1	Supporting Information
2	
3	
4	
5	Methane emissions from Pantanal. South America, during the low water
6	season: Towards more comprehensive sampling
7	······································
8	
9	David Bastviken ^{1*} , Ana Lucia Santoro ² , Humberto Marotta ² , Luana Queiroz Pinho ² ,
10	Debora Calheiros ^o , Patrick Crill ⁺ , Alex Enrich-Prast ²
11	
13	
14	¹ Department of Thematic Studies – Water and Environmental Studies, Linköping
15	University, 58183 Linköping, Sweden. E-mail: david.bastviken@liu.se. Phone: +46 13
16	282291.
17 19	² Department of Feelery, Federal University of Pie de Japaire, 68020 Pie de Japaire
19	Brazil E-mail: aeprast@biologia ufri br
20	
21	³ Center for Agricultural Research in the Pantanal – Embrapa Pantanal, Caixa Postal 109.
22	Corumbá – MS, Brazil. 79.320-900 E-mail: debora@cpap.embrapa.br
23	⁴ Department of Coolers and Coochemistry Stadbalm University 10(0) Stadbalm
24 25	Sweden E-mail: patrick crill@geo su se
26	Sweden. E man. patrick.crim@geo.su.se.
27	*Corresponding author
28	
29	
30	This supporting information contains seven pages, two tables, and three figures.

31

32 Methods

33

34 Methane flux measurements

35 Measurements of CH₄ flux at each site were performed during a full 24 h period using floating chambers as described by Bastviken et al. (1). The chambers were made of 36 37 7 L plastic buckets which were equipped with styrofoam floats to float with the edges reaching 4 cm below the water surface. Each chamber covered an area of 0.043 m^2 . A 38 39 hole was drilled at the top of the chamber and an 11 mm rubber stopper was put in the 40 hole. A piece of PVC tubing (25 cm long, 5 mm outer diameter, 3 mm inner diameter) 41 was inserted through the stopper in one end and attached to a luer-lock syringe valve at 42 the other end. The tubing facilitated sampling from the chambers by syringe with 43 minimal disturbance of the chamber position. The chambers were covered with 44 aluminum foil to reflect the sunlight and minimize internal heating. Each chamber was 45 attached to a separate styrofoam float by a 1 m line. This additional float was connected 46 to a stone with another line to anchor the chamber. When measuring in or next to 47 macrophyte stands, chambers were sometimes attached to plants above the water level to 48 avoid drifting.

49

50 For the 24 h measurements (8 to 34 chambers per lake), only initial and final 51 samples were taken. A 50 ml polypropylene plastic syringe (Becton Dickinson) equipped 52 with a polycarbonate stopcock was attached to the tubing leading to the chambers. The 53 syringe was pumped three times to mix the chamber content before withdrawing 50 ml of 54 gas from the chamber and closing the stopcock. Due to the remote location quick

55 analysis was not possible so the samples were transferred to storage vials. Vials were 56 prepared prior to sampling and consisted of 20 ml glass vials filled completely with 57 saturated NaCl and capped with a 10 mm thick butyl rubber stopper (Apodan, Denmark) 58 with an aluminum crimp seal. The NaCl brine in the vial was displaced through a second 59 needle when the sample was injected into the vial from the syringe. Previous tests 60 confirmed that CH_4 samples can be stored extended time periods in such vials. The 61 massive stoppers are thick enough to prevent leakage and the high concentration of NaCl 62 prevented both dissolution and oxidation of CH₄ in the remaining brine in the vials with 63 samples.

64

65 Analyzes

66 Concentrations of CH₄ in the storage vials were measured in the laboratory with a 67 GC-FID (Shimadzu 8A) equipped with a 500 μ L injection loop and a 2 m x 3.2 mm 68 stainless steel column packed with HayeSep Q 80/100. The column oven temperature 69 was 40°C and the N₂ carrier gas pressure setting was 80 kPa which resulted in a column 70 flow of about 10 mL min⁻¹. Certified 99.9 ± 2 ppm, 1000 ± 20 ppm, and 1.95 ± 0.02 %, 71 CH₄ standards (Air Liquide) were used for calibration.

