data_1929 _audit_creation_method 'SHELXL-97 & ZCIF' _chemical_name_systematic ; Iron Telluride ; _chemical_name_common 'Iron Telluride' _chemical_formula_moiety 'Fe1.12 Te' _chemical_formula_sum 'Fe1.12 Te' _chemical_formula_weight 190.15 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'Fe' 'Fe' 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Te' 'Te' -0.5308 1.6751 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M P4/nmm loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y+1/2, z' '-y+1/2, x, z' 'y, -x+1/2, z' '-x, y+1/2, -z' 'x+1/2, -y, -z' 'y+1/2, x+1/2, -z' '-y, -x, -z' '-x, -y, -z' 'x-1/2, y-1/2, -z' 'y-1/2, -x, -z' '-y, x-1/2, -z' 'x, -y-1/2, z' '-x-1/2, y, z' '-y-1/2, -x-1/2, z' 'y, x, z' _cell_length_a 3.81970(10) _cell_length_b 3.81970(10) _cell_length_c 6.2587(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 91.315(4) _cell_formula_units_Z 2 _cell_measurement_temperature 250(2) _cell_measurement_reflns_used 4067 _cell_measurement_theta_min 3.2 _cell_measurement_theta_max 52.5 _exptl_crystal_description plate _exptl_crystal_colour black _exptl_crystal_size_max 0.24 _exptl_crystal_size_mid 0.12 _exptl_crystal_size_min 0.008 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 6.916 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 162 _exptl_absorpt_coefficient_mu 24.243 _exptl_absorpt_correction_type integration _exptl_absorpt_correction_T_min 0.040 _exptl_absorpt_correction_T_max 0.824 _exptl_absorpt_process_details 'XPREP (Sheldrick, 1997)' _diffrn_ambient_temperature 250(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'three-circle diffractometer' _diffrn_measurement_method '\w and \f scans' _diffrn_detector_area_resol_mean 11.198 _diffrn_standards_decay_% 0 _diffrn_reflns_number 1835 _diffrn_reflns_av_R_equivalents 0.0329 _diffrn_reflns_av_sigmaI/netI 0.0066 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 6.26 _diffrn_reflns_theta_max 30.91 _reflns_number_total 108 _reflns_number_gt 108 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Apex2 (Bruker, 2005)' _computing_cell_refinement Apex2 _computing_data_reduction Apex2 _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'XSHEL (Bruker, 2004)' _computing_publication_material SHELXL-97 _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.01P)^2^+0.335P], P=(max(Fo^2^,0)+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 108 _refine_ls_number_parameters 10 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0092 _refine_ls_R_factor_gt 0.0092 _refine_ls_wR_factor_ref 0.0217 _refine_ls_wR_factor_gt 0.0217 _refine_ls_goodness_of_fit_ref 1.001 _refine_ls_restrained_S_all 1.001 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Te1 Te 0.2500 0.2500 0.21691(5) 0.01054(10) Uani 1 8 d S . . Fe1 Fe -0.2500 0.2500 0.5000 0.00934(15) Uani 1 8 d S . . Fe2 Fe 0.2500 0.2500 0.7810(10) 0.0098(18) Uani 0.119(4) 8 d SP . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Te1 0.00987(12) 0.00987(12) 0.01187(15) 0.000 0.000 0.000 Fe1 0.0088(2) 0.0088(2) 0.0103(3) 0.000 0.000 0.000 Fe2 0.009(2) 0.009(2) 0.012(3) 0.000 0.000 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Te1 Fe1 2.6051(2) 9_566 ? Te1 Fe1 2.6051(2) 1_655 ? Te1 Fe1 2.6051(2) 9_556 ? Te1 Fe1 2.6051(2) . ? Te1 Fe2 2.7010 9_666 ? Te1 Fe2 2.7010 9_556 ? Te1 Fe2 2.7010 9_566 ? Te1 Fe2 2.7010 9_656 ? Te1 Fe2 2.728(6) 1_554 ? Fe1 Fe2 2.596(4) . ? Fe1 Fe2 2.596(4) 1_455 ? Fe1 Fe2 2.596(4) 9_556 ? Fe1 Fe2 2.596(4) 9_566 ? Fe1 Te1 2.6051(2) 9_566 ? Fe1 Te1 2.6051(2) 9_556 ? Fe1 Te1 2.6051(2) 1_455 ? Fe1 Fe1 2.7009 9_456 ? Fe1 Fe1 2.7009 9_566 ? Fe1 Fe1 2.7009 9_466 ? Fe1 Fe1 2.7009 9_556 ? Fe2 Fe1 2.596(4) 