A Dual-Thermo-Responsive Gemini-Type Supra-Amphiphilic Macromolecular [3]Pseudorotaxane Based on Pillar[10]arene/Paraquat Cooperative Complexation

Xiaodong Chi, Guocan Yu, Li Shao, Jianzhuang Chen, and Feihe Huang*

State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. Email: <u>fhuang@zju.edu.cn</u>

Supporting Information

1.	Materials and methods	<i>S2</i>
2.	Synthesis of polymer 1	<i>S3</i>
3.	LCST behavior of polymer 1	<i>S5</i>
4.	Electrospray ionization mass spectrometry of WP10 and 2 equiv. 2	<i>S6</i>
5.	NOESY NMR analysis of $WP10 \supset 2_2$	<i>S</i> 7
6.	Stoichiomestry and association constant determination for the complexation	
	between WP10 and 2	<i>S8</i>
7.	UV-vis spectroscopy studies of the interactions between WP10 and polymer 1	<i>S10</i>
8.	<i>Critical aggregation concentration (CAC) determination of</i> $WP10 \supset I_2$	<i>S11</i>
9.	TEM image of polymer 1 in water at 37 °C	<i>S12</i>
10.	Controlled release experiments	<i>S13</i>

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compounds $WP10^{S1}$ and 2^{S2} were prepared according to published procedures. NMR spectra were recorded with a Bruker Avance DMX 600 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. Molecular weights and molecular weight distributions were determined by gel permeation chromatography (GPC) with a Waters 1515 pump and Waters 1515 differential refractive index detector (set at 30 °C). It used a series of three linear Styragel columns (HT2, HT4, and HT5) at an oven temperature of 45 °C. The eluent was THF at a flow rate of 1.0 mL/min. A series of low polydispersity polystyrene standards was employed for the GPC calibration. Transmission electron microscopy (TEM) investigations were carried out on a HITACHI HT-7700 instrument. Dynamic light scattering (DLS) measurements were carried out using a 200-mW polarized laser source Nd: YAG ($\lambda = 532$ nm). The polarized scattered light was collected at 90° in a self-beating mode with a Hamamatsu R942/02 photomultiplier. The signals were sent to a Malvern 4700 submicrometer particle analyzer system. UV-vis spectroscopy was performed on a Shimadzu UV-2550 instrument at room temperature. The fluorescence experiments were carried out on a Shimadzu RF-5301 spectrofluorophotometer.

2. Synthesis of Polymer 1

Scheme S1. Synthesis of polymer 1

Figure S1. ¹H NMR spectrum (400 MHz, D₂O, 298 K) of **3**.

Figure S2. GPC trace of 3.

Figure S3. ¹H NMR spectrum (400 MHz, D₂O, 298 K) of **1**.

Figure S4. Temperature dependence of light transmittance of 1 (2.00 mg/mL) in aqueous solution.

4. Electrospray ionization mass spectrometry of WP10 and 2 equiv. 2

Figure S5. Electrospray ionization mass spectrum of **WP10** and 2 equiv. 2.

5. NOESY NMR analysis of $WP10 \supset 2_2$

Figure S6. Partial NOESY NMR spectrum of **WP10** \supset **2**₂ (3.00 mM) in D₂O with a mixing time of 800 ms (500 MHz, 298 K).

6. Stoichiometry and association constant determination for the complexation between **WP10** and **2**

To determine the stoichiometry and association constant for the complexation between **WP10** and **2**, ¹H NMR titration experiments were done with solutions which had a constant concentration of **WP10** (1.00×10^{-3} M) and varying concentrations of **2**.^{S3} The non-linear curve-fitting was based on the equation:

$$\Delta \delta = (\Delta \delta_{\text{HG}} K_1[G] + \Delta \delta_{\text{HG}} K_1 K_2[G]^2) / (1 + K_1[G] + K_1 K_2[G]^2)$$

Where $\Delta\delta$ is the chemical shift change of H₁ on **WP10** at [G], $\Delta\delta_{HG}$ is the chemical shift change of H₁ when **WP10** is completely complexed by the first paraquat unit, $\Delta\delta_{HG2}$ is the chemical shift change of H₁ when **WP10** is completely complexed by the second paraquat unit. [H] is the fixed initial concentration of **WP10**. [G] is the concentration of paraquat derivative **2**.

