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1. Materials and methods

All reagents were commercially available and used as supplied without further
purification. Compounds WP10°' and 2% were prepared according to published
procedures. NMR spectra were recorded with a Bruker Avance DMX 600
spectrophotometer or a Bruker Avance DMX 400 spectrophotometer using the
deuterated solvent as the lock and the residual solvent or TMS as the internal
reference. Low-resolution electrospray ionization mass spectra were recorded with a
Bruker Esquire 3000 Plus spectrometer. Molecular weights and molecular weight
distributions were determined by gel permeation chromatography (GPC) with a
Waters 1515 pump and Waters 1515 differential refractive index detector (set at 30
°C). It used a series of three linear Styragel columns (HT2, HT4, and HTS5) at an oven
temperature of 45 °C. The eluent was THF at a flow rate of 1.0 mL/min. A series of
low polydispersity polystyrene standards was employed for the GPC calibration.
Transmission electron microscopy (TEM) investigations were carried out on a
HITACHI HT-7700 instrument. Dynamic light scattering (DLS) measurements were
carried out using a 200-mW polarized laser source Nd: YAG (4 = 532 nm). The
polarized scattered light was collected at 90° in a self-beating mode with a
Hamamatsu R942/02 photomultiplier. The signals were sent to a Malvern 4700
submicrometer particle analyzer system. UV-vis spectroscopy was performed on a
Shimadzu UV-2550 instrument at room temperature. The fluorescence experiments

were carried out on a Shimadzu RF-5301 spectrofluorophotometer.
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2. Synthesis of Polymer 1
Scheme S1. Synthesis of polymer 1
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Figure S1. "H NMR spectrum (400 MHz, D,0, 298 K) of 3.
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Figure S2. GPC trace of 3.
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Figure S3. "H NMR spectrum (400 MHz, D,0, 298 K) of 1.
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3. LCST behavior of polymer 1
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Figure S4. Temperature dependence of light transmittance of 1 (2.00 mg/mL) in aqueous
solution.
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4. Electrospray ionization mass spectrometry of WP10 and 2 equiv. 2
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Figure S5. Electrospray ionization mass spectrum of WP10 and 2 equiv. 2.

S6



5. NOESY NMR analysis of WP1032,

8.0 7.6
f2 (ppm)

H,  H,
N [}
Il I
J\ U _ -
1 1
1 I
I I
| |
——————————
A B
i
g
10‘A0 ‘ 9:6 I 9:2 I 818 ‘ 814 ‘ I 7‘.2 ‘ 6.‘3 ‘ 6.‘4 I 6:0 5:5

r5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

+10.0

r10.5

Figure S6. Partial NOESY NMR spectrum of WP1022, (3.00 mM) in D,0O with a mixing
time of 800 ms (500 MHz, 298 K).
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6. Stoichiometry and association constant determination for the complexation

between WPI10 and 2

To determine the stoichiometry and association constant for the complexation
between WP10 and 2, 'H NMR titration experiments were done with solutions which
had a constant concentration of WP10 (1.00 x 10~ M) and varying concentrations of

2.5° The non-linear curve-fitting was based on the equation:

AS = (AducK1[G] + AducaK Ko [GT) / (1 + K\[G] + K1 KA[GT)

Where Ao is the chemical shift change of H; on WP10 at [G], Adyg is the
chemical shift change of H; when WP10 is completely complexed by the first
paraquat unit, Adygs 1s the chemical shift change of H; when WP10 is completely
complexed by the second paraquat unit. [H] is the fixed initial concentration of WP10.

[G] is the concentration of paraquat derivative 2.
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Figure S7. '"H NMR spectra (400 MHz, D,0, 25 °C, 1.00 mM) of WP10 with different
concentrations of 2: (a) 0.00 mM; (b) 0.300 mM; (¢) 0.500 mM; (d) 0.800 mM; (e) 1.10 mM;
() 1.40 mM; (g) 1.60 mM; (h) 1.90 mM; (i) 2.10 mM; (§) 2.40 mM; (k) 2.80 mM; (1) 3.20
mM; (m) 3.60 mM; (n) 4.00 mM; (o) 4.40 mM.
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Figure S8. The chemical shift changes of H; on WP10 upon addition of G. The red solid line

was obtained from the non-linear curve-fitting using the above equation.
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7. UV-vis spectroscopy studies of the interactions between WPI10 and polymer 1
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Figure 9. UV-vis spectra in water: (a) WP10 (2.00 x 10~* M); (b) polymer 1 (2.00 x 10™* M);
(c) polymer 1 (2.00 x 10~* M) in the presence of WP10 (1.00 x 10™* M).
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8. Critical aggregation concentration (CAC) determination of WP1021 ;

The critical aggregation concentration (CAC) of WP10o1, was measured by the
fluorescent probe method, using pyrene as a probe molecule.>* Pyrene in acetone (1 x
10" mM) was added to WP10>1, aqueous solutions with different concentrations
and the solutions were sonicated for 10 min before fluorescent emission
measurements. The results showed that the CAC of WP10>1 was 0.12 mg/mL. The
CAC value was chosen as the concentration when pyrene exhibited an apparent
decrease in the /;/I; ratio with an increasing concentration of WP10>1,, indicating

that the aggregation of WP101; occurred.
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Figure S10. Determination of CAC for the amphiphilic [3]pseduorataxtane WP10>1, by

using the fluorescent method with pyrene as a probe.
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9. TEM image of polymer 1 in water at 37 °C

Figure S11. TEM image of polymer 1 in water at 37 °C.

S12



10. Controlled release experiments
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Figure S12. Controlled release of calcein from the polymeric vesicles as drug nanocapsules

upon dual-thermo stimuli. Heating rate is 10 °C / h; Cooling rate is 10 °C/ h.
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Figure S13. Controlled release of doxorubicin (DOX) from the polymeric vesicles as drug

nanocapsules upon dual-thermo stimuli. Heating rate is 10 °C / h; Cooling rate is 10 °C / h.
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