Supporting Information to Accompany:

Synthesis of Substituted Chromanones: An Organocatalytic Aldol/oxa-Michael Reaction

Jeffrey D. Butler, Wayne E. Conrad, Michael W. Lodewyk, James C. Fettinger, Dean J. Tantillo, and Mark J. Kurth*
Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616
*mjkurth@ucdavis.edu.
Table of Contents

I. General Methods and Materials S-2
II. Preparation of 2-(2-methylcyclohex-1-enyl)phenyl methanesulfonates S-2
III. Preparation of 1-methoxy-2-(2-methylcyclohex-1-enyl)benzene S-3
IV. Preparation of 2-(2-methylcyclohex-1-enyl)phenols S-4
V. Preparation of 1-(2-hydroxyphenyl)heptane-1,6-diones S-5
VI. Preparation of (2-hydroxyphenyl)(2,5-dimethylcyclopent-1-enyl)methanone S-6
VII. Preparation of various substituted 1,2,3,3a-tetrahydro-3a-methylcyclopenta[b]chromen-9(9aH)-ones S-7
VIII. Preparation of methyl substituted 2,3,4,4a,9,9a-hexahydro-3,9,9-trimethyl-1H-fluorene S-10
IX. Details of quantum calculations and coordinates S-11-19
X. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S-20-45

I. General Methods, Materials, and Abbreviations

General Procedures. All chemicals were purchased from commercial suppliers and used without further purification. Analytical thin layer chromatography was carried out on pre-coated plates (silica gel $60 \mathrm{~F}_{254}, 250 \mu \mathrm{~m}$ thickness) and visualized with UV light. Flash chromatography was performed using 60 Á, 32-63 $\mu \mathrm{m}$ silica gel (Scientific Adsorbents). Concentration in vacuo refers to rotary evaporation under reduced pressure. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz , 400 MHz , or 600 MHz at ambient temperature with Acetone- $d_{6}, \mathrm{DMSO}-d_{6}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}$, or $\mathrm{CD}_{3} \mathrm{OD}$ as solvents. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $75 \mathrm{MHz}, 100 \mathrm{MHz}$, or 150 MHz at ambient temperature with Acetone- d_{6}, DMSO- d_{6}, CDCl $_{3}$, $\mathrm{CD}_{3} \mathrm{CN}$, or $\mathrm{CD}_{3} \mathrm{OD}$ as solvents. Chemical shifts are reported in parts per million (ppm) relative to the residual solvent peak. Infrared spectra were recorded on an ATI-FTIR spectrometer. The specifications of the LC/MS are as follows: electrospray (+) ionization, mass range 150-1500 Da, 20 V cone voltage, and Xterra® MS C_{18} column ($2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$ $\times 3.5 \mu \mathrm{~m}$). Preparative HPLC specifications are as follows: $15 \mathrm{~mL} / \mathrm{min}$ flow rate, Xterra Prep MS C 18 OBD column (19 mm x 100 mm) and dual wavelength absorbance detector.

II. Preparation of 2-(2-methylcyclohex-1-enyl)phenyl methanesulfonates

2-(2-methylcyclohex-1-enyl)phenyl methanesulfonate (7a). To a solution of 2-bromophenol (3.0 mL , $27.6 \mathrm{mmol})$ in diethyl ether (100 mL) cooled to $0^{\circ} \mathrm{C}$ was added n-butyllithium (2.5 M in hexanes, 22 mL). After stirring for 3 h , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and 2-methylcyclohexanone ($3.7 \mathrm{~mL}, 30.4 \mathrm{mmol}$) was added. The reaction was slowly warmed to $23{ }^{\circ} \mathrm{C}$ over 12 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and concentrated hydrochloric acid (12 mL) was added. After stirring for 1 hour, water (10 mL) was added. The layers were separated and the organic layer washed with water, 1 N aqueous sodium hydroxide, saturated aqueous ammonium chloride, brine, dried over sodium sulfate, filtered, and concentrated in vacuo yielding the mixture of $\mathbf{1 a}: 1 \mathrm{ib}$ isomers, a clear oil ($4.6 \mathrm{~g}, 88 \%$).

To mesyl protect, the mixture of isomers ($\mathbf{1 a / b}, 4.6 \mathrm{~g}, 24.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(7.1 \mathrm{~mL}, 51.4 \mathrm{mmol})$ were dissolved in DCM (50 mL) and cooled to $0^{\circ} \mathrm{C}$. Mesyl chloride ($3.8 \mathrm{~mL}, 49.0 \mathrm{mmol}$) was slowly added over 5 min. Upon complete addition, the ice bath was removed and stirred at $20^{\circ} \mathrm{C}$ for 2 h under TLC control. After the phenolic starting material was consumed, water (15 mL) was added. The layers were separated and the aqueous layer extracted with additional DCM. The combined organics were washed with brine, dried over sodium sulfate and concentrated in vacuo. The residue was purified by a plug flash chromatography (10-15\% ethyl acetate in hexanes) yielding the inseparable mixture of $7 \mathbf{7 a : 7 b}$, a clear oil ($6.4 \mathrm{~g}, 98 \%$). Crude ${ }^{1} \mathrm{H}$-NMR spectra before and after isomerization with diagnostic peak assignment of 7a and 7b can be found at the end of NMR Section (X).

