33-$ $5.47(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.46(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.0,22.6,25.6,29.6$, 32.4, 34.4, 59.6, 71.4, 126.5, 127.1, 128.2, 128.3, 128.9, 137.0, 155.4, 163.3. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 343.1968$; found: 343.1964 .

Synthesis of (1S,5R,7R)-7-phenyl-1-vinyl-6-aza-9-oxaspiro[4.5]decan-10-one (6a).

 TFA ($1.31 \mathrm{~mL}, 17.60 \mathrm{mmol}$) was added to a solution of $5 \mathbf{~}(1.16 \mathrm{~g}, 3.52$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ and the mixture was stirred overnight at room temperature. Then, the solvents were evaporated at reduced pressure and the residue was redissolved in EtOAc (50 mL) and washed with sat. aq. NaHCO_{3} (3 x 50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 600 mg of the major isomer $\mathbf{6 a}$ as a white solid (66% yield) together with $212 \mathrm{mg}(23 \%$ yield $)$ of an inseparable mixture of two diastereoisomers. $R_{f}: 0.30$ (hexane/EtOAc, 5:1). Mp: 63-65 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-56.8$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.64-1.93(\mathrm{~m}, 5 \mathrm{H}), 2.00(\mathrm{br}, 1 \mathrm{H}), 2.34-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=9.3,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=10.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.7,3.9$
$\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=10.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddd}, J=17.0,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (ddd, $J=17.0,10.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $23.2,33.1,40.9,52.6,59.6,69.8,74.2,116.2,126.6,128.0,128.5,138.1,139.6,171.3$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 257.1416$; found: 257.1413.

Synthesis of (2R,6R,7S)-2-phenyl-7-vinyl-1-aza-4-oxaspiro[5.5]undecan-5-one (6b).

 Following the same procedure as for $\mathbf{6 a}$, starting from $2.02 \mathrm{~g}(5.90$ mmol) of $\mathbf{5 b}, 960 \mathrm{mg}$ of the major isomer $\mathbf{6} \mathbf{b}$ were obtained as a colorless oil (60% yield) together with 176 mg (11% yield) of an inseparable mixture of two diastereoisomers. $R_{f}: 0.29$ (hexane/EtOAc, 5:1). $[\alpha]^{25}{ }_{D}+7.7$ (c $0.8, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.83(\mathrm{~m}, 4 \mathrm{H})$, $1.83-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.89-3.01(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.43(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{br}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=$ $17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=10.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, J=17.2,10.8,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.46 (m, 5H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 19.9, 24.4, 24.4, 39.2, 46.6, 56.1, 62.6, 72.6, 117.5, 127.3, 128.9, 128.9, 136.9, 137.8, 172.9. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 271.1572 ; found: 271.1571.

Synthesis of (1R,5R,7R)-1-ethyl-7-phenyl-6-aza-9-oxaspiro[4.5]decan-10-one (7).

 pressure. The product was purified by column chromatography on silica to afford 29 mg of $7\left(95 \%\right.$ yield) as a white solid. $R_{f}: 0.25$ (hexane/EtOAc, $\left.5: 1\right) . \mathrm{Mp}: 92-93{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}$ $-82.4\left(c 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.56-2.11(\mathrm{~m}, 7 \mathrm{H}), 2.41-2.56(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=$
11.3, 3.7 Hz, 1H), $4.41(\mathrm{dd}, J=11.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.43(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.2,23.6,26.3,32.0,41.3,53.1,55.8,69.8,74.5,127.0,128.4,128.8$, 138.4, 171.7. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 259.1572; found: 259.1564.

