Supporting Information

Design, Synthesis and Study of Main Chain Poly(N-Heterocyclic Carbene) Complexes: Applications in Electrochromic Devices

Adam B. Powell, Christopher W. Bielawski and Alan H. Cowley*

Department of Chemistry and Biochemistry and Center for Nano and Molecular Science and Technology The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165

Cyclic Voltammogram of Kuhn Thione	S2
Continuous Cyclic Voltammograms of 1	S3
Continuous Cyclic Voltammograms of 2	S4
Survey and High Resolution XPS data for poly(3) – poly(8)	S5
Overlays of UV-vis profiles $3 - 8$ and poly $(3) - poly(8)$	S19
Overlays of UV-vis profiles of poly(4) – poly(8) at different potentials	S22
X-ray Crystallography of poly(3), poly(5), and poly(6)	S25

Figure S1. Cyclic Voltammogram of a 1.0 mM solution of the Kuhn thione in CH₂Cl₂.

Figure S2.(a) Overlay of continuous cyclic voltammograms of diimine **1** over time. Inset: plot of oxidation current vs. number of cycles. Concentration of **1** was 1.0 mM in 0.1 M $TBAPF_6/CH_2Cl_2$.

Figure S3. Cyclic voltammogram of bithiophene–substituted imidazolium chloride 2. Concentration of 2 was 1.0 mM in 0.1 M TBAPF₆/CH₂Cl₂.

Figure S4. Survey XPS of bithiophene-substituted silver NHC yellow film poly(3).

Theoretical S:Ag Ratio = 4.00:1 Experimental S:Ag Ratio = 3.70:1

Figure S5. High-resolution XPS of bithiophene-substituted silver NHC yellow film poly(**3**). (a) Ratio of sulfur 2p to silver 3d. (b) Ratio of sulfur 2p to nitrogen 1s.

Figure S6. Survey XPS of bithiophene-substituted silver NHC white film poly(3).

Figure S7. High-resolution XPS of bithiophene-substituted silver NHC white film poly(3). Ratio of chlorine 2p to silver 3d.

Figure S8. Survey XPS of bithiophene-substituted gold NHC thin film poly(4).

Theoretical N: Au ratio = 2.00: 1 Experimental N: Au ratio = 2.08: 1

Figure S9. High-resolution XPS of bithiophene-substituted gold NHC thin film poly(4). (a) Ratio of sulfur 2p to gold 4f. (b) Ratio of nitrogen 1s to gold 4f.

Figure S10. Survey XPS of bithiophene-substituted silver NHC thin film poly(5).

Theoretical S:Ag Ratio = 4.00:1 Experimental S:Ag Ratio = 4.22:1

Figure S11. High-resolution XPS of bithiophene-substituted silver NHC thin film poly(5). (a) Ratio of sulfur 2p to silver 3d. (b) Ratio of sulfur 2p to nitrogen 1s.

Figure S12. Survey XPS of bithiophene-substituted thione thin film poly(6).

Figure S13. High-resolution XPS of bithiophene-substituted thione thin film poly(6). Ratio of sulfur 2p to nitrogen 1s.

Figure S14. Survey XPS of bithiophene-substituted iridium NHC thin film poly(7).

Figure S15. High-resolution XPS of bithiophene-substituted iridium NHC thin film poly(7). (a) Ratio of sulfur 2p to iridium 4f. (b) Ratio of nitrogen 1s to iridium 4f.

Figure S16. Survey XPS of bithiophene-substituted iridium NHC thin film poly(8).

Figure S17. High-resolution XPS of bithiophene-substituted iridium NHC thin film poly(8). (a) Ratio of sulfur 2p to iridium 4f. (b) Ratio of nitrogen 1s to iridium 4f.

Figure S18. UV-vis profiles for compounds (a) **3** and poly(**3**). (b) **4** and poly(**4**). The concentration for both monomers was 2×10^{-6} M in CH₂Cl₂ and the absorbance maxima were adjusted to the same absorbance of their corresponding thin film.

Figure S19. UV-vis profiles for compounds (a) **5** and poly(**5**). (b) **6** and poly(**6**). The concentration for both monomers was 2×10^{-6} M in CH₂Cl₂ and the absorbance maxima were adjusted to the same absorbance of their corresponding thin film.