To isomerize this mixture, $7 \mathrm{a} / \mathrm{b}(3.75 \mathrm{~g}, 14.2 \mathrm{mmol})$ was dissolved in DCE (30 mL). $\mathrm{PdCl}_{2}(250 \mathrm{mg}, 1.42 \mathrm{mmol})$ and $\mathrm{FeCl}_{3}(230 \mathrm{mg}, 1.42 \mathrm{mmol})$ were added and the mixture warmed to $60^{\circ} \mathrm{C}$. While the isomerization was complete in most cases within 8 h , the mixture was often stirred overnight (12-18 h). The mixture was concentrated in vacuo and purified by flash chromatography (12% ethyl acetate in hexanes) yielding only 7 a , a clear oil ($3.48 \mathrm{~g}, 92 \%$). IR (neat) $v_{\max }$ 2928, 1482, 1442, 1360, 1189, 1153, 1097, 966, 864, 765, $709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.31$ (m, 1H),
7.26-7.24 (m, 2H), 7.17-7.15 (m, 1H), $3.04(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.03(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.14-2.08(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 146.9,137.4,132.3,131.4,128.1,128.1,127.4,123.0,38.4,31.6,31.1,23.5,23.2$, 21.1; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}$: 267.1, found: 267.1. Purity was determined to be 89% by HPLC trace.

2-(2,3-dimethylcyclohex-1-enyl)phenyl methanesulfonate (8a). Following the procedure for the preparation of isomerically pure $\mathbf{7 a}$ the target was synthesized yielding only $8 \mathbf{a}$, a clear oil ($3.2 \mathrm{~g}, 81 \%$). IR (neat) $v_{\max } 2932,1484,1445,1354,1184,1152,968,868,766,707 \mathrm{~cm}^{-1}$; at $25{ }^{\circ} \mathrm{C} 8 \mathrm{a}$ exists as a mixture of rotational isomers. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.05(\mathrm{~m}, 4 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 3 \mathrm{H})$, 1.75-1.66 (m, 2H), 1.60-1.55 (m, 1H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.9,136.3$, $131.9,128.3,128.1,127.9,127.2,122.8,38.5,34.6,31.7,29.8,28.5,20.2,19.0$; ESI MS calc'd. for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}$: 281.1, found: 281.1. Purity was determined to be 91% by HPLC trace.

2-(2,4-dimethylcyclohex-1-enyl)phenyl methanesulfonate (9a). Following the procedure for the preparation of isomerically pure 7a the target was synthesized yielding only 9 a , a clear oil ($3.4 \mathrm{~g}, 85 \%$). IR (neat) $v_{\max } 2918,1484,1442,1357,1188,1152,1098,967,857,766 \mathrm{~cm}^{-1}$; at $25{ }^{\circ} \mathrm{C} 9$ a exists as a mixture of rotational isomers. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.16(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.06(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 2.50-2.14(\mathrm{~m}, 3 \mathrm{H})$, 1.84-1.72 (br m, 3H), $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{br} \mathrm{s}, 3 H) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1,137.3,131.7$, 131.3, 128.0, 127.2, 122.8, 122.8, 40.3, 38.4, 31.7, 31.2, 29.2, 21.8, 20.9; ESI MS calc'd. for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 281.1$, found: 281.1. Purity was determined to be 96% by HPLC trace.

2-(2,5-dimethylcyclohex-1-enyl)phenyl methanesulfonate (10a). Following the procedure for the preparation of isomerically pure 7a the target was synthesized yielding only 10a, a clear oil (3.5 g , $89 \%)$. IR (neat) $v_{\max } 2918,1698,1483,1442,1356,1188,1152,1096,967,868,820,785,766 \mathrm{~cm}^{-1}$; at $25{ }^{\circ} \mathrm{C}$ appears as a mixture of rotational isomers. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.15 (m, 1H), $3.03(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 146.8,137.1,131.7,131.2,127.9,127.6,127.2,127.8,39.5,38.2,31.6,31.4,29.3,21.7,20.7$; ESI MS calc'd. for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}^{+}\right.$: 281.1 , found: 281.1. Purity was determined to be 93% by HPLC trace.

III. Preparation of 1-methoxy-2-(2-methylcyclohex-1-enyl)benzene

1-methoxy-2-(2-methylcyclohex-1-enyl)benzene (6a). Following the general synthesis of 7a omitting the mesyl protection, the target was synthesized yielding a clear oil ($2.5 \mathrm{~g}, 86 \%$). IR (neat) $v_{\max } 2927$, 1673, 1597, 1578, 1488, 1434, 1291, 1241, 1027, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (ddd, $J=$ $8.0,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (dd, $J=7.5,1,7 \mathrm{~Hz} 1 \mathrm{H}$), 6.96-6.91 (m, 2H), $3.22(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{brd}, J=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,133.3,130.6,129.7,129.5$, 127.5, 120.5, 111.2, 55.7, 31.4, 30.8, 23.5, 23.4, 20.8; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}+\mathrm{H}\right]^{+}: 203.1$, found: 203.1. Purity was determined to be 95% by HPLC trace.

IV. Preparation of 2-(2-methylcyclohex-1-enyl)phenols

2-(2-methylcyclohex-1-enyl)phenol (1a). $\mathbf{7 a}(3.0 \mathrm{~g}, 11.3 \mathrm{mmol})$ was dissolved in 50 mL of 1:1 dioxane and MeOH .3 N aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$ was added, and the solution was warmed to $50{ }^{\circ} \mathrm{C}$ for 12 h . The solution was concentrated in vacuo and dissolved in ethyl acetate. The organic layer was washed with aqueous citric acid, water, brine, dried over sodium sulfate, and concentrated in vacuo. The resulting residue was purified by flash chromatography (6% ethyl acetate in hexanes) yielding a clear oil ($2.1 \mathrm{~g}, 99 \%$). IR (neat) $v_{\max } 3504,2927$, 1578, 1485, 1445, 1281, 1201, 1034, $749 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.96-6.90 (m, 2H), $5.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29-2.07(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 1.79-1.71(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 152.0, 134.4, 129.8, 128.9, 128.5, 127.0, 120.6, 114.8, 31.7, 31.5, 23.6, 23.3, 20.7; ESI MS calc'd. for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}+\mathrm{H}\right]^{+}$: 189.1, found: 189.1. Purity was determined to be 92% by HPLC trace.

