SUPPORTING INFORMATION

Group 4 Salalen Complexes and Their Application of the Ring Opening Polymerization of rac-Lactide

Emma L. Whitelaw, Matthew D. Jones* and Mary F. Mahon

Polymerization procedure

For solvent-free polymerizations the monomer: initiator ratio employed was 300:1 at a temperature of $130{ }^{\circ} \mathrm{C}$, in all cases 2 g of rac-lactide was used. After the reaction time methanol (20 ml) was added to quench the reaction and the resulting solid was dissolved in dichloromethane. The solvents were removed in-vacuo and the resulting solid washed with methanol ($3 \times 50 \mathrm{ml}$) to remove any unreacted monomer. For solution polymerizations a monomer:initiator ratio of 100:1 was used. In all cases 0.72 g of lactide and the appropriate amount of initiator were dissolved in toluene (10 $\mathrm{ml})$ these were placed in a pre-heated oil bath and heated for the desired amount of time. The reaction was quenched by the addition of methanol (20 ml). ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CDCl}_{3}\right)$ and GPC (THF) were used to determine tacticity and molecular weights (M_{n} and M_{w}) of the polymers produced; P_{r} (the probability of heterotactic linkages) were determined by analysis of the methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectra. The equations used to calculate P_{r} are given by Coates $e t$ al. In the case where $P_{r} \neq 0.5$ the tacticity was also confirmed by ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectroscopy by analysis of the methine region. Gel Permeation Chromatography (GPC) analyses were performed on a Polymer Laboratories PL-GPC 50 integrated system using a PLgel $5 \mu \mathrm{~m}$ MIXED-D $300 \times 7.5 \mathrm{~mm}$ column at $35^{\circ} \mathrm{C}$, THF solvent (flow rate $1.0 \mathrm{ml} / \mathrm{min}$). The polydispersity index (PDI) was determined from M_{w} / M_{n} where M_{n} is the number average molecular weight and M_{w} the weight average molecular weight. The polymers were referenced to 11 narrow molecular weight polystyrene standards with a range of $M_{w} 615-568,000 \mathrm{Da}$.

Kinetic procedure

A 0.6 ml solution of rac -lactide in d_{8}-toluene was prepared with an initial concentration of $0.578 \mathrm{~mol} \mathrm{dm}^{-3}$ based on 0.05 g of rac-lactide with a monomer to initiator ratio of $100: 1$ using $\mathrm{Ti}(\mathbf{1} / \mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}, \mathrm{Zr}(\mathbf{1} / \mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ or $\mathrm{Hf}(\mathbf{1 / 2 / 3})\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}$ as the initiator. The ${ }^{1} \mathrm{H}$ NMR spectra of the sample was obtained at $80{ }^{\circ} \mathrm{C}$ over a period of 13 hours at 15 or 30 minute intervals. The relative concentrations of the monomer and polymer were determined from analysis of the ${ }^{1} \mathrm{H}$ NMR spectra and a plot of $\ln \left\{[\mathrm{LA}]_{o} /[\mathrm{LA}]_{t}\right\}$ vs time was plotted. For the room temperature kinetics the solvent used was CDCl_{3} and the spectra were recorded every hour.
$\mathrm{Hf}(\mathbf{3})\left(\mathrm{O}^{\mathrm{i} P r}\right)_{2}$ in d_{8}-toluene at $80^{\circ} \mathrm{C}($ rac-LA $)$ - by the time the sample was shimmed and at temperature 60% conversion was seen.

$\mathrm{Hf}(\mathbf{3})\left(\mathrm{O}^{\mathrm{i} P r}\right)_{2}$ in CDCl_{3} at $20^{\circ} \mathrm{C}(\mathrm{L}-\mathrm{LA})$

$\mathrm{Ti}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}, \mathrm{Zr}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}_{2}\right.$ and $\mathrm{Hf}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ in d_{8}-toluene at $80^{\circ} \mathrm{C}(\mathrm{rac}$-LA)

Selected NMR data for the polymers:

Fig $1{ }^{1} \mathrm{H}$ homonuclear decoupled NMR of the methine region of the polymer formed with $\mathrm{Hf}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ using toluene as a solvent for 24 hours at $80^{\circ} \mathrm{C}$.