X-Ray data of 7: Orthorombic crystal system, space group $P 2(1) 2(1) 2(1)$. Unit cell dimensions $a=6.30590(10) \AA, \alpha=90^{\circ}, b=9.8235(2) \AA, \beta=90^{\circ}, c=23.4873(4) \AA, \gamma$ $=90^{\circ}, V=1454.94(4) \AA^{3}, Z=4, d_{\text {calcd }}=1.184 \mathrm{mg} / \mathrm{m}^{3}$. Absorption coefficient $=0.61$ $\mathrm{mm}^{-1} . \mathrm{F}(000)=560$. Crystal size $0.25 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$. Reflections collected 11005 , independent reflections 2758 [$\left.R_{\text {int }}=0.026\right]$.

Synthesis of (1R,2R)-1-amino-2-ethylcyclopentanecarboxylic acid (8a).

Pd-C $(10 \% \mathrm{wt}, 78 \mathrm{mg}, 0.73 \mathrm{mmol})$ was added to a solution of $\mathbf{6 a}(75$
$\mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{MeOH}(5.8 \mathrm{~mL})$. The mixture was stirred under H_{2} atmosphere (1 atm) for 16 h and then filtered and concentrated at reduced pressure. The product was purified on DOWEX 50WX8-100 to afford 40 mg of 8a (88% yield) as a white solid. Its NMR data matched those previously reported. ${ }^{2} \mathrm{Mp}$: $270-271^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-27.3$ (c 1.0, MeOH). (lit. data: Mp: $267^{\circ} \mathrm{C}$ (decomp.); $[\alpha]^{25}{ }_{\mathrm{D}}-20.9$ (c 1.0, MeOH)). HRMS (FAB) calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 158.1181$; found: 158.1180.

Synthesis of (1R,2R)-1-amino-2-ethylcyclohexanecarboxylic acid (8b).

Following the same procedure as for 8a, starting from $75 \mathrm{mg}(0.28$
 mmol) of $\mathbf{6 b}, 44 \mathrm{mg}$ of $\mathbf{8 b}$ were obtained as a white solid (92% yield).

Mp: 250-252 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-14.6$ (c 0.8, MeOH). ${ }^{1} \mathrm{H}$ NMR (300 MHz,

[^1]$\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.71-2.06(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 11.3,20.1,23.5,24.5,24.9,33.3$, 42.1, 65.9, 177.6. HRMS (FAB) calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 172.1338$; found: 172.1338.

Synthesis of (1R,2S)-1-amino-2-vinylcyclohexanecarboxylic acid (9).

$\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(23 \mathrm{mg}, 0.54 \mathrm{mmol})$ was added to a solution of $\mathbf{6 b}(74 \mathrm{mg}$, $0.27 \mathrm{mmol})$ in a $5: 1$ mixture of THF: $\mathrm{H}_{2} \mathrm{O}(2.7 \mathrm{~mL})$. The reaction was stirred for 3 h and then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the organic solvents were removed at reduced pressure. The aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 5 mL) and then it was concentrated at reduced pressure. The residue was redissolved in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(2.6 \mathrm{~mL})$ and $\mathrm{Pb}(\mathrm{OAc})_{4}(164 \mathrm{mg}, 0.37$ mmol) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was vigorously stirred for 1 h at $0^{\circ} \mathrm{C}$, and then 2.7 mL of 0.5 M HCl was added. The temperature was allowed to warm to room temperature and after 4 h of additional stirring the reaction mixture was filtered through celite eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic solvents were removed at reduced pressure and the aqueous residue was washed again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then concentrated at reduced pressure. The product was purified on DOWEX 50WX8-100 to afford 24 mg of 9 (54\% yield) as a white solid. Mp: 269-271 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-19.6$ (c 0.7, $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.10-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.96$ (m, 2H), 2.54-2.67(m, 1H), $5.06(\mathrm{dt}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dt}, J=10.8,1.3 \mathrm{~Hz}$, 1H), 5.50-5.65 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ 19.8, 23.9, 24.4, 32.4, 43.4, 65.0, 118.5, 135.6, 179.5. HRMS (FAB) calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 170.1181$; found: 170.1181.