2-(2,3-dimethylcyclohex-1-enyl)phenol (2a). Following the general synthesis of 1a the target was synthesized yielding a clear oil ($2.2 \mathrm{~g}, 95 \%$). IR (neat) $v_{\max } 3507,2926,1578,1484,1451,1339,1174$, 1033, $828,750 \mathrm{~cm}^{-1}$; at $25{ }^{\circ} \mathrm{C}$ 2a exists as a mixture of rotational isomers. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.15 (ddd, $J=8.4,7.8,1.5 \mathrm{~Hz} 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.16(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.28-2.07$ $(\mathrm{m}, 3 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.16-1.12(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.7$, $138.8,130.0,129.1,128.3,127.1120 .5,114.6,34.5,32.1,31.4,20.6,19.6,18.5$; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}+\mathrm{H}\right]^{+}$: 203.1, found: 203.1. Purity was determined to be 87% by HPLC trace.

2-(2,4-dimethylcyclohex-1-enyl)phenol (3a). Following the general synthesis of $\mathbf{1 a}$ the target was synthesized yielding a clear oil ($2.2 \mathrm{~g}, 98 \%$). IR (neat) $v_{\max } 3505,2913,1578,1484,1452,1223,1172$, $819,750 \mathrm{~cm}^{-1}$; at $25^{\circ} \mathrm{C} 3$ a exists as a mixture of rotational isomers. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.36-5.20(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.42-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~s}$, $3 \mathrm{H}), 1.47-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,133.9,129.2,128.8,128.4$, 126.6, 120.6, 114.8, 40.2, 32.1, 31.6, 29.3, 22.1, 20.6; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}+\mathrm{H}\right]^{+}$: 203.1, found: 203.1. Purity was determined to be 89% by HPLC trace.

2-(2,5-dimethylcyclohex-1-enyl)phenol (4a). Following the general synthesis of $\mathbf{1 a}$ the target was synthesized yielding a clear oil ($2.2 \mathrm{~g}, 96 \%$). IR (neat) $v_{\max } 3506,2909,1578,1484,1452,1282,1200$, 1034, $841,749 \mathrm{~cm}^{-1}$; at $25^{\circ} \mathrm{C} 4 \mathrm{a}$ exists as a mixture of rotational isomers. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.19-7.16, (m, 1H), 7.06-7.00 (m, 1H), 6.96-6.91 (m, 2H), 5.31-5.18 (br m, 1H), 2.31-2.13 (m, 3H), 1.95-1.82 (m, 3H), 1.55 (s, 3H), 1.42-1.31 (m, 1H), $1.03(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,133.8,129.6,128.8,128.2,126.4$, 120.4, 114.6, 40.1, 31.5, 31.2, 29.4, 21.7, 20.7; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}+\mathrm{H}\right]^{+}$: 203.1, found: 203.1. Purity was determined to be 91% by HPLC trace.

V. Preparation of 1-(2-hydroxyphenyl)heptane-1,6-diones

1-(2-hydroxyphenyl)heptane-1,6-dione (11). 1a (1.0 g, 5.3 mmol$)$ dissolved in DCM (30 mL) was added to a gas apparatus equipped with glass gas inlet and outlet tubes. The vessel was cooled to $-78{ }^{\circ} \mathrm{C}$, and bubbled with excess O_{3} until the solution was noticeable blue. The system was purged by bubbling dry N_{2} for $1-2 \mathrm{~min}$ and dimethyl sulfide ($0.5 \mathrm{~mL}, 6.9 \mathrm{mmol}$) added. The mixture was stirred for 8 h while warming to $20^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo and the residue purified by flash chromatography (15\% ethyl acetate in hexanes) yielding an amorphous white solid (1.0 g, 89\%). IR (neat) $v_{\max } 2939,1707,1636,1615,1490$, $1444,1361,1279,1156,980,762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 1.75-1.63 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) б 208.0, 206.5, 162.7, 136.6, 130.1, 119.5, 119.2, 118.8, 43.6, 38.2, 30.2, 23.9, 23.5; ESI MS calc'd. for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 221.1, found: 221.1. Purity was determined to be 99% by HPLC trace.

1-(2-hydroxyphenyl)-3-methylheptane-1,6-dione (12). Following the general synthesis of 11 the target was synthesized yielding a clear oil ($1.0 \mathrm{~g}, 81 \%$). IR (neat) $v_{\max } 2945,1708,1636$, 1613, 1580, 1487, 1446, 1354, 1279, 1243, 1155, 978, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) δ $12.33(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}$, $J=15.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.37(\mathrm{~m}$, $1 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.8,206.4,162.7,136.5,130.3,119.7,119.1,118.7$, 45.5, 41.4, 30.8, 30.1, 29.5, 19.9; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 235.1$, found: 235.1. Purity was determined to be 97% by HPLC trace.

