Supporting Information

A 1*H*-Benzoimidazole Derivative as an *n*-Type Dopant and Its Use to Enable Air-Stable Solution-Processed *n*-Channel Organic Thin-Film Transistors

Peng Wei,¹ Joon Hak Oh,¹ Guifang Dong,^{1,2} Zhenan Bao*^{,1}

¹ Department of Chemical Engineering, Stanford University, Stanford, California 94305

² Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

Chemicals

[6,6]-phenyl C₆₁ butyric acid methyl ester (PCBM) was purchased from Nano-C. (4-(1,3-dimethyl-2,3-dihydro-1*H*-benzoimidazole-2-yl)-phenyl)-dimethyl-amine (N-DMBI) was purchased from Sigma-Aldrich. 1,2,3-Trimethyl-2-phenyl-2,3-dihydro-1*H*benzoimidazole (TMBI) was purchased from ChemBridge Corporation. Divinyltetramethyldisiloxane bis(benzocyclobutene) (BCB) was purchased from Dow Chemicals. The remaining chemicals and solvents were purchased from Sigma-Aldrich. All of the chemicals were used as received without further purification.

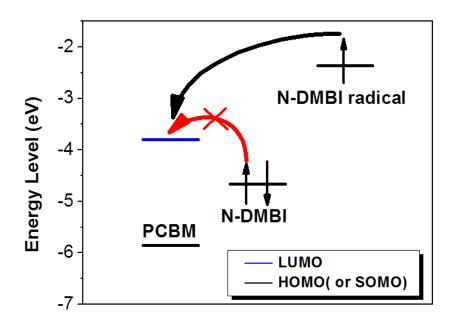
Instruments

A Digital Instruments (DI) MMAFM-2 scanning probe microscope was used to perform tapping mode AFM on the samples with a silicon tip of 300 kHz frequency. DI Nanoscope software was used to process the raw AFM images. UV/VIS/NIR was recorded with a Varian Cary 6000i UV-vis spectrophotometer in ambient condition. All electrical measurements were measured with a Keithley 4200 semiconductor parameter analyzer. All devices were measured without encapsulation.

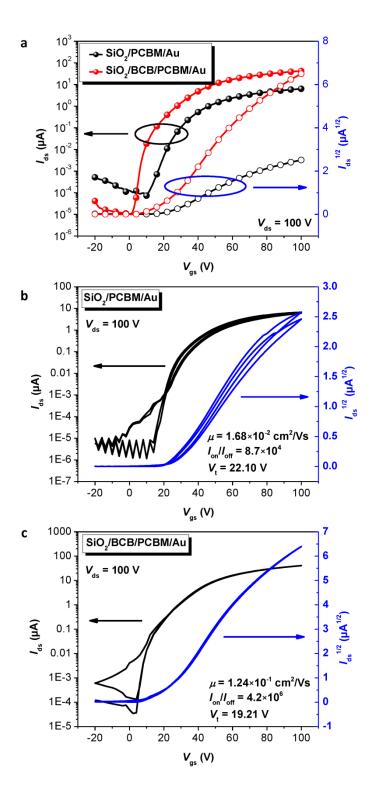
Discussion On the Doping Mechanism

1,3-Dimethyl-2-phenyl-2,3-dihydro-1*H*-benzoimidazole (DMBI) derivatives have been reported as effective reagents for reductive transformations of organic compounds. They are also known to promote radical reactions, where they act as hydrogen donor and/or electron transfer reagents.^{1,2} Among DMBI derivatives, DMBI was already widely studied and utilized as a reducing reagent for carbonyl compounds in organic synthesis.¹ For example, at °**6**! α -haloacetophenones can be reduced by DMBI to their corresponding carbonyl compounds.^{1b} Because the neutral radicals of DMBI derivatives are highly reactive, direct detection and characterization by electron paramagnetic resonance (EPR) spectroscopy was not possible, as reported in previous publications.^{2,3} However, in the reported references,¹ the mechanism of the reduction reactions by DMBI derivatives was proved to be a radical process by the addition of radical initiators or radical inhibitors. Zhu X. Q. et al. also systematically studied the enthalpy changes and energy levels of DMBI derivatives.² Their results indicated that N-DMBI can form radicals similar to DMBI, although there is no report on reduction reactions of N-DMBI.

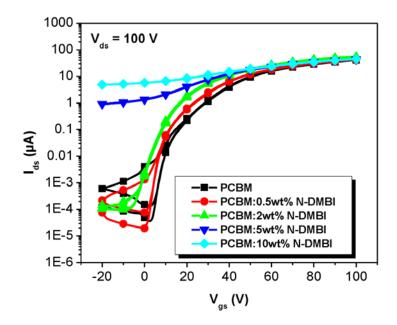
In the N-DMBI doped PCBM system, we hypothesize N-DMBI neutral radicals formed by heating in a N₂-filled glovebox. This neutral radical has extremely high singly occupied molecular orbital level (SOMO, -2.36 eV by Gaussian 03' calculation) so that an electron can be immediately transferred to the lowest unoccupied molecular orbital (LUMO) of PCBM (Figure S1), leading to the formation of a stable N-DMBI cation. Therefore, PCBM is reduced by electron transfer from the neutral radicals of N-DMBI. This was proved by the observation of the PCBM radical anion absorption band over 800~1100 nm in vis-NIR (Figure S4).