Synthesis of ethyl 2-oxo-8-(trimethylsilyl)oct-6-ynoate (11).

Following the same procedure as for $\mathbf{S 1}$, from 666 mg
 (2.86 mmol) of (6-bromohex-2-ynyl)trimethylsilane, ${ }^{3}$ 276 mg of $\mathbf{1 1}$ were obtained as a colorless oil (38% yield). $R_{f:} 0.30$ (hexane/EtOAc, 10:1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08$ (s, 9H), 1.37 $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.80$ (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.27(\mathrm{~m}$, $2 \mathrm{H}), 2.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-2.1,6.9,14.0,18.2,22.7,38.2,62.4,77.3,78.9,161.0,194.3$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}: 254.1338$; found: 254.1337.

Synthesis of (R)-5-phenyl-3-(6-(trimethylsilyl)hex-4-ynyl)-5,6-dihydro-2H-1,4-

 oxazin-2-one (12). $[\alpha]^{25}{ }_{\mathrm{D}}-128.6\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=$ $2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{tt}, J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{td}, J=7.3$, $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.89(\mathrm{~m}$, $1 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.1,6.9,18.4,25.5,33.4,59.5$, $71.3,77.8,78.5,127.0,128.2,128.8,136.9 .155 .2,162.7$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 327.1655$; found: 327.1652.

[^2]Synthesis of (5R,7R)-7-phenyl-1-vinylidene-6-aza-9-oxaspiro[4.5]decan-10-one (13) and (R,E)-7-phenyl-1-(2-(trimethylsilyl)ethylidene)-6-aza-9-oxaspiro[4.5]dec-6-en-10-one (14).

A solution of $\mathbf{1 2}(131 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{HCO}_{2} \mathrm{H}(4 \mathrm{~mL})$ was stirred for 4 h at room temperature and then the reaction mixture was quenched with sat. aq NaHCO_{3}. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 58 mg of 13 (57% yield) and 16 mg of $\mathbf{1 4}$ (5% yield) both as colorless oils.

Data for 13:
$R_{f:} 0.20$ (hexane/EtOAc, 5:1). $[\alpha]^{25}{ }_{\mathrm{D}}-182.9\left(c\right.$ 1.7, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.69-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.69(\mathrm{~m}, 3 \mathrm{H})$, $4.29(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=10.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=10.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{dt}, J=10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dt}, J=10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.43(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.8,30.2,41.4,52.8,69.3,74.7,79.2,108.4,127.3$, 128.6, 128.8, 137.9, 170.8, 203.2. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 255.1259; found: 255.1250 .

[^3]
Synthesis of (1S,5S,7R)-6-acryloyl-7-phenyl-1-vinyl-6-aza-9-oxaspiro[4.5]decan-10one (15).

$\mathrm{Et}_{3} \mathrm{~N}(0.49 \mathrm{~mL}, 3.50 \mathrm{mmol})$ and acryloyl chloride $(0.28 \mathrm{~mL}, 3.50$ $\mathrm{mmol})$ were added to a solution of $\mathbf{6 a}(450 \mathrm{mg}, 1.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h , and then sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 468 mg of $15\left(86 \%\right.$ yield) as a white solid. $R_{f}: 0.37$ (hexane/EtOAc, 3:1). Mp: 135-137 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-193.7$ (c 1.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.69-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.84-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=$ $12.8,10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=12.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=10.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{dd}, J=11.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=11.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{br}, 1 \mathrm{H}), 5.15(\mathrm{dd}$, $J=9.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{ddd}, J=16.9,2.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=9.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.68(\mathrm{dt}, J=16.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=16.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=16.7$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.7$, $33.3,37.5,52.5,55.8,69.4,74.8,119.1,125.9,128.3,129.1,129.3,129.3,136.9,137.6$, 166.0, 170.8. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}]^{+}: 311.1521$; found: 311.1528 .