1-(2-hydroxyphenyl)-4-methylheptane-1,6-dione (13). Following the general synthesis of 11 the target was synthesized yielding a clear oil ($0.97 \mathrm{~g}, 78 \%$). IR (neat) $v_{\max } 2958,2927,1710$, $1636,1613,1581,1487,1446,1355,1249,1199,1155,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $12.30(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.45(\mathrm{dd}, J=16.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}$, $1 \mathrm{H})$, 1.59-1.53 (m, 1H), $0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.7,204.8,160.7,134.6,128.2,117.5$, 117.2, 116.8, 49.1, 34.2, 29.3, 28.8, 27.0, 18.0; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 235.1$, found: 235.1. Purity was determined to be 96% by HPLC trace.

1-(2-hydroxyphenyl)-5-methylheptane-1,6-dione (14). Following the general synthesis of 11 the target was synthesized yielding a clear oil ($1.1 \mathrm{~g}, 88 \%$). IR (neat) $v_{\max } 2945,1708,1636$, $1613,1487,1446,1279,1198,1034,754,726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.29(\mathrm{~s}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.52(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $212.6,206.4,162.7,136.5,130.1,119.5,119.1,118.7,47.2,38.3,32.4,28.3,22.1,16.6$; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}+\right.$ $H]^{+}: 235.1$, found: 235.1. Purity was determined to be 95% by HPLC trace.

(R)-1-(2-hydroxyphenyl)-3,7-dimethyloctane-1,6-dione (19). To a solution of 2bromophenol ($1.0 \mathrm{~mL}, 9.2 \mathrm{mmol}$) in diethyl ether (30 mL) cooled to $0{ }^{\circ} \mathrm{C}$ was added n butyllithium (2.5 M in hexanes, 7.5 mL). After stirring for 3 h , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and slowly canulated into a flask containing (4R)-7-isopropyl-4-methyloxepan-2-one ($7.8 \mathrm{~g}, 46.0 \mathrm{mmol}$) dissolved in diethyl ether at $-78{ }^{\circ} \mathrm{C}$ while stirring vigorously. The reaction was slowly warmed to $23{ }^{\circ} \mathrm{C}$ over 12 h . The mixture was concentrated in vacuo yielding and the residue dissolved in DCM (25 mL). To the mixture was added PDC ($5.2 \mathrm{~g}, 13.8$ mmol). This orange solution was stirred for 8 h and concentrated in vacuo. The resulting residue was purified by flash chromatography (15% ethyl acetate in hexanes) yielding a white amorphous solid ($75 \mathrm{mg}, 31 \%$). $[\alpha]_{\mathrm{D}}^{23}+5.13^{\circ}(c 1.00$, $\mathrm{MeOH}) ; \mathrm{IR}($ neat $) v_{\max } 2964,1708,1637,1614,1488,1369,1307,1250,1205,1156,1006,751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.90(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.06(\mathrm{~m} 1 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.05-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) 0.91(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-0.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl $\left.)_{3}\right) \delta$ $214.7,206.5,162.8,136.6,130.3,119.8,119.1,118.8,45.7,41.1,38.2,31.0,29.8,20.0,18.6$; ESI MS calc'd. for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 263.2, found: 263.2. Purity was determined to be 96% by HPLC trace.

(S)-1-(2-hydroxyphenyl)-3,7-dimethyloctane-1,6-dione (20). Following the same synthesis of 19 the target was synthesized yielding a white amorphous solid ($70 \mathrm{mg}, 29 \%$). $[\alpha]^{23}{ }_{\mathrm{D}}-5.29^{\circ}$ (c 1.00, MeOH); ESI MS calc'd. for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 263.2$, found: 263.2. Purity was determined to be 98% by HPLC trace.

VI. Preparation of (2-hydroxyphenyl)(2,5-dimethylcyclopent-1-enyl)methanone

(2-hydroxyphenyl)(2,5-dimethylcyclopent-1-enyl)methanone (26). The mixture of $\mathbf{1 6 a / b}$ (50 mg, 0.23 mmol) dissolved in MeOH was added to a round bottom flask. $\mathrm{KOH}(65 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated in vacuo. To the residue was added 1 N aqueous HCl . The cloudy mixture was extracted with diethyl ether, and the combined organics were washed with brine, dried over sodium sulfate, and concentrated in vacuo yielding a light yellow oil (49 mg, 99\%). IR (neat) $v_{\max } 2955,1620,1596,1481,1444,1348,1298,1245,1213,1157,1031,910,811,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 12.27(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dt}, J=$ $8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 204.0,162.8,145.4,140.1,136.6,133.1,120.8,119.1,118.4,44.1,38.6,32.0$, 19.9, 16.6; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$: 217.1 , found: 217.1. Purity was determined to be 96% by HPLC trace.

VII. Preparation of various substituted 1,2,3,3a-tetrahydro-3a-methylcyclopenta[b]chromen-9(9aH)-ones

1,2,3,3a-tetrahydro-3a-methylcyclopenta[b]chromen-9(9aH)-one (15). 11 ($100 \mathrm{mg}, 0.45 \mathrm{mmol}$) dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added to a round bottom flask. Pyrrolidine ($5.5 \mu \mathrm{~L}, 15 \mathrm{~mol} \%, 0.07 \mathrm{mmol}$) was added, and the mixture was warmed to $50^{\circ} \mathrm{C}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 48 h under TLC control, monitoring the disappearance of all other spots except the chromanone characteristic purple spot under 254 nm light. The reaction was concentrated in vacuo and then diluted with diethyl ether. The organics were washed with saturated aqueous ammonium chloride, water, brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by flash chromatography (10% ethyl acetate in hexanes) yielding 15 , an amorphous white solid as a single diastereomer ($79 \mathrm{mg}, 87 \%$). IR (neat) $v_{\max } 2920,2850,1710,1684,1462,1254,1170,1027,935,757,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.3,159.7,136.3,127.2,121.0,118.7,118.3,90.6,55.9,40.0,29.6,22.6,22.1$; ESI MS calc'd. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}+\mathrm{H}^{+}\right.$: 203.1, found: 203.1. Purity was determined to be 98% by HPLC trace.