Fig $2{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of the methine region of the polymer formed with $\mathrm{Hf}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}$ using toluene as a solvent for 24 hours at $80^{\circ} \mathrm{C}$ which favours the formation of isotactic sequences. Further information about the assignment of the tetrads in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR can be found in Chisholm et al Macromolecules, 1999, 32, 963 or Thakur et al Macromolecules, 1997, 30, 2422.

Fig $3{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of the methine region of the polymer formed with $\mathrm{Hf}(\mathbf{3})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a solvent for 6 hours at room temperature which favours the formation of isotactic sequences.

Fig $4{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of the methine region of the polymer formed with $\mathrm{Ti}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ using toluene as a solvent for 2 hours at $80^{\circ} \mathrm{C}$ which favours the formation of atactic sequences.

Fig $5{ }^{1} \mathrm{H}$ homonuclear decoupled NMR of the methine region of the polymer formed with $\mathrm{Zr}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ polymerization in toluene at $80^{\circ} \mathrm{C}$ for 24 hours showing slightly heterotactic bias with $P_{r}=0.56$.

Fig. 6: ${ }^{1} \mathrm{H}$ homonuclear decoupled NMR of $\mathrm{Ti}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}$ polymerization in toluene at $80^{\circ} \mathrm{C}$ for 2 hours showing atactic PLA with $P_{r}=0.51$

Fig. 7: ${ }^{1} \mathrm{H}$ homonuclear decoupled NMR of $\mathrm{Hf}(\mathbf{3})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ polymerization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 6 hours showing isotactic PLA with $P_{r}=0.25$

Selected GPC data:

It is possible to correct the GPC values for PLA by the Mark-Houwink equation $\left[M_{n}(\right.$ obsd $\left.)=0.58 \times M_{n}(\mathrm{GPC})\right]$ (I. Barakat, P. Dubois, R. Jerome, P. Teyssie, J. Polym. Sci. Part A, 1993, 31, 505.) However, in these examples the GPC M_{n} 's are relative to polystyrene standards.

Fig 8: $\mathrm{Zr}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}}{ }^{\mathrm{Pr}}\right)_{2}$ solution polymerization 24 hours, $M_{n}=10,500$.

Fig 9: $\mathrm{Hf}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ solution polymerization 24 hours, $M_{n}=14,300$.

MALDI-TOF MS DATA

Fig 10: MALDI-TOF MS of PLA formed with $\mathrm{Zr}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}$ after 2 hrs .

Full synthetic Procedures and Protocols:

For all crystallographically characterized complexes the ellipsoids are shown at the 50% probability level and all H -atoms have been removed for clarity.

Ligands

$\mathbf{1 H}_{2}$: A solution of 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($3.23 \mathrm{~g}, 0.01 \mathrm{~mol}$) and N -methyl-ethylenediamine ($1.02 \mathrm{~g}, 1.2 \mathrm{ml}, 0.01 \mathrm{~mol}$) in methanol (20 ml) was prepared. The solution was stirred until a clear solution was observed, and left to stand for 24 hours to yield a yellow oil which was collected and dried ($2.68 \mathrm{~g}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.92(2 \mathrm{H}, \mathrm{t} \mathrm{J}$ $\left.=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.09(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{d} \mathrm{J}$ $=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{3} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 29.8,31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.4$, $35.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 36.6\left(\mathrm{CH}_{3}\right), 52.2,59.8\left(\mathrm{CH}_{2}\right), 118.1$, (Ar-C), 126.3, $127.3(\mathrm{Ar}-\mathrm{CH})$, 137.0, 140.5 (Ar-C), 158.3 (Ar-O), $167.5(\mathrm{CH})$.