72

Lake water CH_4 concentrations samples were collected with a 50 ml plastic syringe with the stopcock submerged a few centimeters below the water surface. After rinsing with some water to remove air bubbles along the walls slightly more than 40 ml of water was drawn into the syringe. A headspace equilibration method was used to extract the CH_4 from the water (2). Water volume in the syringe was adjusted to 40 ml

78	and 20 ml of air was introduced into the syringe before closing the valve. Care was taken
79	to avoid breathing into the syringe. The syringe was shaken vigorously for 1 minute
80	which was tested to be enough to equilibrate the water with the headspace, and the
81	headspace was then transferred to a storage vial as described above. Air samples taken
82	at the same time were also transferred to storage vials to correct the measured headspace
83	concentration for the ambient CH ₄ levels. The corrected headspace concentration was
84	used to account for the amount of CH4 that remained dissolved in the sample syringe
85	using Henry's Law adjusted for temperature according to Wiesenburg and Guinasso (3).
86	The total amount of CH_4 in the sample syringe was calculated and this amount was then
87	divided by the water volume to obtain the surface water CH ₄ concentration.
88	
89	Flux calculations
90	The flux into the diffusion chambers was calculated as described in Bastviken et
91	al. (2004). The diffusive flux across the water surface into the floating chamber can be
92	described by the equation
93	
94	$F = k(C_w - C_{fc}), \tag{1}$
95	
96	where F is the flux (moles $m^{-2} d^{-1}$), k is the piston velocity (m d ⁻¹), and C _w is the measured
97	CH ₄ concentration in the water (moles m^{-3}), and C_{fc} is the CH ₄ concentration in the water
98	given equilibrium with the CH_4 partial pressure in the floating chamber (4). This

decrease with time in the chambers. A simple calculation of the total amount of CH₄ that

100

entered the chambers divided with the time of measurement will underestimate the
instantaneous flux rate. To better estimate the instantaneous flux we solved for *k*.
Equation 1 was rewritten as

104

105
$$\frac{(P_t - P_0) \cdot V}{R \cdot T \cdot A} = k \cdot (P_w \cdot K_h - P_0 \cdot K_h), \qquad (2)$$

106

107 where P_t , and P_0 is the partial pressure of methane in the chamber (Pa) at times *t* and 0, 108 respectively, *V* is the chamber volume (m⁻³), *R* is the gas constant (8.314 m³ Pa K⁻¹ mol⁻¹), *T* is the temperature (K), A is the bottom area of the chamber (m²), P_w is the partial 109 ¹), *T* is the temperature (K), A is the bottom area of the chamber (m²), P_w is the partial 110 pressure of CH₄ in the chamber at equilibrium with C_w (Pa), and K_h is the Henry's Law 111 constant for CH₄ (moles m⁻³ Pa⁻¹). Thereby,

112

113
$$\frac{dP}{dt} = K \cdot (P_w - P), \text{ where}$$
(3)

114

115
$$K = k \cdot \frac{K_h \cdot R \cdot T \cdot A}{V}.$$
 (4)

116

- 117 The solution for Equation 3 is
- 118

119
$$(P_w - P) = C \cdot e^{(K \cdot t)},$$
 (5)

120

where *C* is a constant determined by setting t = 0. After solving for *k*, the instantaneous flux was calculated using Equation 1. The temperature dependence of K_h was calculated from the Bunsen coefficients (*3*).

124

125 Ebullition was determined by subtracting the diffusive flux from the Diffusion 126 chambers from the total flux into the chambers without bubble shields. In many cases the 127 ebullition was extensive enough to result in chamber concentrations higher than the 128 equilibrium with CH₄ in the water. In such cases simple flux calculations (accumulated 129 CH₄ divided by chamber area and time) would underestimate fluxes due to diffusion of 130 CH₄ from the chamber into the water once the equilibrium concentration in the chamber 131 was passed. To compensate for this we made a simple mass balance model accounting 132 for diffusive flux (in any direction) over time in the chamber and estimating ebullition 133 rates by fitting the modelled chamber concentration to the measured final chamber 134 concentration. The average of the calculated piston velocity values (gas transfer 135 coefficient, k; see Supporting Information) from the diffusion chambers on the same lake 136 and the water and chamber concentrations of CH₄ were used to calculate the diffusive 137 flux according the equation 1 in the supporting information. The average ebullition rate 138 during the whole measurement period was represented by a given constant rate for all 139 time steps in the model throughout the chamber deployment (since no data regarding 140 temporal variability between time steps were available). This assumption was supported 141 by the short term flux measurements indicating continuous ebullition (see results section). 142 If ebullition occurred in a non-continuous way our model would be biased for the 143 individual chambers. This would result in underestimated fluxes when most ebullition