Synthesis of (1R,5R,10S)-2,7-dioxo-5-phenyl-6-aza-3-oxatricyclo[8.3.0.0 ${ }^{1,6}$]tridec-8ene (16).

Grubbs 2nd generation catalyst ($127 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added to a solution of $\mathbf{1 5}(468 \mathrm{mg}, 1.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was heated at reflux for 6 h and then it was allowed to cool down to room temperature and concentrated at reduced pressure. The product was purified by column
chromatography on silica to afford 267 mg of $\mathbf{1 6}\left(63 \%\right.$ yield) as a white solid. $R_{f}: 0.37$ (hexane/EtOAc, 3:1). Mp: 164-166 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+84.9$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.19-2.32(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.21(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dd}, \mathrm{J}=$ $12.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=12.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=9.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, $J=10.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{ddd}, J=9.5,2.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.0,23.5,33.1,46.0,53.5,68.2,69.4,123.7,125.4,127.8$, 128.9, 138.8, 144.0, 169.1, 169.6. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]^{+}: 283.1208$; found: 283.1210.

Synthesis of (1R,5R,10S)-2-oxo-5-phenyl-6-aza-3-oxatricyclo[8.3.0.0 ${ }^{1,6}$]tridecane

 (17).
$\mathrm{BH}_{3} \cdot \mathrm{THF}(1 \mathrm{M}$ in THF, $1.75 \mathrm{~mL}, 1.75 \mathrm{mmol}$) was added to a solution of $16(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 12 h and then it was treated with 1 M NaOH solution. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 30 mg of $\mathbf{1 7}$ (33\% yield) as a white solid. $R_{f}: 0.35$ (hexane/EtOAc, 3:1). Mp: $111-112{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}$ $+118.7\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57-1.80(\mathrm{~m}, 7 \mathrm{H}), 1.80-1.97(\mathrm{~m}$, $3 \mathrm{H}), 1.97-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{td}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=12.0,7.9 \mathrm{~Hz}$, 1H), 7.27-7.47 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 20.0, 23.2, 26.1, 26.6, 36.8, 48.9, 56.0, 63.5, 67.4, 69.2, 126.4, 127.4, 128.6, 140.5, 172.2. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 271.1572$; found: 271.1568.

Synthesis of (4aS,7aR)-octahydro-1H-cyclopenta[b]pyridine-7a-carboxylic acid (18).

Following the same procedure as for $\mathbf{8 a}$, from $30 \mathrm{mg}(0.11 \mathrm{mmol})$ of $\mathbf{1 7}$, 17 mg of $\mathbf{1 8}$ were obtained as a white solid (94% yield). Mp: 280-281 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+12.8(c 0.5, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.37-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.56-$ $1.81(\mathrm{~m}, 8 \mathrm{H}), 1.81-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{td}, J=13.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ 19.4, 22.8, 23.6, 26.4, 34.6, 43.5, 45.8, 70.1, 175.0. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 169.1103; found: 169.1101.

Synthesis of (1R,5R)-2-oxo-5-phenyl-6-aza-3-oxatricyclo[7.3.0.0 ${ }^{1,6}$]dodec-8-ene (19).

 $\mathrm{AuCl}(1.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$ was added to a solution of $\mathbf{1 3}(30 \mathrm{mg}, 0.118$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$. The mixture was stirred at room temperature for 6 h and then it was concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 24 mg of 19 (80% yield) as a white solid. $R_{f}: 0.30$ (hexane/EtOAc, 10:1). Mp: 139-140 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-8.6$ (c 0.7, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.90-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.68$ (m, 1H), 3.64 (ddt, $J=13.3,4.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.14$ (t, $J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{dd}, J=11.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.51(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.48$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.2,24.7,39.5,65.1,66.1,71.1,78.7,118.7$, 127.2, 128.2, 128.7, 138.1, 147.6, 173.0. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 255.1259; found: 255.1255 .

