Supporting Information **1.** Synthesis and characterized of **1** and **3**. Synthesis of 3. Acetyl chloride (8.3 g) was slowly added to the solution of 3-hydroxy-1,1-cyclobutanedicarboxylic acid (5.0 g) in 50mL of acetone at 25°C, and the mixture was stirred at 40-50°C for 4 h. Solvent was removed by rotary evaporation and the white residue was dissolved in 20 mL isopropyl ether. The solution was passed through a 0.2 μ filter. After the colorless filtrate was condensed at 40°C under reduced pressure to 5mL, a white crystalline product precipitated. The product was filtrated off and dried in a vacuum oven at 60°C. Yield 3.8 g (60%), m.p. 128-129°C. Found (% calculated for C₈H₁₀O₆): C 47.2 (47.5), H 4.92 (4.95). ¹H-NMR (dmso, 500.1MHz, ppm): 1.95 (s. 3H, CH₃), 2.46 (m. 2H, CH₂), 2.76 (m. 2H, CH₂), 4.88 (p. 1H, CH), 12.97 (s. 2H, 2OH), ¹³C-NMR (dmso. 100.6MHz, ppm): 20.6 (CH₃), 36 (CH₂), 48 (C), 63 (CH), 170.0(CH₃COO), 172.1, 172.8 (2COO). Synthesis of 1. To a suspension of cis- $[Pt(NH_3)_2I_2]$ (5.0 g, 8.8 mmoL) in 100ml water was added disilver 3-acetoxyl-1,1-cyclobutanedicarboxylate 2 (3.08 g, 8.6 mmol), and the reaction mixture was stirred at 40°C for 16 h. After AgI formed was filtrated off, the filtrate was condensed at 40°C under reduced pressure to 10 mL, a white product precipitated and then it was re-crystallized from water, filtrated off, washed with icy water and dried in a vacuum oven at 50°C. Yield 3.6g (50%), m.p.(dec.)152°C. Found (% calculated for C₁₆H₂₈N₄O₁₂Pt₂·H₂O): C 22.1 (21.9), H 3.45 (3.42), N 6.35(6.39), Pt 44.1 (44.5), FAB⁺-MS m/z: [M-H₂O]⁺=859(10%), [(M-H₂O)/2+glycerine]⁺= 522(15%), $[(M-H₂O)/2]^{+}=430(100\%)$, $[(M-H₂O)/2-CH₃COO]^{+}=370(15\%)$. ¹H-NMR (dmso, 500.1MHz, ppm): 1.97 (s, 6H, 2CH₃), 2.53 (m, 4H, 2CH₂), 3.21 (m, 4H, 2CH₂), 4.14 (s, 12H, 4NH₃), 4.64 (s, 2H, 2CH). ¹³C-NMR (dmso, 100.6MHz, ppm): 21(CH₃), 38 ((CH₂)), 49 (C), 64 (CH), 170.0(CH₃COO), 176.4, 176.8 (2COO). FT-IR (KBr, cm⁻¹): 3298 (vs, $v(NH_3)$), 1722 (m, v(C=O)), 1639 (vs, $v_{a(COO)}$), 1374 (s, $v_{s(COO)}$). 2. The purity for complex 1 (LLC-1401) was assessed by analytical reverse-phase column chromatography (RP-HPLC) on a Waters Associates system (consisting of a 1525 pump, a 717 automated injector, and a Model 2998 photodiode array detector), using Phenomenex- C_{18} , 5- μ m particle size, 4.6×250mm column. The mobile phase was a MeOH-H₂O (7:93) system, and the flow rate was 1.0ml/min, with monitoring of the peak at 210nm. **Figure S1.** Complex **1** (LLC-1401) was assessed by analytical reverse-phase column chromatography (RP-HPLC) ## 3. FAB⁺-MS of complex 1 (LLC-1401) using glycerine as matrix Figure S2. FAB⁺-MS of complex 1 (LLC-1401) ## **4.** ¹H NMR complex **1** (LLC-1401) Figure S3 ¹H-NMR(dmso) of complex 1 ## 5. ¹³C **NMR** complex **1** (LLC-1401) Figure S4. ¹³C-NMR(dmso) of complex 1