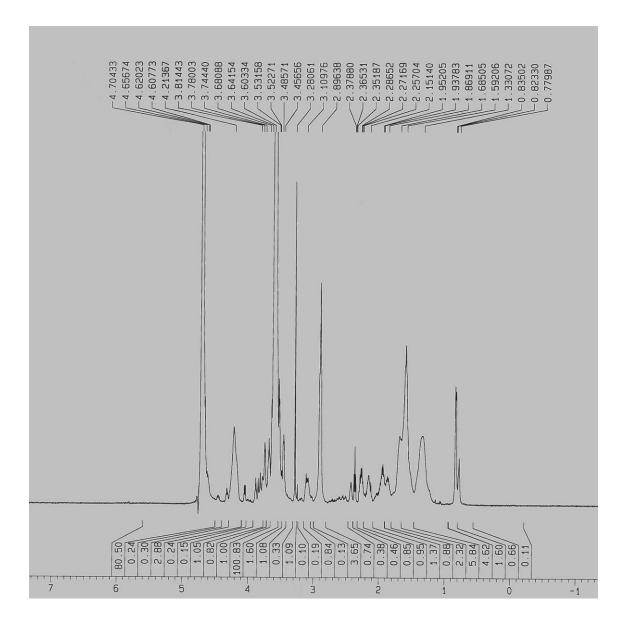
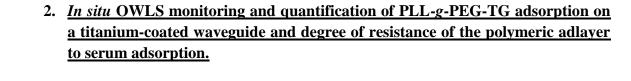
## SUPPORTING INFORMATION

### 1. <u>NMR analysis of the synthesized PLL<sub>20</sub>-g<sub>3.5</sub>-PEG<sub>2/3.4</sub>-TG</u>


The synthesized PLL<sub>20</sub>- $g_{3.5}$ -PEG<sub>2/3.4</sub>-TG copolymer was analyzed by <sup>1</sup>H NMR (D<sub>2</sub>0) and resulted in a copolymer with the following structure: PLL<sub>20</sub>- $g_{4.4}$ -PEG<sub>2/3.4</sub>-TG<sub>25%</sub>.

<sup>1</sup>H NMR (D<sub>2</sub>O) d: 0.83 (TG-peptide, -CH3 valine side chains, d), 1.18-1.48 and 1.48-1.81 (PLL,  $-C_{\alpha}HC_{\beta}H_2C_{\gamma}H_2C_{\delta}H_2C_{\epsilon}H_2NH_2$ , m), 1.81-2.48 (TG-peptide, side chains), 2.90 (PLL,  $-C_{\alpha}HC_{\beta}H_2C_{\gamma}H_2C_{\delta}H_2C_{\epsilon}H_2NH_2$ , t), 3.05-3.14 (PLL and TG-peptide,  $-C_{\alpha}HC_{\beta}H_2C_{\gamma}H_2C_{\delta}H_2C_{\epsilon}H_2NHCO$  and side chains, m), 3.28 (mPEG,  $-OCH_3$ , s), 3.60 (mPEG and PEG,  $-OCH_2CH_2$ -, m), 4.05 (TG-peptide,  $-NHC\alpha HCO$ -, d), 4.21 (PLL and TG-peptide,  $-NHC\alpha HCO$ -, m), 4.32 (TG-peptide,  $-NHC_{\alpha}HCO$ -, t), 4.45 (TG-peptide,  $-NHC\alpha HCO$ -, t)


The grafting ratios were calculated from the NMR spectrum. The ratio between mPEG<sub>2000</sub> and PEG<sub>3400</sub>, to which the TG-peptide has been coupled, was determined from the integral value of the methoxy group of mPEG<sub>2000</sub> peak at 3.28 ppm and from the integral value of the ethyleneoxide group of both mPEG<sub>2000</sub> and PEG<sub>3400</sub> peaks between 3.42-3.73 ppm. Based on the signal from the methoxy group of mPEG<sub>2000</sub>, the value for one proton of mPEG<sub>2000</sub> is 0.36. This results in a total integral value for mPEG<sub>2000</sub> with 45 ethylene oxide units of 64.80 and leaves a signal of 36.03 for the 77 ethylene oxide unit of PEG<sub>3400</sub>. This represents a value for one proton of PEG<sub>3400</sub> of 0.12. Therefore the proportion of mPEG<sub>2000</sub> to PEG<sub>3400</sub> is 0.36 to 0.12 which is a ratio of 3 to 1.

