Size-Dependent Temperature Effects on PbSe Nanocrystals

Quanqin Dai,^{†,‡} Yu Zhang,^{†,||} Yingnan Wang,[§] Michael Z. Hu,[‡] Bo Zou,^{*,§} Yiding Wang,^{||} and William W. Yu^{*,†,||}

[†] Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA

[‡] Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

[§] State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering,

Jilin University, Changchun 130012, China

* Corresponding authors: wyu@wpi.edu (W. W. Yu); zoubo@jlu.edu.cn (B. Zou).

Supporting Information

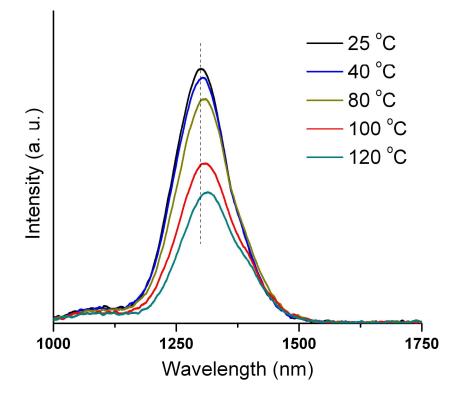
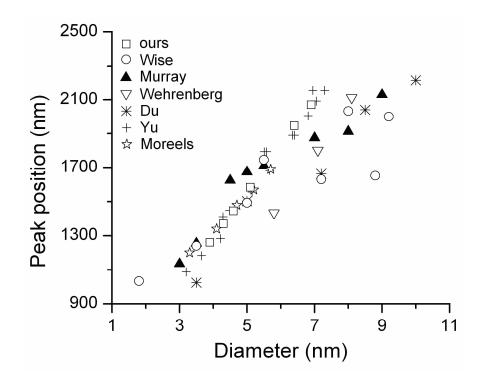
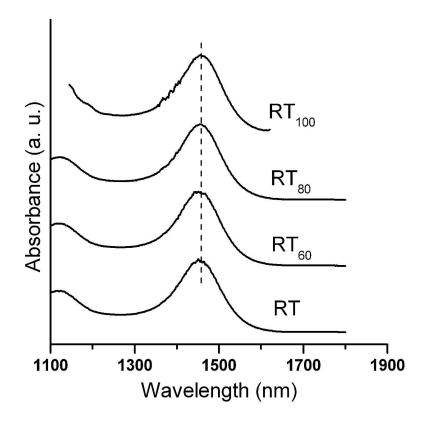




Figure S1. Temperature-induced shifts of photoluminescence spectra of the 3.9 nm PbSe nanocrystals.

Figure S2. First absorption peak positions versus particle sizes of the PbSe nanocrystals collected from our experiment and the literature.¹⁻⁶

Figure S3. Room-temperature Measurements of absorption spectra of the PbSe nanocrystal sample before and after multiple heating/cooling cycles. We started the measurement of the sample at room temperature (marked as RT in the graph). Next, the sample was measured again, after being heated to 60 °C and then cooled down back to room temperature (marked as RT_{60} in the graph). Subsequently, we measured the sample for the third and fourth times, after it was respectively heated to 80 °C and 100 °C and cooled down back to room temperature (marked as RT_{80} and RT_{100} in the graph).

References

- Moreels, I.; Lambert, K.; Muynck, D. D.; Vanhaecke, F.; Poelman, D.; Martins, J. C.; Allan, G.; Hens, Z. *Chem. Mater.* 2007, *19*, 6101-6106.
- (2) Yu, W. W.; Falkner, J. C.; Shih, B. S.; Colvin, V. L. Chem. Mater. 2004, 16, 3318-3322.
- (3) Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. *IBM J. Res. Dev.* **2001**, *45*, 47-56.
- (4) Wehrenberg, B. L.; Wang, C.; Guyot-Sionnest, P. J. Phys. Chem. B 2002, 106, 10634-10640.
- (5) Du, H.; Chen, C.; Krishnan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, G.; Silcox, J. *Nano Lett.* 2002, *2*, 1321-1324.
- (6) (a) Wise, F. W. Acc. Chem. Res. 2000, 33, 773-780. (b) Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.; Wise, F. W.; Shen, Q.; Kycia, S. Appl. Phys. Lett. 1997, 71, 3406-3408. (c) Olkhovets, A.; Hsu, R. C.; Lipovskii, A.; Wise, F. W. Phys. Rev. Lett. 1998, 81, 3539-3542.