Figure S7. ¹H NMR spectra (400 MHz, D₂O, 25 °C, 1.00 mM) of **WP10** with different concentrations of **2**: (a) 0.00 mM; (b) 0.300 mM; (c) 0.500 mM; (d) 0.800 mM; (e) 1.10 mM; (f) 1.40 mM; (g) 1.60 mM; (h) 1.90 mM; (i) 2.10 mM; (j) 2.40 mM; (k) 2.80 mM; (l) 3.20 mM; (m) 3.60 mM; (n) 4.00 mM; (o) 4.40 mM.

Figure S8. The chemical shift changes of H_1 on **WP10** upon addition of **G**. The red solid line was obtained from the non-linear curve-fitting using the above equation.

7. UV-vis spectroscopy studies of the interactions between **WP10** and polymer **1**

Figure S9. UV-vis spectra in water: (a) **WP10** $(2.00 \times 10^{-4} \text{ M})$; (b) polymer **1** $(2.00 \times 10^{-4} \text{ M})$; (c) polymer **1** $(2.00 \times 10^{-4} \text{ M})$ in the presence of **WP10** $(1.00 \times 10^{-4} \text{ M})$.

8. Critical aggregation concentration (CAC) determination of $WP10 \supset I_2$

The critical aggregation concentration (CAC) of **WP10** \supset **1**₂ was measured by the fluorescent probe method, using pyrene as a probe molecule.^{S4} Pyrene in acetone (1 × 10⁻⁴ mM) was added to **WP10** \supset **1**₂ aqueous solutions with different concentrations and the solutions were sonicated for 10 min before fluorescent emission measurements. The results showed that the CAC of **WP10** \supset **1** was 0.12 mg/mL. The CAC value was chosen as the concentration when pyrene exhibited an apparent decrease in the I_1/I_3 ratio with an increasing concentration of **WP10** \supset **1**₂, indicating that the aggregation of **WP10** \supset **1**₂ occurred.

Figure S10. Determination of CAC for the amphiphilic [3]pseduorataxtane **WP10** \supset **1**₂ by using the fluorescent method with pyrene as a probe.

9. TEM image of polymer 1 in water at 37 $^{\circ}C$

Figure S11. TEM image of polymer **1** in water at 37 °C.

Figure S12. Controlled release of calcein from the polymeric vesicles as drug nanocapsules upon dual-thermo stimuli. Heating rate is $10 \degree C / h$; Cooling rate is $10 \degree C / h$.

Figure S13. Controlled release of doxorubicin (DOX) from the polymeric vesicles as drug nanocapsules upon dual-thermo stimuli. Heating rate is $10 \text{ }^{\circ}\text{C} / \text{h}$; Cooling rate is $10 \text{ }^{\circ}\text{C} / \text{h}$.

References:

- S1. Chi, X.; Xue, M. Chem. Commun. 2014, 50, 13754–13756.
- Nelissen, H. F. M.; Kercher, M.; De Cola, L.; Feiters, M. C.; Nolte, R. J. M. Chem. -Eur. J. 2002, 8, 5407–5414.
- S3. (a) Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305–1323. (b) Hu, X.-B.; Chen, Z.;
 Chen, L.; Zhang, L.; Hou, J.-L.; Li, Z.-T. Chem. Commun. 2012, 48, 10999–11001.
- S4. (a) Wang, K.; Guo, D.-S; Wang, X; Liu, Y. ACS Nano 2011, 5, 2880–2894. (b) Li, Z.;
 Yang, J.; Yu, G.; He, J.; Abliz, Z.; Huang, F. Org. Lett. 2014, 16, 2066–2069.