The oil ($1 \mathrm{~g}, 3.44 \mathrm{mmol}$) was dissolved in THF $\left(20 \mathrm{~cm}^{3}\right)$, to which a solution of 3,5-di-tert-2-hydroxybenzyl bromide ($1.03 \mathrm{~g}, 3.44 \mathrm{mmol}$) in THF $\left(20 \mathrm{~cm}^{3}\right)$ was added. Triethylamine ($0.35 \mathrm{~g}, 0.48 \mathrm{ml}, 3.44 \mathrm{mmol}$) was added and the mixture stirred at $80^{\circ} \mathrm{C}$ for three hours. The white precipitate was filtered and the solvent removed under reduced pressure. The product was isolated via flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to obtain the product $(1.33 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.85\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.78\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.84(1 \mathrm{H}$, d J = 2.5 Hz, Ar-H), $7.09(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, ~ A r-H), 7.22(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.40(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 29.4,29.4$, 31.5, $31.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.1,35.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 41.9\left(\mathrm{CH}_{3}\right), 57.1,57.3,62.2\left(\mathrm{CH}_{2}\right), 117.8 \text {, }}^{\text {, }}\right.$ 120.9, (Ar-C), 122.9, 123.2, 125.9, 127.0 (Ar-CH), 135.6, 136.6, 140.1, 140.4 (Ar-C), 154.3, 158.0 (Ar-O), $167.3(\mathrm{CH}) . \mathrm{m} / \mathrm{z}$ calc. $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2}=509.4107$, found 509.4145
$\mathbf{2} \mathrm{H}_{2}$: A solution of 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($3.23 \mathrm{~g}, 0.01 \mathrm{~mol}$) and N -phenyl-ethylenediamine ($1.91 \mathrm{~g}, 1.83 \mathrm{ml}, 0.01 \mathrm{~mol}$) in methanol (20 ml) was prepared. The solution was stirred until a clear solution was observed, and left to stand for 24 hours to yield a yellow powder which was collected and dried ($7.34 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.52(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.81\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.66(2 \mathrm{H}, \mathrm{d} \mathrm{J}=8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{t} \mathrm{J}=7.5$ $\mathrm{Hz}, \operatorname{Ar}-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.19(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{d} \mathrm{J}$ $=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 29.7$, $31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.4$, $35.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 44.5,58.7\left(\mathrm{CH}_{2}\right), 113.5,118.0,126.3,127.5,129.6(\mathrm{Ar}-\mathrm{CH}), 137.0$, 140.5, 147.9 (Ar-C), 158.3 (Ar-O), 168.0 (CH).

The yellow powder ($1 \mathrm{~g}, 2.84 \mathrm{mmol}$) was dissolved in THF $\left(20 \mathrm{~cm}^{3}\right)$, to which a solution of 3,5-di-tert-2-hydroxybenzyl bromide ($0.85 \mathrm{~g}, 2.84 \mathrm{mmol}$) in THF (20 cm^{3}) was added. Triethylamine ($0.29 \mathrm{~g}, 0.4 \mathrm{ml}, 2.84 \mathrm{mmol}$) was added and the mixture stirred at $80^{\circ} \mathrm{C}$ for three hours. The white precipitate was filtered and the solvent removed under reduced pressure. The product was isolated via flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to obtain the product $(0.958 \mathrm{~g}, 59 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $1.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.36(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.42\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.58\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.32(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 6.87(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}$, Ar-H), $6.93-6.99(1 \mathrm{H}$, m, Ar-H), 7.09 - 7.16 (3H, m, Ar-H), 7.21 - 7.27 (2H, m, Ar-H), 7.29 ($1 \mathrm{H}, \mathrm{d}$ J = 2.5
$\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 8.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 29.8,30.0,31.8,32.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 34.4, 34.5, 35.2, $35.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 52.8,56.9,57.9\left(\mathrm{CH}_{2}\right), 118.1$ (Ar-C), 121.0, (Ar-CH), 121.5 (Ar-C), 123.4, 123.7, 124.3, 126.2, 127.4, 129.7 (Ar-CH), 136.2, 137.0, 140.5, 141.7, 149.2 (Ar-C), 154.0, 158.3 (Ar-O), $167.9(\mathrm{CH}) . \mathrm{m} / \mathrm{z}$ calc. $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{2}=$ 571.4264, found 571.4270
$3 \mathrm{H}_{2}$ A solution of 2-hydroxy-3-methylbenzaldehyde ($0.75 \mathrm{~g}, 0.66 \mathrm{ml}, 5.51 \mathrm{mmol}$) and N-methyl-ethylenediamine ($0.41 \mathrm{~g}, 0.48 \mathrm{ml}, 5.51 \mathrm{~mol}$) in methanol (10 ml) was prepared. The solution was stirred until a clear solution was observed, and left to stand for 24 hours to yield a yellow oil which was collected and dried ($0.83 \mathrm{~g}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.83\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.64\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.72(1 \mathrm{H}, \mathrm{t} \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{d} \mathrm{J}=7.5 \mathrm{~Hz}$, Ar-H), $7.11(1 \mathrm{H}, \mathrm{d} \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 15.6$, $36.4\left(\mathrm{CH}_{3}\right)$, 51.9, $59.4\left(\mathrm{CH}_{2}\right), 117.9$ (Ar-C), 118.2 (Ar-CH), 125.9 (Ar-C), 129.1, 133.3 (Ar-CH), 159.4 (Ar-O), $166.2(\mathrm{CH}) . \mathrm{m} / \mathrm{z}$ calc. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}=193.1341$, found 193.1352

