Ruthenium-Catalyzed Metathesis Reactions of *ortho*- and *meta*- Dialkenyl-Carboranes: New Efficient Ring-Closing and Acyclic Diene Polymerization Reactions

Marta Guron, Xiaolan Wei, Patrick Carroll, Larry G. Sneddon*

Department of Chemistry, University of Pennsylvania Philadelphia, PA 19104-6323

Supporting Information

Syntheses of *o*-Dialkenyl-Carboranes

1,2-(CH₂=CHCH₂)₂-1,2-C₂B₁₀H₁₀ (1). A 1.0049 g (7.0 mmol) sample of o-carborane was lithiated with 6.1 mL (15.3 mmol) of BuLi at -78 °C in 75 mL of diethyl ether in a 250 mL three-neck flask and allowed to warm to room temperature. After 1-2 h of reaction, the solution was cooled in an ice bath, and 2.93 mL (34.7 mmol) of allyl bromide was added. After returning to room temperature, the reaction mixture was refluxed at ~80 °C overnight. LiBr was extracted with ~50 mL of deionized water. The resulting ether layer was dried with MgSO₄ and filtered. Column chromatography with dichloromethane eluent afforded 1.42 g (6.3 mmol, 91% yield) of 1 as a colorless oil. For 1: NCI-HRMS (m/e): calcd. for 12 C₈ 11 B₁₀ 1 H₂₀: 226.2495, found: 226.2504. Anal. Calcd.: C, 42.83; H, 8.99. Found: C, 42.53; H, 8.74. 11 B NMR (128.4 MHz, CDCl₃, ppm, J = Hz): -5.2 (d, 2B, J 147), -11.2 (d, 8B, J 155). 1 H NMR (400.1 MHz, CDCl₃, ppm, J = Hz): -5.79 (m, 2H, =CH), 1.73 (d, 4H, J 7.5, =CHCH₂), 2.97 (d, 2H, J 8.3, CH₂). FT-IR

(NaCl plate, cm⁻¹): 3085 (m), 2985 (m), 2925 (s), 2854 (m), 2585 (vs), 1860 (w), 1644 (m), 1435 (s), 1316 (w), 1295 (m), 1260 (m), 1162 (m), 1122 (m), 1067 (m), 1029 (s), 993 (s), 928 (s), 812 (m), 729 (s), 701 (m), 666 (w), 619 (w).

1,2-(CH₂=CH(CH₂)₃CH₂)₂-1,2-C₂B₁₀H₁₀ (2). A 1.5012 g (10.4 mmol) sample of *o*-carborane was lithiated with 9.2 mL (23.0 mmol) of BuLi and subsequently reacted with 4.5 mL (33.6 mmol) of 6-bromo-1-hexene. The product was purified using column chromatography with hexanes as eluent, then further purified by thin layer chromatography using dichloromethane as eluent. The reaction yielded 1.89 g (6.1 mmol, 58.9% yield) of **2** as an oil. For **2**: NCI-HRMS (m/e): calcd. for 12 C₁₄ 11 B₁₀ 11 H₃₂: 310.3434, found: 310.3430. Anal. Calcd.: C, 54.50; H, 10.45. Found: C, 52.42; H, 10.39. 11 B NMR (128.4 MHz, CDCl₃, ppm, J = Hz) -5.6 (d, 2B, J 151), -11.4 (d, 8B, J 143). 11 H NMR (400.1 MHz, CDCl₃, ppm, J = Hz) 5.78 (m, 2H, =CH), 5.01 (d, 4H, J 8.0, =C H_2), 2.08 (m, 8H, C H_2), 1.44 (m, 8H, C H_2). FT-IR (NaCl plate, cm⁻¹): 3077 (m), 2933 (s), 2858 (m), 2585 (vs), 1641 (m), 1463 (m), 1439 (m), 1164 (w), 1032 (m), 992 (m), 913 (s), 800 (w), 731 (m), 639 (w).