Figure S20. UV-vis profiles for compounds 7 and poly(7). (b) 8 and poly(8). The concentration for both monomers was $2 \ge 10^{-6}$ M in CH₂Cl₂ and the absorbance maxima were adjusted to the same absorbance of their corresponding thin film.

Figure S21. UV-vis overlay at different potentials of (a) Bithiophene-substituted gold NHC thin film poly(4). (b) Bithiophene-substituted silver NHC thin film poly(5). The spectra were acquired by depositing the thin film on an ITO slide, then assembling a three-electrode cell (0.1 M TBAPF₆/CH₂Cl₂) with the ITO slide as the working electrode and varying the potential from 0.0 to 1.5 V.

Figure S22. UV-vis overlay at different potentials of (a) Bithiophene-substituted thione poly(6). (b) Bithiophene-substituted iridium NHC thin film poly(7). The spectra were acquired by depositing the thin film on an ITO slide, then assembling a three-electrode cell (0.1 M TBAPF₆/CH₂Cl₂) with the ITO slide as the working electrode and varying the potential from 0.0 to 1.5 V.

Figure S23. UV-vis overlay at different potentials of bithiophene-substituted iridium NHC thin film poly(8). The spectra were acquired by depositing the thin film on an ITO slide, then assembling a three-electrode cell (0.1 M TBAPF₆/CH₂Cl₂) with the ITO slide as the working electrode and varying the potential from 0.0 to 1.5 V.

Empirical formula	C39 H36 Ag Cl N2 S4		
Formula weight	804.26		
Temperature	153(2) K		
Wavelength	0.71069 Å		
Crystal system	Monoclinic		
Space group	I2/a		
Unit cell dimensions	$a = 32.472(2) \text{ Å} = 90^{\circ}.$		
	$b = 6.2695(7) \text{ Å} = 95.889(2)^{\circ}.$		
	$c = 36.429(2) \text{ Å} = 90^{\circ}.$		
Volume	7377.2(10) Å ³		
Z	8		
Density (calculated)	1.448 Mg/m ³		
Absorption coefficient	0.876 mm ⁻¹		
F(000)	3296		
Crystal size	0.32 x 0.16 x 0.04 mm		
Theta range for data collection	1.8 to 27.5°.		
Index ranges	-37<=h<=42, -8<=k<=6, -47<=l<=47		
Reflections collected	23951		
Independent reflections	8425 [R(int) = 0.0734]		
Completeness to theta = 27.49°	99.5 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.966 and 0.806		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8425 / 282 / 426		
Goodness-of-fit on F ²	1.226		
Final R indices [I>2sigma(I)]	R1 = 0.0593, WR2 = 0.1258		
R indices (all data)	R1 = 0.1067, wR2 = 0.1431		
Largest diff. peak and hole	1.362 and -1.060 e.Å ⁻³		

Table S1. Crystal data and structure refinement of **3**.

Bond Lengths (Å)	
Ag(1)-C(1)	2.087(3)
Ag(1)-Cl(1)	2.3470(10)
N(1)-C(2)	1.402(5)
N(1)-C(1)	1.351(5)
N(2)-C(3)	1.390(5)
N(2)-C(1)	1.357(5)
C(2)-C(3)	1.334(6)
Bond angles (°)	
C(1)-Ag(1)-Cl(1)	175.26(10)
N(1)-C(1)-Ag(1)	128.7(3)
N(2)-C(1)-Ag(1)	126.9(3)
C(1)-N(1)-C(2)	111.0(3)
C(2)-N(2)-C(3)	111.3(3)
N(1)-C(1)-N(2)	104.3(3)
C(3)-C(2)-N(1)	106.6(3)
C(2)-C(3)-N(2)	106.9(3)

Table S2. Selected bond lengths (Å) and angles (°) of **3**.

Figure S24. POV-Ray diagram drawn at 50% probability of bithiophene-substituted silver NHC **3**. Hydrogen atoms have been omitted for clarity.