The yellow oil $(0.79 \mathrm{~g}, 4.08 \mathrm{mmol})$ was dissolved in THF $\left(30 \mathrm{~cm}^{3}\right)$, to which a solution of 3,5-di-tert-2-hydroxybenzyl bromide ($1.22 \mathrm{~g}, 4.08 \mathrm{mmol}$) in THF ($30 \mathrm{~cm}^{3}$) was added. Triethylamine $(0.41 \mathrm{~g}, 0.57 \mathrm{ml}, 4.08 \mathrm{mmol})$ was added and the mixture stirred at $80^{\circ} \mathrm{C}$ for three hours. The white precipitate was filtered and the solvent removed under reduced pressure. The product was isolated via flash chromatography $\left(\mathrm{CHCl}_{3}\right)$ to obtain the product $(0.21 \mathrm{~g}, 13 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.86(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6.5 \mathrm{~Hz}$, CH_{2}), $3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{t} \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $6.85(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d} \mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d} \mathrm{J}=7.5 \mathrm{~Hz}$, Ar-H), $7.24(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 15.8$
 57.3, 57.8, $62.6\left(\mathrm{CH}_{2}\right), 118.3$ (Ar-C), 118.5 (Ar-CH), 121.3 ($\mathrm{Ar}-\mathrm{C}$), 123.3, 123.6 (ArCH), 126.2 (Ar-C), 129.4, 133.7 (Ar-CH), 136.0, 140.8 (Ar-C), 154.6, 159.6 (Ar-O), $166.8(\mathrm{CH}) . \mathrm{m} / \mathrm{z}$ calc. $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}=411.3012$, found 411.2993

Complexes

$\left\{\mathrm{Ti}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$1 \mathrm{H}_{2}(0.6513 \mathrm{~g}, 1.28 \mathrm{mmol})$ was dissolved in toluene $\left(20 \mathrm{~cm}^{3}\right)$ to which $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}(0.4$ $\mathrm{ml}, 1.28 \mathrm{mmol})$ was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 5 days at $20^{\circ} \mathrm{C}$ a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 0.91\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $0.97\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), 1.27 $\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $2.08-2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.26-3.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.38(1 \mathrm{H}$, sept $\mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide $), 4.46-4.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.24(1 \mathrm{H}$, sept $\mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $6.88(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.14(1 \mathrm{H}$, d J $=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.92(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CDCl}_{3}\right)$ 26.3, 26.4, 26.6, $26.9\left(\mathrm{CH}_{3}\right.$ isopropoxide), 29.9, 30.1, 31.8, $32.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 34.4, 35.0, 35.4, $35.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 52.3\left(\mathrm{CH}_{3}\right), 58.6,58.9,66.6\left(\mathrm{CH}_{2}\right), 75.1,77.1\left(\mathrm{CH} /{ }^{2}\right)}\right.$ isopropoxide), 122.3 (Ar-C), 123.5 (Ar-CH), 123.6 (Ar-C), 123.9 (Ar-CH), 127.9, 129.3 (Ar-CH), 136.5, 137.2, 137.9, 139.3 (Ar-C), 161.2, 161.6 (Ar-O), 163.0 (CH). Anal: Calc for $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Ti}$ C, 69.62, H 9.59, N 4.16. Found C 68.6, H 9.79, N 4.09.