1,2-(CH₂=CHCH₂OC(=O))₂-1,2-C₂B₁₀H₁₀ (6). As described for **1**, a 1.0060 g (7.0 mmol) sample of *o*-carborane was lithiated with 6.4 mL (16.0 mmol) of BuLi and subsequently reacted with 3.2 mL (30.5 mmol) of allylchloroformate. The product was purified using column chromatography with pentane as eluent to yield 1.75 g (5.6 mmol, 80.3% yield) of **6** as a reddish oil. For **6**: NCI-HRMS (m/e): calcd. for ${}^{12}C_{10}{}^{11}B_{10}{}^{16}O_4{}^1H_{20}$: 314.2291, found: 314.2282. Anal Calcd.: C, 38.45; H, 6.45. Found: C, 40.38; H, 6.66. ${}^{11}B$ NMR (128.4 MHz, CDCl₃, ppm, J = Hz) -2.9 (d, 2B, J 151), -10.0 (d, 2B, J 158), -11.9 (d, 6B, J 159). ${}^{1}H$ NMR (400.1 MHz, CDCl₃, ppm, J = Hz) 5.87 (m, 2H, =CH), 5.35 (m, 4H, =CH₂), 4.64 (d, 4H, J 5.6, CH₂). FT-IR (NaCl

plate, cm⁻¹): 3090 (w), 2960 (m), 2586 (vs), 1753 (vs), 1452 (m), 1425 (w), 1379 (w), 1362 (m), 1259 (vs), 1126 (s), 1012 (s), 993 (s), 941 (s), 837 (m), 777 (w), 722 (m), 554 (w).

1,2-(CH₂=CHSiMe₂)₂-1,2-C₂B₁₀H₁₀ (3). A 2.0076 g (13.9 mmol) sample of o-carborane was lithiated with 12.2 mL (30.5 mmol) of BuLi and subsequently reacted with 9.8 mL (71.7 mmol) of chlorodimethylvinylsilane. White crystals immediately emerged upon removal of solvent and required no further purification, yielding 4.34 g (8.9 mmol, 63.7% yield) of **3.** For **3**: mp = 75.0-75.4 °C. NCI-HRMS (m/e): calcd for ${}^{12}C_{10}{}^{28}Si_2{}^{11}B_{10}{}^{1}H_{28}$: 314.2659, found: 314.2670. Anal. Calcd.: C, 38.42; H, 9.03. Found: C, 38.36; H, 9.05. ${}^{11}B$ NMR (128.4 MHz, CDCl₃, ppm, J = Hz) 1.6 (d, 2B, J 146), -6.3 (d, 2B, J 149), -9.4 (d, 4B, J 160), -11.8 (d, 2B, J 161). ${}^{1}H$ NMR (400.1 MHz, CDCl₃, ppm, J = Hz) 6.14 (m, 4H, = CH₂), 5.78 (m, 2H, =CH), 0.38 (s, 12H, CH₃). FT-IR (KBr pellet cm ${}^{-1}$): 3060 (w), 2963 (m), 2618 (s), 2570 (s), 1939 (w), 1592 (m), 1402 (s), 1255 (s), 1084 (s), 1009 (m), 965 (s), 905 (w), 816 (s), 714 (m), 632 (m), 560 (w), 510 (m). Compounds 1,2-(CH₂=CHCH₂SiMe₂)₂-1,2-C₂B₁₀H₁₀ (**4**) and 1,2-[CH₂=CH(CH₂)₄SiMe₂]₂-1,2-C₂B₁₀H₁₀ (**5**) were synthesized in an analogous fashion via the reactions of the dilithio-1,2-carborane with chlorodimethylallylsilane and chlorodimethylhexenylsilane. Their ${}^{11}B$ NMR spectra were identical to those of **3**. Complete spectral data were not collected.

Syntheses of *m*-Dialkenyl-Carboranes

1,7-(CH₂=CHCH₂)₂-1,7-C₂B₁₀H₁₀ (7). A 1.0023 (6.9 mmol) sample of *m*-carborane was lithiated with 6.1 mL (15.3 mmol) of BuLi and subsequently reacted with 3.0 mL (35.5 mmol) of allyl bromide to yield 1.19 g (5.3 mmol, 76.1% yield) of **7** as a colorless oil after removal of solvent and LiBr. For **7**: NCI-LRMS (m/e): calcd. for ${}^{12}C_{8}{}^{11}B_{10}{}^{1}H_{20}$: 226, found: 226. Anal. Calcd.: C, 42.83; H, 8.99. Found: C, 42.59; H, 8.72. ${}^{11}B$ NMR (128.4 MHz, CDCl₃, ppm, J = Hz) -7.8 (d, 2B, J 159), -11.8 (d, 6B, J 149), -14.4 (d, 2B, J 151). ${}^{1}H$ NMR (400.1 MHz, CDCl₃,