Synthesis of (3aS,6aS)-1-(tert-butoxycarbonyl)octahydrocyclopenta[b]pyrrole-6acarboxylic acid (20).

Pd-C ($10 \% \mathrm{wt}, 2.2 \mathrm{mg}, 50 \mathrm{~mol} \%$) and $\mathrm{Boc}_{2} \mathrm{O}(16 \mathrm{mg}, 0.086 \mathrm{mmol})$
 were added to a solution of $\mathbf{1 9}(11 \mathrm{mg}, 0.043 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$. The mixture was stirred under H_{2} atmosphere (1 atm) for 4 h and then filtered and concentrated at reduced pressure. The product was purified by column chromatography on silica to afford 10 mg of 20 (95% yield) as a white solid. Its NMR data matched those previously reported for its enantiomer. ${ }^{4} R_{f}: 0.25$ (hexane/EtOAc, 2:1). Mp: $158-160{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-10.9$ (c 0.5, CHCl_{3}) (literature data for its enantiomer: Mp: $\left.145{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+6.9\left(c \quad 0.75, \mathrm{CHCl}_{3}\right)\right)$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}]^{+}$: 255.1471; found: 255.1479 .

[^4]
\[

$$
\begin{aligned}
& 0 Z 8 \cdot \varepsilon \tau= \\
& 0 \oslash Z \cdot \tau Z- \\
& \angle G 6 \cdot \angle Z- \\
& 88 I \cdot \varepsilon \varepsilon= \\
& \angle 68 \cdot 8 \varepsilon=
\end{aligned}
$$
\]

Z9I•29
ぁG9•øIT

9ع0•8をI \qquad

与8を・モ6I ——

$\left[{ }^{13} \mathrm{C}\right.$ NMR， $\left.\mathrm{CDCl}_{3}\right]$

6 IG .6 G

9与8．TL

S09．бIT

9も8•8てI
6I6．9EI
09も・8をL

عદદ•ऽรโ
$080 \cdot \varepsilon 9 \tau$

8 マ0ำー

ع6も． 6 G —
LもE•IL

0عを・SSI
8乌て・と9โ \qquad

$$
\begin{aligned}
& {\left[{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}\right]}
\end{aligned}
$$

LOも.GSI
โ6て・ع9 T

$\left[{ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{CDCl}_{3}\right]$

sعて・9IT

$$
\begin{aligned}
& \text { Gஏ9•9ZI } \\
& \varepsilon Z 0 \cdot 8 Z \tau \\
& \varepsilon 9 \nabla^{\circ} 8 Z I
\end{aligned}
$$

$$
8 \angle 0 \cdot 8 \varepsilon T=
$$

てLZ•TLI

$$
\begin{aligned}
& \text { Lعて・とて } \\
& \varepsilon 90^{\circ} \text { ع } \quad \\
& 688^{\circ} 0 \text { ® }^{\square} \\
& 0 \text { I9 }{ }^{\circ} \text { ZG } \\
& 28 \mathrm{G} \cdot 6 \mathrm{G} \\
& \text { 29L.69 } \\
& \text { LSI・もL }
\end{aligned}
$$

としぁ・ぁて—
$L 8 \tau \cdot 6 \varepsilon \longrightarrow$
てと9•9ぁ
GচT•9G
095•29
8T9・てL
OOG•LIT

て6・スんT

$\varepsilon 8 \tau \cdot \varepsilon \tau \longrightarrow$
$6 \not 59 \cdot \varepsilon Z=$
sLZ•9Z—
296•โを
Ф9て・エも

L6L． 69 —
9もG・もL
$696 \cdot 92 T$
$8 L 7 \cdot 82 T$
LI8．82T
てとぁ・8をโ
6IL•TLT

$$
9 \varepsilon \tau \cdot \tau \tau
$$

てI8・てZ

$$
588^{\circ} \mathrm{zz} \longrightarrow
$$

OZL•OE

$$
\text { ૬9 } \cdot \text { ऽ } \varepsilon
$$

$L 88 \cdot 89$ —
\qquad

979° LLT

$\left[{ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{D}_{2} \mathrm{O}\right]$