$\left\{\mathrm{Ti}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$\mathbf{2 H} \mathbf{H}_{2}(0.2191 \mathrm{~g}, 0.38 \mathrm{mmol})$ was dissolved in toluene $\left(10 \mathrm{~cm}^{3}\right)$ to which $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}(0.1$ $\mathrm{ml}, 1.28 \mathrm{mmol})$ was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 5 days at $20^{\circ} \mathrm{C}$ a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 0.30-0.71\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.26(6 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$ isopropoxide), $1.28\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.52(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.43\left(2 \mathrm{H}, \mathrm{t} \mathrm{J}=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.66\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2}\right), 3.88(1 \mathrm{H}$, sept $\mathrm{J}=6 \mathrm{~Hz}$, CH isopropoxide), $4.51\left(1 \mathrm{H}\right.$, sept $\mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $5.13\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right)$, $6.83(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}$, Ar-H), $6.98(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.17-7.22$ (2H, m, ArH), $7.40(2 \mathrm{H}, \mathrm{t} \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.92(2 \mathrm{H}, \mathrm{d} \mathrm{J}=8 \mathrm{~Hz}$, Ar-H), $7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) 26.9\left(\mathrm{CH}_{3}\right.$ isopropoxide $), 30.0,31.8,32.2$
 122.1 (Ar-C), 123.5, 123.9, 124.3, 125.2, 127.6, 128.8, 129.3 (Ar-CH), 136.6, 137.4, 138.1, 139.5 (Ar-C) 154.4 (C-N), 160.9, 161.8 (Ar-O), 162.8 (CH). Anal: Calc for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Ti}$ C, 71.91, H 9.05, N 3.81. Found C 71.5, H 8.92, N 3.66.

$\left\{\mathrm{Zr}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$\mathrm{Zr}\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}{ }^{\mathrm{i}} \operatorname{PrOH}(0.5 \mathrm{~g}, 1.28 \mathrm{mmol})$ was dissolved in toluene $\left(20 \mathrm{~cm}^{3}\right)$ to which $1 \mathrm{H}_{2}$ $(0.6513 \mathrm{~g}, 1.28 \mathrm{mmol})$) was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 4 days at $-20^{\circ} \mathrm{C}$ a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 0.87\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.04\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22-1.23\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ isopropoxide), 1.26 $\left(18 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.51\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.65-2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.92\right.$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.31\left(2 \mathrm{H}, \mathrm{d} \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.30-3.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.56-3.65$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.14(1 \mathrm{H}$, sept $\mathrm{J}=6.0 \mathrm{~Hz}$, CH isopropoxide), $4.41(1 \mathrm{H}$, sept $\mathrm{J}=6.0 \mathrm{~Hz}$, CH isopropoxide), $4.47\left(1 \mathrm{H}, \mathrm{d} \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.85(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.92$ $(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.92(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right)$ 27.4, $27.7\left(\mathrm{CH}_{3}\right.$ isopropoxide), 29.7, 30.0, 31.8, $32.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.3,35.1\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 49.8\left(\mathrm{CH}_{3}\right), 57.7,58.2,66.0\left(\mathrm{CH}_{2}\right), 70.2,70.9}\right.$ (CH isopropoxide), 122.2, 123.1 (Ar-C), 124.1, 124.2, 128.4, 129.5 (Ar-CH), 136.9, 137.6, 138.6, 138.9 (Ar-C), 159.9, 160.0 (Ar-O), 165.7 (CH). Anal: Calc for $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Zr}$ C, 64.41, H 9.01, N 3.91. Found C 63.4, H 8.73, N 3.76.