Empirical formula	C45 H47 Ag N2 O3 S4		
Formula weight	899.96		
Temperature	233(2) K		
Wavelength	0.71069 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	$a = 11.495(3) \text{ Å} = 103.717(5)^{\circ}.$		
	$b = 13.381(3) \text{ Å} = 92.327(6)^{\circ}.$		
	$c = 14.703(4) \text{ Å} = 101.007^{\circ}.$		
Volume	2147.9(9) Å ³		
Ζ	2		
Density (calculated)	1.392 Mg/m ³		
Absorption coefficient	0.705 mm ⁻¹		
F(000)	932		
Crystal size	0.24 x 0.13 x 0.09 mm		
Theta range for data collection	3.02 to 25.00°.		
Index ranges	-16<=h<=16, -31<=k<=31, -11<=l<=11		
Reflections collected	13683		
Independent reflections	7422 [R(int) = 0.0412]		
Completeness to theta = 25.00°	98.1 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.940 and 0.600		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7422 / 0 / 454		
Goodness-of-fit on F ²	1.160		
Final R indices [I>2sigma(I)]	R1 = 0.0756, WR2 = 0.0983		
R indices (all data)	R1 = 0.1838, wR2 = 0.1986		
Largest diff. peak and hole	1.182 and -0.568 e.Å ⁻³		

Table S3. Crystal data and structure refinement of **5**.

Bond Lengths (Å)		
Ag(1)-C(1)	2.085(6)	
Ag(1)-O1(1)	2.196(5)	
N(1)-C(2)	1.413(8)	
N(1)-C(1)	1.366(7)	
N(2)-C(3)	1.404(7)	
N(2)-C(1)	1.350(8)	
C(2)-C(3)	1.381(9)	
Bond angles (°)		
C(1)-Ag(1)-O(1)	170.8(2)	
N(1)-C(1)-Ag(1)	125.6(5)	
N(2)-C(1)-Ag(1)	129.8(4)	
C(1)-N(1)-C(2)	111.4(5)	
C(1)-N(2)-C(3)	112.3(5)	
N(1)-C(1)-N(2)	104.6(5)	
C(3)-C(2)-N(1)	105.8(5)	
C(2)-C(3)-N(2)	105.9(5)	

Table S4. Selected bond lengths (Å) and angles (°) of **5**.

Figure S25. POV-Ray diagram drawn at 50% probability of bithiophene-substituted silver NHC 5. One THF molecule was removed using SQUEEZE and hydrogen atoms have been omitted for clarity.

Empirical formula	C39 H36 N2 S5		
Formula weight	693.00		
Temperature	233(2) K		
Wavelength	0.71069 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	$a = 14.114(3) \text{ Å} = 90^{\circ}.$		
	$b = 26.755(6) \text{ Å} = 107.286(6)^{\circ}.$		
	$c = 10.005(2) \text{ Å} = 90^{\circ}.$		
Volume	3607.4(13) Å ³		
Z	4		
Density (calculated)	1.276 Mg/m ³		
Absorption coefficient	0.352 mm ⁻¹		
F(000)	1456		
Crystal size	0.46 x 0.06 x 0.02 mm		
Theta range for data collection	3.02 to 25.00°.		
Index ranges	-16<=h<=16, -31<=k<=31, -11<=l<=11		
Reflections collected	27560		
Independent reflections	6338 [R(int) = 0.1108]		
Completeness to theta = 25.00°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.990 and 0.531		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6338 / 492 / 487		
Goodness-of-fit on F ²	1.098		
Final R indices [I>2sigma(I)]	R1 = 0.0678, wR2 = 0.1364		
R indices (all data)	R1 = 0.1361, wR2 = 0.1622		
Largest diff. peak and hole	0.340 and -0.362 e.Å ⁻³		

Table S5. Crystal data and structure refinement of **6**.

Bond Lengths (Å)	
S(1)-C(1)	1.665(4)
N(1)-C(3)	1.405(5)
N(1)-C(1)	1.374(5)
N(2)-C(2)	1.411(5)
N(2)-C(1)	1.379(5)
C(2)-C(3)	1.376(5)
Bond angles (°)	
N(1)-C(1)-(S)1	128.7(3)
N(2)-C(1)-(S)1	126.7(3)
N(1)-C(1)-N(2)	104.6(3)
C(1)-N(2)-C(2)	111.1(3)
C(1)-N(1)-C(3)	111.2(3)
C(3)-C(2)-N(2)	106.2(3)
C(2)-C(3)-N(1)	106.9(3)

Table S6. Selected bond lengths (Å) and angles (°) of 6.

Figure S26. POV-Ray diagram drawn at 50% probability of bithiophene-substituted thione 6. Hydrogen atoms have been omitted for clarity.