1,2,3,3a-tetrahydro-1,3a-dimethylcyclopenta[b]chromen-9(9aH)-one (16a). Following the general synthesis of 15 the target was synthesized yielding a 9:1 ratio of 16a:16b, a white solid ($86 \mathrm{mg}, 88 \%$). Analytical data for $\mathbf{1 6 a}$ is as follows: $\mathrm{mp} 73.8-75.5^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2929,1681,1605,1461,1309$, 1237, 1144, 1028, 883, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38(\mathrm{dt}, J=7.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{dt}, J=7.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7,159.6,136.3,127.1,121.0$, 118.7, 118.5, 91.4, 63.5, 39.1, 38.5, 32.0, 22.4, 19.4; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$: 217.1, found: 217.1. Purity was determined to be 99% by HPLC trace. The absolute structure was solved by X-ray crystallography that is represent by the structure below.

1,2,3,3a-tetrahydro-2,3a-dimethylcyclopenta[b]chromen-9(9aH)-one (17a). Following the general synthesis of 15 the target was synthesized yielding a $2: 1$ ratio of 17a:17b, a white amorphous solid (80 mg, 82\%). Analytical data for 17 a is as follows: IR (neat) $v_{\max } 2928,1680,1606,1461,1309$, 1237, 1145, 1028, 883, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dt}, J=8.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{dt}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-2.12 (m, 1H), 1.78-1.74 (m, 1H), 1.43-1.39 (m, 1H) $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 195.3,160.0,136.3,127.3,121.1,118.7,118.3,91.0,54.7,49.2,37.8,31.4,22.3,22.3$; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}+\right.$ H^{+}: 217.1, found: 217.1. Purity was determined to be 93% by HPLC trace.

1,2,3,3a-tetrahydro-3,3a-dimethylcyclopenta[b]chromen-9(9aH)-one (18a). Following the general synthesis of 15 the target was synthesized yielding a $5: 1$ ratio of 18a:18b, an amorphous white solid (85 $\mathrm{mg}, 87 \%$). Analytical data for 18 a is as follows: IR (neat) $v_{\max } 2964,1682,1605,1461,1381,1307$, 1237, 1145, 1123, 1047, 924, $751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{dt}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}) 1.68-1.61(\mathrm{M}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$ $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ס 195.8, 159.9, 136.2, 127.3, 121.0, 118.7, 118.4, 90.1, 56.3, 45.4, 31.5, 27.1, 19.6, 12.2; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$: 217.1, found: 217.1. Purity was determined to be 98% by HPLC trace.

(1R,3aS,9aS)-1,2,3,3a-tetrahydro-3a-isopropyl-1-methylcyclopenta[b]chromen-9(9aH)-one
Following the general synthesis of 15 the target was synthesized yielding 24, an amorphous white solid as a single stereoisomer ($94 \mathrm{mg}, 86 \%$). $[\alpha]^{25}{ }_{\mathrm{D}}-93.94^{\circ}\left(c 1.00, \mathrm{MeOH}\right.$); IR (neat) $v_{\max } 2960,1681,1606$, $1461,1310,1239,1144,983,768,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{dt}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dt}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.07$ (m, 1H), 2.01-1.86 (m, 3H), 1.32-1.26 (m, 1H), $1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.8,159.8,136.3,127.0,120.7,119.1,118.3,97.4,60.3,38.6,32.6,32.5,31.8,19.2$, 18.1, 17.8; ESI MS calc'd. for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 245.1$, found: 245.1 . Purity was determined to be 99% by HPLC trace.
 (1 S,3aR,9aR)-1,2,3,3a-tetrahydro-3a-isopropyl-1-methylcyclopenta[b]chromen-9(9aH)-one

Following the general synthesis of 15 the target was synthesized yielding 25, an amorphous white solid as a single stereoisomer (93 mg, 85\%). $[\alpha]^{25}{ }_{D}+94.03^{\circ}(c 1.00, \mathrm{MeOH})$; ESI MS calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}+\right.$ $\mathrm{H}]^{+}$: 217.1, found: 217.1. Purity was determined to be 99% by HPLC trace.

VIII. Preparation of methyl substituted 2,3,4,4a,9,9a-hexahydro-3,9,9-trimethyl-1H-fluorene

(3R,4aS,9aR)-2,3,4,4a,9,9a-hexahydro-3,9,9-trimethyl-1 H-fluoren-5-yl methanesulfonate. Following the general synthesis of $\mathbf{1 a}$ on 50% scale the target was synthesized yielding a clear oil ($1.7 \mathrm{~g}, 76 \%$). IR (neat) $v_{\max }$ 2954, 1457, 1364, 1161, 957, 918, 828, 808, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.68-$ $2.66(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 2 \mathrm{H})$, 1.02 (d, $J=6.6,3 \mathrm{H}$), $0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7,146.1,137.0,128.2,121.4,119.8,59.2,46.6$, 44.1, 38.5, 37.9, 35.5, 33.6, 26.2, 25.1, 22.8, 22.3; ESI MS calc'd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 309.1$, found: 309.1. Purity was determined to be 92% by HPLC trace.