Based on the signal at 0.83 ppm from the four methyl groups of the two valine residues in the TG-peptide and on the signals at 4.05, 4.32 and 4.45 ppm representing six protons from the  $C_{\alpha}H$  groups in the TG-peptide, one proton from the TG-peptide has an integral value of 0.12. This value is the same as that of the PEG<sub>3400</sub>. Therefore, each PEG<sub>3400</sub> is functionalized with one TG-peptide.

To calculate the ratio between the PEGs and PLL, the integral values from the  $C_{\beta}H_2$ ,  $C_{\gamma}H_2$  and  $C_{\delta}H_2$  groups of PLL representing 6 protons are used. One proton from PLL is represented by a value of 2.13 and one proton of the PEGs is represented by a value of 0.36 and 0.12. This results in a PLL-PEG grafting ratio of 4.4 to 1.



**Figure S1.** NMR of PLL-*g*-PEG-TG.





**Figure S2.** In situ OWLS PLL-*g*-PEG-TG adsorption and polymeric adlayer resistance to serum proteins (dn/dc = 0.139).

# 3. Summary of PLL-g-PEG-TG characterization by <sup>1</sup>H-NMR and OWLS and theoretical peptide densities distance between them on the modified surfaces. Immobilization calculations on the surface.

PLL-g -PEG-TG characterization by H-NMR and OWLS. Theoretical peptide densities based on these experimental values

#### PLL-g-PEG-TG characterization

| -                                                   |                        |                    |       |          |
|-----------------------------------------------------|------------------------|--------------------|-------|----------|
| Concept                                             |                        | Remarks            | Units | Values   |
| Molecular weight PLL                                | (mol wt PLL)           |                    | g/mol | 20.000   |
| Nº Lys units                                        |                        |                    |       | 96       |
| Molecular weight Lys UNIT                           | (mol wt Lys)           |                    | g/mol | 208,3    |
| Molecular weight PLL-g -PEG-TG                      | (mol wt Pol)           | calculated (0)     | g/mol | 78.513,7 |
| Molecular weight non-functionalized PEG side chains |                        |                    | g/mol | 2.000    |
| Molecular weight functionalized PEG side chains     |                        |                    | g/mol | 3.400,0  |
| Molecular weight TG                                 |                        |                    | g/mol | 1.358,5  |
| Grafting ration                                     | (g)                    | experimental H-NMR |       | 4,4      |
| Total number of PEG side chains                     |                        | experimental H-NMR |       | 22       |
| Fraction of functionalized PEG                      | (p <sub>PEG-TG</sub> ) | experimental H-NMR | %     | 25%      |
| Fraction of non-functionalized PEG                  | (p <sub>PEG</sub> )    | experimental H-NMR | %     | 75%      |

In situ OWLS measurements

| Concept                                                                        | Remarks                                | Units              | Values    |
|--------------------------------------------------------------------------------|----------------------------------------|--------------------|-----------|
| Mass of PLL-g-PEG-TG adsorbed on a TiO2 waveguide (ma)                         | (average of 5 independent experiments) | ng/cm <sup>2</sup> | 132 ± 5   |
| BSA adsorption (non-fouling properties of the PLL-g-PEG-TG adlayer)            | (average of 5 independent experiments) | ng/cm <sup>2</sup> | 1.8 ± 1.2 |
| Mass of PLL-g-PEG adsorbed on a Nb <sub>2</sub> O <sub>5</sub> waveguide (m a) | Not experimental. Reported value [15]  | ng/cm <sup>2</sup> | 170       |