$\left\{\mathrm{Zr}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$\mathrm{Zr}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}: \mathrm{Zr}\left(\mathrm{O}^{\mathrm{i}} \operatorname{Pr}\right)_{2}{ }^{\mathrm{i}} \operatorname{PrOH}(0.5 \mathrm{~g}, 1.5 \mathrm{mmol})$ was dissolved in toluene $\left(20 \mathrm{~cm}^{3}\right)$ to which $\left.2 \mathrm{H}_{2}(0.731 \mathrm{~g}, 1.28 \mathrm{mmol})\right)$ was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 4 days at $-20^{\circ} \mathrm{C}$ a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 0.43\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $0.51\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25-1.30\left(18 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30-1.35(6 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{3}$ isopropoxide), $1.53\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.26(1 \mathrm{H}$, sept $\mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $3.38\left(1 \mathrm{H}, \mathrm{t} \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.64(1 \mathrm{H}, \mathrm{d} \mathrm{J}=13 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.79\left(1 \mathrm{H}, \mathrm{t} \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.60(1 \mathrm{H}$, sept $\mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide $), 5.09$ $\left(1 \mathrm{H}, \mathrm{d} \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar}-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.19-7.24(2 \mathrm{H}, \mathrm{m}$, Ar-H), $7.40-7.49$ ($3 \mathrm{H}, \mathrm{m}$, Ar-H), 7.72 ($2 \mathrm{H}, \mathrm{d} \mathrm{J}=8 \mathrm{~Hz}, \operatorname{Ar-H}$), 7.97 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) 26.3,27.3\left(\mathrm{CH}_{3}\right.$ isopropoxide $)$, 29.3, 29.6, 31.5, $31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 33.9, 34.0, 34.8, $35.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 52.2,58.2, ~}^{68.6\left(\mathrm{CH}_{2}\right), 69.6,70.8(\mathrm{CH} \text { isopropoxide }) \text {, }}\right.$ 121.5 (Ar-C), 122.0 (Ar-CH), 123.1 (Ar-C), 123.9, 124.0, 125.2, 127.8, 128.9, 129.2 (Ar-CH), 136.7, 137.6, 138.4, 138.6, 152.3 (Ar-C), 159.4, 159.8 (Ar-O), 165.2 (CH). Anal: Calc for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Zr}$ C, 67.90, H 8.55, N 3.60. Found C 67.1, H 8.57, N 3.56.

$\left\{\mathrm{Hf}(\mathbf{1})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$\mathrm{Hf}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}\left(\mathrm{OH}^{\mathrm{i}} \mathrm{Pr}\right)(0.608 \mathrm{~g}, 1.28 \mathrm{mmol})$ was dissolved in toluene $\left(20 \mathrm{~cm}^{3}\right)$ to which $\left.1 \mathrm{H}_{2}(0.5 \mathrm{~g}, 1.28 \mathrm{mmol})\right)$ was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 4 days at $-20^{\circ} \mathrm{C}$ a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.04\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.21-1.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ isopropoxide), 1.26 $1.29\left(18 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.74-2.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.88-2.94$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.36\left(2 \mathrm{H}, \mathrm{d} \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.64(1 \mathrm{H}$, sept $\mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $4.20(1 \mathrm{H}$, sept $\mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide $), 4.48-4.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $6.88(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}$, Ar-H), $7.50(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) 27.6,27.7$, 27.9, $28.0\left(\mathrm{CH}_{3}\right.$ isopropoxide), 29.7, 30.0, 31.8, $32.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2,34.3,35.0,35.6$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 57.9,58.2,66.0\left(\mathrm{CH}_{2}\right), 69.9,70.6(\mathrm{CH}$ isopropoxide), 122.4, 123.0 (Ar-C), 124.0, 124.3, 128.4, 129.8 (Ar-CH), 137.4, 137.6, 139.0, 139.2 (Ar-C), 160.2, 160.4 (Ar-O), 166.1 (CH). Anal: Calc for $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Hf} \mathrm{C}, 58.30, \mathrm{H} 8.03, \mathrm{~N}$ 3.49. Found C 57.9, H 8.03, N 3.41.