(4bS,6R,8aR)-5,6,7,8,8a,9-hexahydro-6,9,9-trimethyl-4bH-fluoren-4-ol (21). Following the general synthesis of 1a on 50% scale the target was synthesized yielding slightly yellow solid ($1.2 \mathrm{~g}, 95 \%$). $[\alpha]^{23}{ }_{\mathrm{D}}$ $+3.43^{\circ}$ (c 1.00, MeOH); mp $70.1-73.0^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 568,2949,2920,2858,1581,1456,1275$, 960, 919, 786, 737, $693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 1 \mathrm{H})$, 1.68-1.57 (m, 2H), 1.49-1.45 (m, 2H), 1.41-1.34 (m, 1H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.6,152.7,129.4,128.0,115.0,114.0,59.4,46.0,43.9,39.5,35.7,33.8,26.3,25.1,22.8,22.3$; ESI MS calc'd. for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}+\mathrm{H}\right]^{+}: 231.2$, found: 231.2. Purity was determined to be 99% by HPLC trace. The absolute structure was solved by X -ray crystallography, which is represent by the structure below.

IX. Computational Details

All calculations were performed with GAUSSIANO3. Structures were optimized without symmetry constraints using the B3LYP/6-31+G(d,p) level of theory. Frequency analyses at the same level were used to confirm each structure as a minimum. Reported energies are computed free energies including unscaled zero-point energy corrections. Structural drawings were produced using Ball\&Stick.

Gaussian03 Full Reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

B3LYP References: (a) Becke, A. D. J. Chem. Phys.1993; 98: 5648-5652. (b) Becke, A. D. J. Chem. Phys.1993, 98, 1372-1377. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B1988, 37, 785-789. (d) Stephens, P.J.; Devlin, F. J.; Chabalowski, C.F.; Frisch, M. J. J. Phys. Chem.1994, 98, 11623-11627.

Ball\&Stick Reference: Müller, N.; Falk, A. Ball \& Stick 4.0a12, molecular graphics software for MacOS, Johannes Kepler University Linz, 2000.

Computed Structure Images

cat1.1
"0" kcal/mol

cat1.3
2.00

cat1.4
2.22

cat1.5
5.03

Computed energy and coordinates for alkene 1a

HF = -580.283528 hartrees ($-364133.71665528 \mathrm{kcal} / \mathrm{mol}$) Imaginary Frequencies: none found
Zero-point correction $=0.258763$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=-580.063926$ hartrees $(-363995.91420426 \mathrm{kcal} / \mathrm{mol})$
Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	0.644576	-0.007665	-0.148763
2	6	1.412519	0.920630	0.458693
3	6	1.232736	-1.206380	-0.880621
4	1	0.641412	-2.095599	-0.634387
5	1	1.105754	-1.052145	-1.964065
6	6	2.928707	0.850328	0.428986
7	1	3.284980	0.579800	1.436063
8	6	2.711022	-1.450971	-0.558334
9	1	3.132392	-2.180575	-1.260409
10	1	2.796413	-1.888308	0.445949
11	6	3.490606	-0.133980	-0.603555
12	1	4.559074	-0.301096	-0.421674
13	1	3.404575	0.301352	-1.609045
14	1	3.326043	1.858647	0.243807
15	6	0.865437	2.083914	1.250453
16	1	-0.218750	2.044517	1.368653
17	1	1.318086	2.104564	2.251278
18	1	1.122824	3.040455	0.774914
19	6	-0.847207	0.083010	-0.192237
20	6	-1.658554	-0.824207	0.518005
21	6	-1.494815	1.044415	-0.982242
22	6	-3.053605	-0.759929	0.440700
23	6	-2.887814	1.120480	-1.067545
24	1	-0.880071	1.744893	-1.540820
25	6	-3.668491	0.211412	-0.351853
26	1	-3.657297	-1.467729	1.005915
27	1	-3.355334	1.878328	-1.688591
28	1	-4.752484	0.252836	-0.405227
29	8	-1.024554	-1.760378	1.299805
30	1	-1.681891	-2.323260	1.729071

Computed energy and coordinates for alkene 1b

$\mathrm{HF}=-580.2805911$ hartrees $(-364131.873721161 \mathrm{kcal} / \mathrm{mol})$ Imaginary Frequencies: none found Zero-point correction $=0.259101$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies $=-580.060306$ hartrees $(-363993.64261806 \mathrm{kcal} / \mathrm{mol})$

Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	1.273303	1.402588	-0.504524
2	1	0.672694	2.257066	-0.813838
3	6	0.640054	0.300217	-0.059822
4	6	2.767350	1.541871	-0.649116
5	1	2.995224	2.040575	-1.600633
6	1	3.149741	2.215237	0.134732
7	6	1.404846	-0.945046	0.398356
8	1	1.304424	-1.699544	-0.394038
9	6	3.478314	0.185031	-0.567315
10	1	4.558691	0.326458	-0.443968
11	1	3.333801	-0.358534	-1.510873
12	6	2.903473	-0.640826	0.586737
13	1	3.449548	-1.586070	0.697242
14	1	3.041473	-0.087454	1.527593
15	6	-0.852769	0.304142	0.004838
16	6	-1.535039	1.304909	0.715294
17	6	-1.637747	-0.663971	-0.654433
18	6	-2.929906	1.358184	0.775797
19	1	-0.944114	2.049496	1.240486
20	6	-3.034088	-0.624552	-0.597070
21	6	-3.682212	0.385004	0.117325
22	1	-3.420269	2.146161	1.339011
23	1	-3.613630	-1.381828	-1.122021
24	1	-4.767387	0.404737	0.155207
25	6	0.819185	-1.553802	1.685297
26	1	0.850083	-0.832786	2.511047
27	1	-0.219814	-1.868496	1.554178
28	1	1.401351	-2.432994	1.984635
29	8	-0.981657	-1.636234	-1.372701
30	1	-1.627148	-2.224641	-1.785343

