Supplementary Information

Electrowetting properties of micro/nanostructured black silicon

M. Barberoglou^{1,2}, V. Zorba³, A. Pagkozidis^{1,4}, C. Fotakis^{1,2} and E. Stratakis^{1,4*}

Video 1S: EWOD on a superhydrophobic black Si surface.

Video 2S: Impact of a 10µl water droplet on a superhydrophobic black Si surface. The impact speed is 3.10 m/s and the droplet bounces off the surface numerous times.

Video 3S: Impact of a $10\mu l$ water droplet on a hydrophobic black Si surface. The impact speed is 3.10 m/s and droplet remains stuck on the surface.

_

¹Institute of Electronic Structure and Laser, Foundation for Research & Technology—Hellas, (IESL-FORTH), P.O. Box 1527, Heraklion 711 10, Greece.

² Physics Department, University of Crete, Heraklion 714 09, Greece.

³Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

⁴ Materials Science and Technology Department, University of Crete, Heraklion 710 03, Greece.

^{*} Author to whom correspondence should be addressed; e-mail: stratak@iesl.forth.gr