144	occurred early during the measurement period, and overestimated fluxes for chambers if
145	ebullition occurred late in the deployment, but given random timing of the ebullition
146	events throughout the incubation periods the errors in the average ebullition estimate for
147	the whole lake should be much smaller. The ebullition calculated from the model was 10
148	\pm 7 % (average \pm 1 SD) higher than the uncorrected ebullition estimates.
149	
150	References
151	1. Bastviken, D.; Cole, J.; Pace, M.; Tranvik, L. Methane emissions from lakes:
152	Dependence of lake characteristics, two regional assessments, and a global estimate.
153	Global Biogeochemical Cycles 2004, 18 doi:10.1029/2004GB002238.
154	2. McAuliffe, C. Gas chromatographic determination of solutes by multiple phase
155	equilibrium. Chem. Technol. 1971, 1, 46-51.
156	3. Wiesenburg, D. A.; Guinasso, N. L. Equilibrium solubilities of methane, carbon

monoxide, and hydrogen in water and sea water. J. Chem. Engineer. Data 1979, 24, 157

158 356-360.

- 4. Cole, J. J.; Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind 159
- 160 oligotrophic lake measured by the addition of SF₆. Limnol. Oceanogr. 1998, 43, 647-
- 161 656.
- 162

163

164

165 Figure legends

166 Figure S1. Map of the Pantanal showing the locations where measurements were made.

- 167 Some locations were very close to each other and are not separated with different
- 168 symbols at this scale. We thank Mr. Luiz Alberto Pellegrin for contributing the map.

169

	170	Figure S2.	Methane	fluxes	at different	times i	in lake	L1	based	on	short	term
--	-----	------------	---------	--------	--------------	---------	---------	----	-------	----	-------	------

- 171 measurements (repeated sampling every 10th minutes for 40 minutes) in chambers partly
- 172 covering floating macrophytes (A) and over nearby open water just outside the

173 macrophyte belt (B). Measurements were made the same day and the time delay between

174 measurements in the two panels are due to practical constraints handling six replicate

175 chambers with frequent sampling. See Table S1 for lake information.

- 176
- 177 Figure S3. Total CH₄ flux versus maximum depth of the studied lakes. The line denotes a
- 178 non-linear regression $(\log 10(F) = -1.509 + 4.908z 2.838z^2 + 0.4341z^3)$; F is flux and z

179 depth, adjusted $R^2 = 0.40$). The dashed lines gives the 95% confidence interval.

Table S1. Overview of the studied lakes and some physicochemical characteristics including position, area during low water period (ALWP), max depth (z_{max}), pH, alkalinity, sediment water content, organic carbon and organic nitrogen content, and C/N ratio. Mean values are reported. FW and DW denote fresh weight and dry weight, respectively, and nd indicates that no data are available.

						Water chemistry		Se			
							-	Water	C/N		
Lake ID	Location	Position		ALWP	Z max	рН	Alkalinity	content	Org. C	Org. N	ratio
				km ²	m		mekv L ⁻¹	% of FW	% of DW	% of DW	
Dalám	Ladaria		40%50/00//0	nd	26	0.5	0.00	ام مر		ام ما	in al
Belem	Ladario	57°2940 W	18-5926 5	nd	2.0	0.5	0.39	na	na 2.05	na	12.0
Presa	Ladario	57°2527 W	18'59 49 5	nu	2.7	0.0	0.50	32.0	2.60 d	0.24	12.0
Bracinno	Ladario	57°32'63"W	19°00'25''5	na	2.5	6.7	0.38	na	na	na	na
	Ladario	57°36'90"W	18°57'11″S	na	1.9	6.5	0.44	74.8	6.45	0.64	10.0
Iereza	Ladario	57°26'28''W	18°57'38"S	nd	3.4	6.7	0.41	59.7	1.30	0.10	13.4
L1	Ladario	57°32'53"W	19°01'17"S	0.06	2	5.9	0.56	92.0	10.88	0.91	12.0
L2	Ladario	57°32'34"W	19°01'34''S	0.12	1.5	6.0	0.80	65.5	3.58	0.31	11.7
L3	Ladario	57°28'23"W	19°01'50''S	0.35	2	6.3	0.44	50	1.52	0.14	11.0
L4	Ladario	57°22'07''W	19°02'21"S	0.10	1.5	6.6	0.64	86.4	9.73	0.88	11.0
	National										
TR	Park	57°28'54''W	17°51'12"S	71.4	2.5	6.0	0.41	nd	0.75	0.07	10.7
BB	National Park	57°23'33''W	17°50'15"S	36.3	1.2	6.2	0.33	nd	0.74	0.08	9.4
N6b ¹	Nhumirim	56°37'57''W	18°58'01"S	0.12	nd	8.1	5.55	78.3	14.05	1.13	12.5
N7a ¹	Nhumirim	56°38'46''W	18°58'25"S	0.10	0.5	10.7	16.94	33.3	5.76	0.48	12.1
N8a ¹	Nhumirim	56°39'36''W	18°58'59''S	0.16	0.5	9.0	6.37	41.4	3.82	0.36	10.6
N14	Nhumirim	56º39'22"W	18º59'41"S	nd	0.8	5.7	1.05	69.6	8.03	0.72	11.1
N19a	Nhumirim	56º37'54"W	19º00'14"S	nd	0.8	5.3	0.42	65.2	8.80	0.78	11.3