[${ }^{1} \mathrm{H}$ NMR, $\mathrm{D}_{2} \mathrm{O}$]

$98 \varepsilon \cdot \varepsilon$ ■
996° ஏ9 \qquad

ع9ぁ・8โT

6ع9•ऽعโ
$99 \sigma^{\circ} 6 L T$ —

$\left[{ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{D}_{2} \mathrm{O}\right]$

も80ㄱー

もI6．9
866° عI
て0て・8T
てら9・てて——
$6 \varepsilon て \cdot 8 \varepsilon \longrightarrow$

TLE• Z9
$88 Z^{\circ} \mathrm{LL}=$
$L I 6^{\circ} 8 L=$

$90 \tau \cdot$ Z－

LZ6．9

8ロロ・8T
8\＆G•乌て

૬ยஏ•غย
$06 \mp \cdot 6 S \longrightarrow$

6LZ•IL
$978^{\circ} \angle L$
$8 \mathrm{G} \nabla^{\circ} \mathrm{BL}$

$9 ヵ 6 \cdot 9 \varepsilon \tau \longrightarrow$

ЂЕも・80T

عI6＊LET
TE8•OLT
9ヵて・と0て

$\left[{ }^{13} \mathrm{C}\right.$ NMR， $\left.\mathrm{CDCl}_{3}\right]$

[${ }^{1} \mathrm{H}$ NMR, CDCl_{3}]

[${ }^{1} \mathrm{H}$ NMR, CDCl_{3}]

®GO.69T—

$\left[{ }^{13} \mathrm{C}\right.$ NMR, CDCl_{3}]

$926 \cdot 8 ヵ \longrightarrow$

S66．SG

TLも・غ9
OG末• $29=$
6GI． $69=$

LZォ・9ZI
ZOォ・
LZI
LSG•8ZI

6Lロ・OもT —

て\＆て・てLT

$\left[{ }^{13} \mathrm{C}\right.$ NMR， $\left.\mathrm{CDCl}_{3}\right]$

TET•OL

SSS•عSI ——_
ยLI•9GI

ع8も・9LT

 $66 I \cdot 08 \tau$
[${ }^{13} \mathrm{C}$ NMR, CDCl_{3}]
(Boc rotamers)

[^0]: ${ }^{1}$ Fustero, S.; Albert, L.; Aceña, J. L.; Sanz-Cervera, J. F.; Asensio, A. Org. Lett. 2008, 10, 605-608.

[^1]: ${ }^{2}$ Wede, J.; Volk, F.-J.; Frahm, A. W. Tetrahedron: Asymmetry 2000, 11, 3231-3252.

[^2]: ${ }^{3}$ Schinzer, D.; Dettmer, G.; Ruppelt, M.; Sólyom, S.; Steffen, J. J. Org. Chem. 1988, 53, 3823-3828.

[^3]:

 Data for 14:
 $R_{f:} 0.28$ (hexane/EtOAc, $\left.5: 1\right) .[\alpha]^{25}{ }_{\mathrm{D}}-54.2\left(c 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.03(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.18(\mathrm{~m}$, $3 \mathrm{H}), 2.38-2.61(\mathrm{~m}, 3 \mathrm{H}), 5.27(\mathrm{tt}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}$, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .39-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-1.6,20.9,23.1,28.4,40.1,68.4,69.3,121.9,126.0,128.8,131.1,134.7,142.1,158.4$, 170.1. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 327.1655$; found: 327.1640 .

[^4]: ${ }^{4}$ Ranatunga, S.; Del Valle, J. R. Tetrahedron Lett. 2009, 50, 2464-2466.