### Theoretical TG peptide density and distance between the moieties on a surface

| Concept                                                        |     | Remarks        | Units                | Values |
|----------------------------------------------------------------|-----|----------------|----------------------|--------|
| TG peptide density on a TiO <sub>2</sub> surface               | (ρ) | calculated (1) | pmol/cm <sup>2</sup> | 9,1    |
| Distance between the TG moieties on a TiO <sub>2</sub> surface |     | calculated (2) | nm                   | 4,6    |
| TG peptide density on a Nb2O5 surface                          | (ρ) | calculated (1) | pmol/cm <sup>2</sup> | 11,7   |
| Distance between the TG moieties on a Nb2O6 surface            |     | calculated (2) | nm                   | 4,0    |

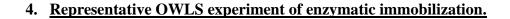
#### Maximum theoretical peptide densities on a surface and Immobilization amounts.

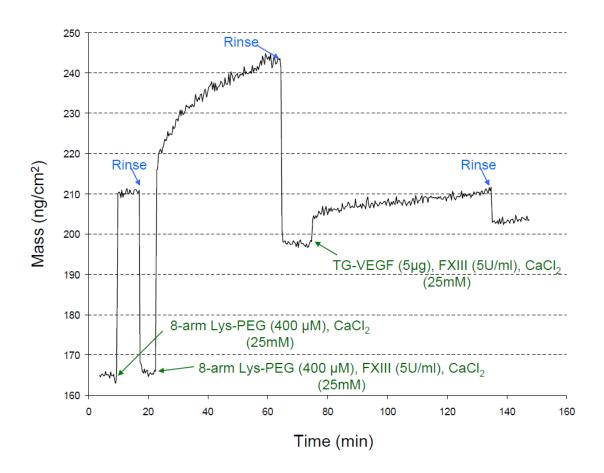
| Concept                                                                  | Remarks                                       | Units              | Values       |
|--------------------------------------------------------------------------|-----------------------------------------------|--------------------|--------------|
| Molecular weight 8-arm Lys-PEG                                           |                                               | g/mol              | 53.744,0     |
| Molecular weight Lys-FITC                                                |                                               | g/mol              | 966,2        |
| Molecular weight Lys-RGD                                                 |                                               | g/mol              | 1.018,3      |
| Mass of 8-arm Lys-PEG immobilized on a TiO2 surface (one-step).          | calculated (3)                                | ng/cm <sup>2</sup> | 487,3        |
| Mass of Lys-FITC immobilized on a TiO2 surface (one-step).               | calculated (3)                                | ng/cm <sup>2</sup> | 8,8          |
| Mass of Lys-RGD immobilized on a TiO <sub>2</sub> surface                | calculated (3)                                | ng/cm <sup>2</sup> | 9,2          |
| Mass of Lys-RGD immobilized on a Nb2Os surface                           | calculated (3)                                | ng/cm <sup>2</sup> | 11,9         |
|                                                                          |                                               |                    |              |
| Mass of 8-arm Lys-PEG immobilized on a TiO2 surface (one-step).          | calculated (3*)                               | ng/cm <sup>2</sup> | 39,0         |
|                                                                          |                                               |                    |              |
| Molecular weight TG-VEGF                                                 |                                               |                    | 32.000,0     |
| Molecular weight 8-arm TG-PEG                                            |                                               |                    | 50.868,0     |
|                                                                          |                                               |                    |              |
| Mass of TG-VEGF immobilized on a TiO <sub>2</sub> surface (two-steps).   | calculated (4); 1mol Lys-PEG to 1mol TG-VEGF  | ng/cm <sup>2</sup> | 15.7 ± 2     |
| Mass of TG-VEGF immobilized on a TiO <sub>2</sub> surface (two-steps).   | calculated (4*); 1mol Lys-PEG to 4mol TG-VEGF | ng/cm <sup>2</sup> | 62.9 ± 7.9   |
| Mass of TG-PEG immobilized on a TiO <sub>2</sub> surface (two-steps).    | calculated (5); 1mol Lys-PEG to 1mol TG-PEG   | ng/cm <sup>2</sup> | 25 ± 3.1     |
| Mass of TG-PEG immobilized on a TiO <sub>2</sub> surface (two-steps).    | calculated (5*); 1mol Lys-PEG to 4mol TG-PEG  | ng/cm <sup>2</sup> | 100 ± 12.5   |
| Mass of LYS-PEG immobilized on a TiO <sub>2</sub> surface (three-steps). | calculated (6); 1mol TG-PEG to 1mol Lys-PEG   | ng/cm <sup>2</sup> | 25.6 ± 3.7   |
| Mass of LYS-PEG immobilized on a TiO <sub>2</sub> surface (three-steps). | calculated (6*); 1mol TG-PEG to 4mol Lys-PEG  | ng/cm <sup>2</sup> | 102.3 ± 14.8 |