¹Lake N6b was very rich in organic matter as indicated by a dark brown water color. There were no macrophytes in this lake. Lakes N7a and N8a had very high carbonate levels and a green water color from highly abundant cyanobacteria. Macrophytes were absent.

Table S2. Overview over the results for each lake, including sampling date, number of flux measurements (n), average water temperature (T), methane concentration in the surface water ($[CH_4]_{aq}$), piston velocity (k_{CH4}), diffusive flux, total flux, and percentage of total flux being ebullition. Note that k_{CH4} is the apparent piston velocity for methane (see eg. 4 for how to calculate k for other gases from this value).

Lake	Date	n	Т	[CH4] _{aq}	k _{CH4}	Diffusive flux	Total flux	Ebullition
			°C	μM	m d⁻¹	mmol m ⁻² d ⁻¹	mmol m ⁻² d ⁻¹	%
Belém	15-Sep-2008	12	26	0.39	0.52	0.20	0.64	69
Presa	15-Sep-2008	11	27	0.5	1.09	0.86	1.69	49
Bracinho	16-Sep-2008	12	26	3	1.36	1.81	15.53	88
Lobo	16-Sep-2008	12	24	1.28	0.46	1.78	5.62	68
Tereza	17-Sep-2008	12	24	0.36	0.52	0.18	0.25	28
L1	5-Dec-2006	34	30	1.35	0.70	0.81	16.39	95
L2	7-Dec-2006	13	30	1.84	0.40	0.70	7.39	91
L3	7-Dec-2006	13	30	0.28	1.44	0.72	2.09	66
L4	7-Dec-2006	13	30	0.51	1.72	0.87	21.99	96
TR	26-Nov-2006	26	31	0.44	1.49	0.65	5.74	89
BB	26-Nov-2006	15	30.5	0.38	1.25	0.50	5.63	91
N6b	29-Nov-2006	10	27	1.32	0.36	0.48	12.45	96
N7a	29-Nov-2006	10	34	0.17	0.36	0.66	1.42	54
N8a	29-Nov-2006	12	29.5	0.83	0.83	0.69	5.17	87
N14	29-Nov-2006	8	29.5	0.58	0.67	0.39	20.68	98
N19a	29-Nov-2006	8	30	1.75	0.67	0.73	11.71	94
All		221				0.74	8.79	91

Figure S1. Map of the Pantanal showing the locations where measurements were made (marked by arrows and encircled in the large map and by pionts at individual sites at the insert). Some locations were very close to each other and are not separated with different symbols at this scale. We thank Mr. Luiz Alberto Pellegrin for contributing the map.

Figure S2. Methane fluxes at different times in lake L1 based on short term measurements (repeated sampling every 10th minutes for 40 minutes) in chambers partly covering floating macrophytes (A) and over nearby open water just outside the macrophyte belt (B). Measurements were made the same day and the time delay between measurements in the two panels are due to practical constraints handling six replicate chambers with frequent sampling. See Table S1 in Supporting Information for lake information.

Figure S3. Total CH_4 flux versus maximum depth of the studied lakes. The line denotes a non-linear regression (log10(F) = -1.509 + 4.908z - 2.838z² + 0.4341z³; F is flux and z depth, adjusted R² = 0.40). The dashed lines gives the 95% confidence interval.