Computed energy and coordinates for cation cat1.1

Values come from Link 3:
HF = -580.6369671 hartrees ($-364355.503224921 \mathrm{kcal} / \mathrm{mol}$) Imaginary Frequencies: none found
Zero-point correction $=0.272326$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=-580.403976$ hartrees $(-364209.29897976 \mathrm{kcal} / \mathrm{mol})$
Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	1.182417	1.380854	-0.062626
2	6	2.396320	1.312511	-1.036450
3	6	3.394929	0.222323	-0.651135
4	6	2.686338	-1.130032	-0.547591
5	6	1.451419	-1.096676	0.393791
6	6	0.524739	0.048582	0.101986
7	1	4.190914	0.163292	-1.400949
8	1	2.019229	1.136133	-2.051686
9	1	2.864536	2.301326	-1.043356
10	1	1.549864	1.697188	0.926413
11	1	0.481520	2.143920	-0.388276
12	1	2.353341	-1.444040	-1.545079
13	1	3.364841	-1.909324	-0.185023
14	1	0.924852	-2.047445	0.308513
15	1	3.883550	0.476463	0.297182
16	6	1.865278	-0.985009	1.898585
17	1	0.992278	-0.954065	2.556500
18	1	2.447479	-1.876053	2.149522
19	1	2.481186	-0.105520	2.095157
20	6	-0.879344	-0.144634	-0.000625
21	6	-1.850052	0.909630	0.200909
22	6	-1.407274	-1.434327	-0.358739
23	6	-3.214390	0.668884	0.006787
24	6	-2.750196	-1.649998	-0.563697
25	1	-0.720333	-2.249154	-0.543277
26	6	-3.658362	-0.588969	-0.377121
27	1	-3.926067	1.473293	0.172388
28	1	-3.106754	-2.625399	-0.874612
29	1	-4.721001	-0.752986	-0.528715
30	8	-1.421186	2.098218	0.653533
31	1	-2.160879	2.707790	0.802591

Computed energy and coordinates for cation cat1.2

$\mathrm{HF}=-580.6318352$ hartrees ($-364352.282906352 \mathrm{kcal} / \mathrm{mol}$) Imaginary Frequencies: none found
Zero-point correction $=0.272303$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=-580.398214$ hartrees $(-364205.68326714 \mathrm{kcal} / \mathrm{mol})$
Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	2.208749	-1.505067	-0.982718
2	6	3.296515	-0.462083	-0.736318
3	6	2.692399	0.905471	-0.417266
4	6	1.634756	0.814136	0.744487
5	6	0.598985	-0.214876	0.382685
6	6	1.181223	-1.578685	0.205669
7	1	3.461179	1.616382	-0.098911
8	1	3.938518	-0.783460	0.093684
9	1	3.940288	-0.384294	-1.619839
10	1	1.662830	-1.280307	-1.907122
11	1	2.630188	-2.508251	-1.098879
12	1	2.174656	0.317744	1.565916
13	1	1.727490	-1.875922	1.109332
14	1	0.433808	-2.336402	-0.006849
15	1	2.206025	1.334278	-1.302662
16	6	1.221925	2.201823	1.260017
17	1	0.324849	2.166872	1.884451
18	1	2.037102	2.594868	1.873854
19	1	1.060358	2.926249	0.457734
20	6	-0.769076	0.058832	0.114212
21	6	-1.822029	-0.912036	0.307536
22	6	-1.155954	1.324754	-0.440238
23	6	-3.135158	-0.618467	-0.072993
24	6	-2.446253	1.584520	-0.844072
25	1	-0.392594	2.067606	-0.617247
26	6	-3.441449	0.606979	-0.650944
27	1	-3.916762	-1.354342	0.096010
28	1	-2.694389	2.532966	-1.306822
29	1	-4.465730	0.811833	-0.947441
30	8	-1.524950	-2.059297	0.940917
31	1	-2.316008	-2.603250	1.077104

Computed energy and coordinates for cation cat1.3

$\mathrm{HF}=-580.6334557$ hartrees ($-364353.299786307 \mathrm{kcal} / \mathrm{mol}$) Imaginary Frequencies: none found Zero-point correction $=0.272176$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies $=-580.400783$ hartrees ($-364207.29534033 \mathrm{kcal} / \mathrm{mol}$)

Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	1.199898	1.350413	0.131646
2	1	0.729049	1.994122	-0.621934
3	6	0.536025	0.009675	0.066396
4	6	2.725299	1.355017	-0.050693
5	1	3.031549	2.368167	-0.327202
6	1	3.239538	1.124969	0.888904
7	6	1.445370	-1.173489	0.188350
8	1	0.931473	-2.094051	-0.078962
9	6	3.116305	0.341246	-1.127607
10	1	4.186378	0.393938	-1.347152
11	1	2.594287	0.594585	-2.060449
12	6	2.744712	-1.080658	-0.680424
13	1	2.618182	-1.725822	-1.555414
14	1	3.561808	-1.510495	-0.092312
15	6	-0.877278	-0.140811	-0.038540
16	6	-1.461927	-1.431332	-0.291763
17	6	-1.812483	0.956399	0.093595
18	6	-2.817932	-1.623965	-0.410141
19	1	-0.814847	-2.286673	-0.424258
20	6	-3.191768	0.743444	-0.018216
21	6	-3.689720	-0.525912	-0.268454
22	1	-3.213646	-2.611551	-0.618201
23	1	-3.869738	1.585508	0.093273
24	1	-4.762346	-0.668902	-0.358037
25	6	1.764174	-1.312461	1.718838
26	1	2.312208	-0.453953	2.110928
27	1	0.851297	-1.446147	2.305778
28	1	2.386787	-2.202233	1.845911
29	8	-1.338601	2.184934	0.354192
30	1	-2.060371	2.826701	0.448341
31	1	0.903147	1.826973	1.079331