(0) [mol wt (PLL) + [[mol wt (PLL) / mol wt (Lys) \* (1 / g)] \* [((p<sub>PEG</sub> / 100) \* mol wt (PEG)) + ((p<sub>PEG-TG</sub> / 100) \* mol wt (PEG-TG))]]

(1) [[mol wt (PLL) / (mol wt (Lys) \* g)] \* [ (ma / mol wt (Pol)) \* p<sub>PEG-TG</sub>]]

(2) [ [(2 / \sqrt{3}) \* (1 / (o \* Avogadro's number)]<sup>1/2</sup>]


(2) [(2) (1(2) NO (17) Avagaality shuffeed in a SKIIIa)]; 100 % efficiency of the enzyme, all TG domains on the surface react with a Lys substrate (3) [ ρ / mol wt (immobilized peptide via SKIIIa)]; 100 % efficiency of the enzyme, 1/10 TG domains on the surface react with a Lys substrate (4) [ experimental 8-arm Lys-PEG immobilized (26.4 ± 3.3) / mol wt (8-arm Lys-PEG) \* mol wt (TG-VEGF)]


(4\*) [experimental 8-arm Lys-PEG immobilized (26.4 ± 3.3) / mol vt (8-arm Lys-PEG) \* mol vt (TG-VEGF)]
(5) [experimental 8-arm Lys-PEG immobilized (26.4 ± 3.3) / mol vt (8-arm Lys-PEG) \* mol vt (8-arm TG-PEG)]

(5°) [experimental 8-arm Lys-PEG immobilized (26.4 ± 3.3) / mol vt (8-arm Lys-PEG) \* mol vt (8-arm TG-PEG)]
(6) [experimental 8-arm TG-PEG immobilized (24.2 ± 3.5) / mol vt (8-arm TG-PEG) \* mol vt (8-arm Lys-PEG)]

(6\*) [ experimental 8-arm TG-PEG immobilized (24.2 ± 3.5) / mol wt (8-arm TG-PEG) \* mol wt (8-arm Lys-PEG) ]

Figure S3. Summary of PLL-g-PEG-TG characterization by <sup>1</sup>H-NMR and OWLS. Maximum theoretical peptide densities and distance between the TG moieties on the modified surfaces. Immobilization amounts (theoretical based on experimental values).





**Figure S4.** In situ OWLS immobilization of 8-arm Lys-PEG followed by TG-VEGF<sub>121</sub>. First a negative control is shown (8-arm Lys-PEG in absence of FXIII). No absorption is observed. Next, immobilization of 8-arm Lys-PEG is monitored and followed by immobilization of TG-VEGF<sub>121</sub>. The dn/dc for this graph is 0.139 (for PEG-based molecules. A dn/dc = 0.182 was considered for calculations involving TG-VEGF as mention in the Materials and Methods section). (Not real starting time).