ppm, J = Hz) 5.64 (m, 2H, =CH), 5.08 (m, 4H, =C H_2), 2.63 (d, 4H, J 7.0, C H_2). FT-IR (NaCl plate cm⁻¹): 2963 (s), 2907 (m), 2598 (s), 1642 (w), 1617 (m), 1470 (w), 1439 (m), 1414 (m), 1322 (m), 1260 (vs), 1201 (s), 1028 (vs), 925 (m), 864 (s), 819 (vs), 738 (w), 704 (m), 459 (m). **1,7-(CH₂=CH(CH₂)₃CH₂)₂-1,7-C₂B₁₀H₁₀ (8).** As described for **1**, a 0.8045 g (5.6 mmol) sample of m-carborane was lithiated with 5.5 mL (13.8 mmol) of BuLi and subsequently reacted with 4.1 mL (30.7 mmol) of 6-bromo-1-hexene to give 1.67 g (5.4 mmol, 97.1% yield) of **8** as colorless oil. For **8**: NCI-LRMS (m/e): calcd. for 12 C₁₄ 11 B₁₀ 1 H₃₂: 310, found: 310. Anal. Calcd.: C, 54.50; H, 10.45. Found: C, 54.75; H, 10.41. 11 B NMR (128.4 MHz, CDCl₃, ppm, J = Hz), -7.1 (d, 2B, overlapped), -11.2 (d, 6B, J 143), -13.8 (d, 2B, overlapped). 1 H NMR (400.1 MHz, CDCl₃, ppm, J = Hz) 5.76 (m, 2H, =CH), 4.96 (m, 4H, =CH₂), 1.93 (m, 8H, CH₂), 1.36 (m, 8H, CH₂). FT-IR (NaCl plate cm⁻¹): 3078 (w), 2929 (s), 2859 (s), 2598 (vs), 1641 (m), 1463 (m), 1440 (m), 1416 (w), 1260 (m), 1137 (w), 1072 (m), 1030 (m), 992 (m), 912 (s), 804 (m), 731 (m).

1,7-(CH₂=CHCH₂SiMe₂)₂-1,7-C₂B₁₀H₁₀ (9). The reaction was carried as described for **1**, except that 2:1 benzene:diethyl ether was used as the solvent. A 2.0014 g (13.9 mmol) sample of *m*-carborane was lithiated with 15.8 mL (39.5 mmol) of BuLi and subsequently reacted with 11.2 mL (76.7 mmol) of allylchlorodimethylsilane. The resulting yellow oil was dissolved in pentane and 3.36 g (9.86 mmol, 71.0% yield) of white crystals of **9** crashed out at -78 °C. For **9**: m.p. = 59.2-59.8 °C. NCI-HRMS (*m/e*): calcd for 12 C₁₂ 28 Si₂ 11 B₁₀ 1 H₃₂: 342.2972, found: 342.2985. Anal. Calcd.: C, 42.31; H, 9.47. Found: C, 42.14; H, 9.19. 11 B NMR (128.4 MHz, CDCl₃, ppm, J = Hz) -3.3 (d, 2B, J = 157), -8.2 (d, 2B, J = 148), -10.4 (d, 4B, J = 157), -14.7 (d, 2B, J = 157). 1 H NMR (400.1 MHz, CDCl₃, ppm, J = Hz) 5.70 (m, 2H, =CH), 4.91 (m, 4H, =CH₂), 1.62 (d, 4H, J = 157), CH₂), 0.13 (s, 12H, CH₃). FTIR (KBr pellet, cm⁻¹): 3080 (w), 2971 (m), 2957 (m), 2901

(w), 2646 (m), 2599 (s), 2562 (s), 1630 (m), 1420 (m), 1397 (m), 1254 (s), 1247 (s), 1197 (w), 1166 (s), 1105 (m), 1081 (m), 1070 (m), 1041 (m), 993 (s), 932 (w), 893 (s), 854 (s), 814 (s), 787 (s), 657 (m), 573 (m).