$\left\{\mathrm{Hf}(\mathbf{2})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$\mathrm{Hf}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}\left(\mathrm{OH}^{\mathrm{i}}{ }^{\mathrm{Pr}}\right)(0.233 \mathrm{~g}, 0.491 \mathrm{mmol})$ was dissolved in toluene $\left(10 \mathrm{~cm}^{3}\right)$ to which $\left.\mathbf{2} \mathrm{H}_{2}(0.28 \mathrm{~g}, 0.491 \mathrm{mmol})\right)$ was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 7 days at $-20^{\circ} \mathrm{C}$, a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 0.40\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $0.51\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27\left(18 \mathrm{H}, \mathrm{d} \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32(6 \mathrm{H}$, dd $\mathrm{J}=5.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, \mathrm{CH}_{3}$ isopropoxide), $1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.33(1 \mathrm{H}$, sept $\mathrm{J}=6.0$ Hz, CH isopropoxide $), 3.38-3.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.48-3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.64(1 \mathrm{H}$, d J = $\left.13 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.78-3.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.68(1 \mathrm{H}$, sept $\mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $5.13\left(1 \mathrm{H}, \mathrm{d} \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.82(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.94(1 \mathrm{H}$, d J = 2.5 Hz, Ar-H), $7.23(2 \mathrm{H}, \mathrm{t} \mathrm{J}=8.0 \mathrm{~Hz}$, Ar-H), $7.44(2 \mathrm{H}, \mathrm{t} \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.49$ $(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.76(2 \mathrm{H}, \mathrm{d} \mathrm{J}=8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CDCl}_{3}\right) 26.9,27.8\left(\mathrm{CH}_{3}\right.$ isopropoxide $)$, 29.7, 30.0, 31.8, $32.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 34.3,34.4 \text {, }}\right.$ 35.1, $35.6\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 49.9,58.4,69.2\left(\mathrm{CH}_{2}\right), 69.7,70.9(\mathrm{CH}$ isopropoxide $)$, 122.1 (Ar-C), 122.4 (Ar-CH), 123.3 (Ar-C), 124.1, 124.4, 125.7, 128.2, 129.2, 129.8 (ArCH), 137.5, 137.9, 139.0, 139.3, 152.6 (Ar-C), 159.9, 160.5 (Ar-O), 166.0 (CH). Anal: Calc for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Hf}$ C, 61.06, H 7.69, N 3.24. Found C 60.9, H 7.67, N 3.15.

$\left\{\mathrm{Hf}(\mathbf{3})\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right\}$
$\mathrm{Hf}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{2}{ }^{\mathrm{i}} \mathrm{PrOH}(0.61 \mathrm{~g}, 1.28 \mathrm{mmol})$ was dissolved in toluene $\left(20 \mathrm{~cm}^{3}\right)$ to which $3 \mathrm{H}_{2}$ $(0.519 \mathrm{~g}, 1.28 \mathrm{mmol})$ was added. This was stirred for 2 hours, after which time the solvent was removed in-vacuo and the product was recrystallized in hexane. After 4 days at $-20^{\circ} \mathrm{C}$ a crop of crystals were obtained which were filtered and dried.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 0.91\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $0.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.04\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ isopropoxide), $1.24\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.76(2 \mathrm{H}$, sept $\mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $2.89-2.94(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.00-3.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.23(1 \mathrm{H}$, sept J $=4.5 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide), $3.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.36-3.41$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.65-3.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.20(1 \mathrm{H}$, sept $\mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}$ isopropoxide $)$, $4.42-4.57\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.38-6.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{t} \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 6.85 (2H, dd J = 8.0, 2.5 Hz, Ar-H), 6.87 (1H, s, CH), 6.99 ($1 \mathrm{H}, \mathrm{dd}$ J = 7.5, 1.5 Hz , Ar-H), 7.09 ($1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5 \mathrm{~Hz}$, Ar-H), 7.13 - 7.16 ($1 \mathrm{H}, \mathrm{m}, \operatorname{Ar-H}$), 7.18 ($1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.5$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.30-7.34$ (1H, m, Ar-H), 7.92 (1H, s, CH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right)$ 16.6, $16.7\left(\mathrm{CH}_{3}\right), 27.4,27.5,27.7,27.9\left(\mathrm{CH}_{3}\right.$ isopropoxide $)$, 29.5, 29.6, $32.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2,34.3,34.7,34.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 49.9,50.6\left(\mathrm{CH}_{3}\right), 57.6,57.8$, $58.0,58.1,66.0,66.1\left(\mathrm{CH}_{2}\right), 69.9,70.1,70.4,70.6(\mathrm{CH}$ isopropoxide $), 116.5,117.0$ (Ar-CH), 122.0, 122.2, 122.8, 123.5 (Ar-C), 123.8, 124.0, 124.3 (Ar-CH), 128.1, 129.6 (Ar-C), 131.7, 132.2, 132.3, 134.6, 135.5 (Ar-CH), 136.9, 137.1, 137.3, 137.7 (Ar-C), 159.9, 160.3, 160.9, 161.9 (Ar-O), 164.8, $165.1(\mathrm{CH})$. Anal: Calc for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Hf}$ C, $54.50, \mathrm{H} 7.15, \mathrm{~N} 3.97$. Found C 54.0, H 7.01, N 3.81