Computed energy and coordinates for cation cat1.4

$\mathrm{HF}=-580.6337621$ hartrees ($-364353.492055371 \mathrm{kcal} / \mathrm{mol}$) Imaginary Frequencies: none found
Zero-point correction $=0.272178$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=-580.400442$ hartrees $(-364207.08135942 \mathrm{kcal} / \mathrm{mol})$
Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	2.663882	-0.661075	-1.068456
2	6	1.412095	-1.130246	-0.283638
3	6	0.499643	0.042255	-0.037626
4	6	1.179246	1.352349	0.193923
5	6	2.660337	1.283222	0.594740
6	6	3.518330	0.377995	-0.318858
7	1	0.895887	-1.861681	-0.909491
8	1	4.281439	-0.121140	0.285390
9	1	2.326543	-0.251869	-2.028234
10	1	1.064587	1.905639	-0.757500
11	1	0.613062	1.960549	0.904139
12	1	2.717032	0.938492	1.632270
13	1	3.051072	2.304425	0.602807
14	1	4.060309	0.982318	-1.052407
15	1	3.257103	-1.548749	-1.310533
16	6	1.779838	-1.849246	1.049111
17	1	0.892292	-2.246255	1.548690
18	1	2.444332	-2.685082	0.811922
19	1	2.297946	-1.194724	1.751597
20	6	-0.913127	-0.107414	-0.068005
21	6	-1.495385	-1.423199	-0.114571
22	6	-1.846876	0.996828	-0.022034
23	6	-2.852462	-1.634268	-0.072170
24	1	-0.843122	-2.284767	-0.154129
25	6	-3.227885	0.766902	0.008673
26	6	-3.724427	-0.527364	-0.010316
27	1	-3.251267	-2.642172	-0.087941
28	1	-3.907766	1.614174	0.039742
29	1	-4.798515	-0.684628	0.015378
30	8	-1.366914	2.249129	-0.045284
31	1	-2.084863	2.902014	-0.034054

Computed energy and coordinates for cation cat1.5

HF = -580.629373 hartrees ($-364350.73785123 \mathrm{kcal} / \mathrm{mol}$) Imaginary Frequencies: none found
Zero-point correction $=0.271999$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=-580.395968$ hartrees $(-364204.27387968 \mathrm{kcal} / \mathrm{mol})$
Coordinates (from last standard orientation):

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	6	2.722550	-1.509995	-0.083085
2	6	3.058347	-0.415913	-1.105299
3	6	2.676467	0.971336	-0.553381
4	6	1.601853	0.903442	0.597642
5	6	0.585293	-0.150702	0.280829
6	6	1.205519	-1.515764	0.189409
7	1	3.545638	1.476407	-0.120948
8	1	4.120550	-0.441050	-1.364073
9	1	2.506167	-0.619039	-2.031679
10	1	0.678965	-2.103609	-0.568692
11	1	3.294078	-1.355265	0.840009
12	1	2.138764	0.413512	1.427782
13	1	0.983941	-2.038658	1.134513
14	1	3.005566	-2.499912	-0.452184
15	1	2.289949	1.621731	-1.344991
16	6	1.227051	2.301921	1.106693
17	1	0.379747	2.285932	1.797813
18	1	2.086721	2.703746	1.650924
19	1	1.014338	3.010802	0.302102
20	6	-0.805549	0.059080	0.079210
21	6	-1.300256	1.354225	-0.294709
22	6	-1.788565	-0.997538	0.172125
23	6	-2.626928	1.583554	-0.579783
24	1	-0.596693	2.162449	-0.414549
25	6	-3.139917	-0.739587	-0.079630
26	6	-3.553808	0.530574	-0.457175
27	1	-2.956171	2.567080	-0.895233
28	1	-3.863097	-1.544923	0.017765
29	1	-4.605692	0.707698	-0.660096
30	8	-1.382835	-2.220443	0.551802
31	1	-2.132436	-2.831157	0.630045

X. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

220	210	200	190	180	170	160	${ }_{150}$	140	130	120	110	90	80	70	60	50	40	30	20	10	-10

（土）

\qquad
（土）

\qquad

\qquad

21

[at $25^{\circ} \mathrm{C}$, NMR reports a mixture of rotational isomers]

[at $25^{\circ} \mathrm{C}$, NMR reports a mixture of rotational isomers]

\qquad

[at $25^{\circ} \mathrm{C}$, NMR reports a mixture of rotational isomers]

[at $25^{\circ} \mathrm{C}$, NMR reports a mixture of rotational isomers]

[at $25^{\circ} \mathrm{C}$, NMR reports a mixture of rotational isomers]

[at $25^{\circ} \mathrm{C}$, NMR reports a mixture of rotational isomers]

\qquad

6a

Crude ${ }^{1}$ H NMR of dehydration mixtures, diagnostic assignments, and isomerization