Moreover, to have a better understanding of the doping mechansim of N-DMBI, we used TMBI to replace N-DMBI, where the hydrogen at imidazole core was replaced with a methyl group (Figure 1a) so that the neutral radicals cannot be easily formed as N-DMBI with hydrogen abstraction process. In our experiments, we indeed could not observe an obvious *n*-type doping effect, which is consistent with our hypothesis on the doping mechanism.

The systematical studies are underway to make a better understanding on the doping mechanism.


Full Reference Citation for Ref. 12 in the Communication

(12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.;
Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam,
J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cvossi, M.; Scalmani, G.;
Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, J. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V.
G.; Dappriach, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Nalick, D. K.; Rabuck, A. D.;
Raghavachari, J.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, G.; Clifford, S.;


Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. A.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalex, C.; Pople, J. A. *Gaussian 03*, Gaussian, Inc.: Pittsburgh, PA, 2003.

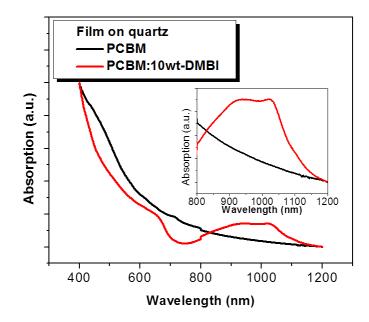

Figure S1. Energy diagram of PCBM, N-DMBI and N-DMBI neutral radical. The SOMO level of N-DMBI neutral radical was calculated by Gaussian 03'.

Figure S2. Comparison of the transfer ($V_{ds} = 100$ V) and hysteresis characteristics with/without the hydroxyl-free BCB interlayer for PCBM OTFTs in a N₂-filled glovebox.

Figure S3. Hysteresis characteristics of the undoped and N-DMBI doped PCBM transistors at different doping concentrations in a N_2 -filled glovebox.

Figure S4. Vis/NIR absorption spectra of the thin films of undoped PCBM and 10wt% N-DMBI doped PCBM measured in ambient condition within 5 min exposure to air from a N₂-filled glovebox. The inset shows the comparison of NIR absorption spectra with undoped PCBM and 10wt% N-DMBI doped PCBM films.

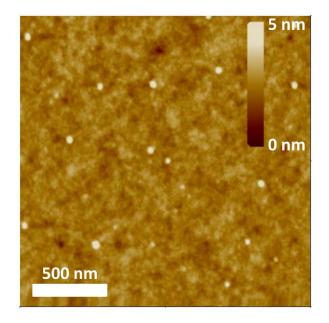


Figure S5. AFM image of 0.5wt% N-DMBI doped PCBM film.

Table S1. OTFT electrical properties for undoped, N-DMBI and TMBI doped PCBM transistors at different doping concentrations measured in the N₂-filled gloveblox. The calculated mobilities at high doping concentrations (5wt% and 10wt% N-DMBI doping) are lower as the devices are almost completely conductive and the on-off ratios are lower than 100.

	Glovebox			
	μ^{a} (cm ² /Vs)	$I_{\rm on}/I_{\rm off}$	$V_{\rm t}\left({ m V} ight)$	
РСВМ	1.25×10 ⁻¹	4.67×10 ⁶	19.10	
PCBM:0.5wt%N-DMBI	1.18×10 ⁻¹	2.73×10 ⁶	13.73	
PCBM:2wt%N-DMBI	1.02×10 ⁻¹	4.77×10 ⁵	6.43	
PCBM:5wt%N-DMBI	6.47×10 ⁻²	4.33×10 ¹	-15.60	
PCBM:10wt%N-DMBI	3.82×10 ⁻²	9.20×10 ⁰	-23.38	
PCBM:0.5wt%TMBI	1.07×10^{-1}	3.30×10 ⁶	18.31	

PCBM:2wt%TMBI	1.22×10 ⁻¹	5.27×10 ⁶	26.76
PCBM:5wt%TMBI	1.04×10 ⁻¹	4.80×10 ⁶	22.57
PCBM:10wt%TMBI	0.81×10 ⁻¹	4.01×10^{6}	19.94

a, All the data are the average of at least 3 devices.

References:

- (1) (a) Chen, J.; Tanner, D. D. J. Org. Chem. 1988, 53, 3897. (b) Tanner, D. D.; Chen, J. J. J. Org. Chem. 1989, 54, 3842. (c) Tanner, D. D.; Chen, J. J.; Chen, L.; Luelo, C. J. Am. Chem. Soc. 1991, 113, 8074. (d) Hasegawa, E.; Hirose, H.; Sasaki, K.; Takizawa, S.; Seida, T.; Chiba, N. Heterocycles 2009, 77, 1147.
- (2) Zhu, X. Q.; Zhang, M. T.; Yu, A.; Wang, C. H.; Cheng, J. P. J. Am. Chem. Soc. 2008, 130, 2501.
- (3) Morkovnik, A. S.; Klimov, E. S.; Suslov, A. N.; Ivakhnenko, E. P.; Okhlobystin, O. Y.; Tertov, B. A. Chem. Heterocyc. Compd. 1987, 23, 525.