9_556 ? Fe2 Fe1 2.596(4) 9_566 ? Fe2 Fe1 2.596(4) 1_655 ? Fe2 Te1 2.7010 9_556 ? Fe2 Te1 2.7010 9_666 ? Fe2 Te1 2.7010 9_566 ? Fe2 Te1 2.7010 9_656 ? Fe2 Te1 2.728(6) 1_556 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Fe1 Te1 Fe1 62.448(6) 9_566 1_655 ? Fe1 Te1 Fe1 94.296(11) 9_566 9_556 ? Fe1 Te1 Fe1 62.448(6) 1_655 9_556 ? Fe1 Te1 Fe1 62.448(6) 9_566 . ? Fe1 Te1 Fe1 94.296(11) 1_655 . ? Fe1 Te1 Fe1 62.448(6) 9_556 . ? Fe1 Te1 Fe2 58.56(10) 9_566 9_666 ? Fe1 Te1 Fe2 58.56(10) 1_655 9_666 ? Fe1 Te1 Fe2 121.01(11) 9_556 9_666 ? Fe1 Te1 Fe2 121.01(10) . 9_666 ? Fe1 Te1 Fe2 121.01(11) 9_566 9_556 ? Fe1 Te1 Fe2 121.01(10) 1_655 9_556 ? Fe1 Te1 Fe2 58.56(10) 9_556 9_556 ? Fe1 Te1 Fe2 58.56(10) . 9_556 ? Fe2 Te1 Fe2 179.5(3) 9_666 9_556 ? Fe1 Te1 Fe2 58.56(10) 9_566 9_566 ? Fe1 Te1 Fe2 121.01(11) 1_655 9_566 ? Fe1 Te1 Fe2 121.01(10) 9_556 9_566 ? Fe1 Te1 Fe2 58.56(10) . 9_566 ? Fe2 Te1 Fe2 89.999(1) 9_666 9_566 ? Fe2 Te1 Fe2 89.999(1) 9_556 9_566 ? Fe1 Te1 Fe2 121.01(11) 9_566 9_656 ? Fe1 Te1 Fe2 58.56(10) 1_655 9_656 ? Fe1 Te1 Fe2 58.56(10) 9_556 9_656 ? Fe1 Te1 Fe2 121.01(11) . 9_656 ? Fe2 Te1 Fe2 89.999(2) 9_666 9_656 ? Fe2 Te1 Fe2 89.999(1) 9_556 9_656 ? Fe2 Te1 Fe2 179.5(3) 9_566 9_656 ? Fe1 Te1 Fe2 132.852(5) 9_566 1_554 ? Fe1 Te1 Fe2 132.852(5) 1_655 1_554 ? Fe1 Te1 Fe2 132.852(5) 9_556 1_554 ? Fe1 Te1 Fe2 132.852(5) . 1_554 ? Fe2 Te1 Fe2 90.27(13) 9_666 1_554 ? Fe2 Te1 Fe2 90.27(13) 9_556 1_554 ? Fe2 Te1 Fe2 90.27(13) 9_566 1_554 ? Fe2 Te1 Fe2 90.27(13) 9_656 1_554 ? Te1 Fe1 Te1 94.296(11) 9_566 9_556 ? Te1 Fe1 Te1 117.552(6) 9_566 1_455 ? Te1 Fe1 Te1 117.552(6) 9_556 1_455 ? Te1 Fe1 Te1 117.552(6) 9_566 . ? Te1 Fe1 Te1 117.552(6) 9_556 . ? Te1 Fe1 Te1 94.296(11) 1_455 . ? Te1 Fe2 Te1 179.5(3) 9_556 9_666 ? Te1 Fe2 Te1 89.999(1) 9_556 9_566 ? Te1 Fe2 Te1 89.999(1) 9_666 9_566 ? Te1 Fe2 Te1 89.999(1) 9_556 9_656 ? Te1 Fe2 Te1 89.999(1) 9_666 9_656 ? Te1 Fe2 Te1 179.5(3) 9_566 9_656 ? Te1 Fe2 Te1 89.73(13) 9_556 1_556 ? Te1 Fe2 Te1 89.73(13) 9_666 1_556 ? Te1 Fe2 Te1 89.73(13) 9_566 1_556 ? Te1 Fe2 Te1 89.73(13) 9_656 1_556 ? _diffrn_measured_fraction_theta_max 0.991 _diffrn_reflns_theta_full 30.91 _diffrn_measured_fraction_theta_full 0.991 _refine_diff_density_max 0.627 _refine_diff_density_min -0.749 _refine_diff_density_rms 0.126 _diffrn_orient_matrix_type standard _diffrn_orient_matrix_UB_11 -0.0005193 _diffrn_orient_matrix_UB_12 0.0090668 _diffrn_orient_matrix_UB_13 0.1596700 _diffrn_orient_matrix_UB_21 0.2288070 _diffrn_orient_matrix_UB_22 0.1270514 _diffrn_orient_matrix_UB_23 -0.0023291 _diffrn_orient_matrix_UB_31 -0.1271871 _diffrn_orient_matrix_UB_32 0.2287609 _diffrn_orient_matrix_UB_33 -0.0050027 _symmetry_space_group_name_Hall '-P 4a 2a' _exptl_crystal_id 'NIST/PingYen Fe1.17Te at 250K' _diffrn_measurement_frame_width-CCD -0.5 _diffrn_measurement_details 370,370,370,720,370,370,370,370,720 _diffrn_measurement_total_frames-CCD 4030 _diffrn_measurement_frame_time-CCD 20 _diffrn_measurement_total_time-CCD 29.1 _diffrn_source_voltage 50.00 _diffrn_source_current 30.00 _diffrn_detector_distance-CCD 5.0000 _diffrn_measurement_frame_size-CCD 512 _diffrn_measurement_specimen_support 'MiTeGen loop' _diffrn_detector 'CCD area detector' _diffrn_detector_type 'Bruker Smart Apex II' #_______________________________________________________________________________ # _publ_section_references ; Bruker (2005). Apex2. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473. Sheldrick, G. M. (1996). SADABS. University of G\"ottingen, Germany. Sheldrick, G. M. (1997). SHELXL-97. University of G\"ottingen, Germany. Spek, A. L. (1990). Acta Cryst., A46, C-34. ;