Synthesis of the Guaianolide Ring System via Cycloaddition of a Bicyclic Carbonyl Ylide with Allyl Propiolate

Vaidotas Navickas, ${ }^{\dagger}$ Dmitry B. Ushakov, ${ }^{\dagger}$ Martin E. Maier, ${ }^{*}{ }^{\dagger}$ Markus Ströbele, ${ }^{\ddagger}$ H.-Jürgen Meyer ${ }^{*}$
\title{ ${ }^{\dagger}$ Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen; ${ }^{\ddagger}$ Abteilung für Festkörperchemie und Theoretische Anorganische Chemie, Institut für Anorganische Chemie, Universität Tübingen, Ob dem Himmelreich 7, 72074 Tübingen }

martin.e.maier@uni-tuebingen.de

Supporting Information

Contents

Page

1. General methods S2
2. Experimental procedures S2
3. Copies of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra S13
4. Calculated structure of the cyclic dipole S28
5. Rendering of the X-ray structure of tricyclic compound $\mathbf{3 4}$ S29

1. General methods

Unless otherwise noted, all reactions were performed in oven-dried glassware. All solvents used in the reactions were purified before use. Dry diethyl ether, tetrahydrofuran, and toluene were distilled from sodium and benzophenone, whereas dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dimethylformamide, methanol, ethyl acetate, benzene, and triethylamine were distilled from CaH_{2}. Petroleum ether with a boiling range of $40-60^{\circ} \mathrm{C}$ was used. Reactions were generally run under nitrogen atmosphere. All commercially available compounds (Acros, Aldrich, Fluka, Merck) were used without purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Bruker Avance 400, spectra were recorded at 295 K in CDCl_{3} or in DMSO; chemical shifts are calibrated to the residual proton and carbon resonance of the solvent: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H} 7.25,{ }^{13} \mathrm{C} 77.0 \mathrm{ppm}\right)$, DMSO ($\left.{ }^{1} \mathrm{H} 2.49,{ }^{13} \mathrm{C} 39.5 \mathrm{ppm}\right) .{ }^{1}$ HRMS (FT-ICR): Bruker Daltonic APEX 2 with electron spray ionization (ESI). Analytical LC-MS: HP 1100 Series connected with an ESI MS detector Agilent G1946C, positive mode with fragmentor voltage of 40 eV , column: Nucleosil 100-5, C-18 HD, $5 \mu \mathrm{~m}, 70 \times 3 \mathrm{~mm}$ Machery Nagel, eluent: NaCl solution (5 mM)/acetonitrile, gradient: $0-10-15-17-20 \mathrm{~min}$ with 20-80-80-99-99\% acetonitrile, flow: $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$. Flash chromatography: J. T. Baker silica gel 43-60 $\mu \mathrm{m}$. Thin-layer chromatography Machery-Nagel Polygram Sil G/UV 254 . Optical rotations: JASCO Polarimeter P-1020, sodium D line (589 nm), $c=\mathrm{g}$ per 100 mL . The azulene system was used for atom numbering of bi- or tricyclic compounds:

2. Experimental procedures

(1S,2R,5R)-Methyl 2-methyl-5-(prop-1-en-2-yl)cyclopentanecarboxylate (17). NaH (60\% dispersion in oil, $22.0 \mathrm{~g}, 550 \mathrm{mmol}$) was added to a stirred solution of alcohol ${ }^{2} \mathbf{1 6}(11.2 \mathrm{~g}$, 57.0 mmol) and imidazole (ca. 300 mg) in THF (200 mL) at $0^{\circ} \mathrm{C}$. The cooling bath was removed. After 15 min reaction was recooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{CS}_{2}(38 \mathrm{~mL}, 612 \mathrm{mmol})$ was added dropwise. The mixture was allowed to warm to ambient temperature and after 1 h recooled to $0^{\circ} \mathrm{C}$ before MeI ($40 \mathrm{~mL}, 600 \mathrm{mmol}$) was added dropwise. After 3 h the reaction was quenched by careful addition of water $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 200 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash

[^0]chromatography (5% ethyl acetate in petroleum ether) to give the titled xanthate (16.2 g , 98%) as a yellow oil which was directly introduced to the next step. $\mathrm{R}_{\mathrm{f}}=0.43$ (petroleum ether/EtOAc, 9:1).
Tributylstannane ($20.0 \mathrm{~mL}, 77.0 \mathrm{mmol}$) was added to a stirred solution of xanthate $(16.2 \mathrm{~g}$, $56.0 \mathrm{mmol})$ in dry toluene $(200 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 5 min , and then AIBN (ca. 100 mg) was added. The resulting mixture was heated under reflux for 1 h and then the reaction was allowed to cool to ambient temperature, washed with water $(3 \times 100 \mathrm{~mL})$ and saturated NaCl solution (100 mL). The organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The resulting colorless oil was distilled under reduced pressure (b.p. $\left.90-95{ }^{\circ} \mathrm{C}, 25 \mathrm{mbar}\right)$ to afford the title compound $\mathbf{1 7}(6.9 \mathrm{~g}, 67 \%$, over 2 steps $) . \mathrm{R}_{\mathrm{f}}=0.60$ (petroleum ether/EtOAc, 9:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+19.8\left(c 1.00, \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.02\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.16$ (dddd, $\left.J=12.5,10.5,8.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 1.71$ (s, $3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CCH}_{3}$), $1.71-1.77(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 1.83$ (dddd, $\left.J=12.6,10.2,10.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right)$, 2.02 (dddd, $J=12.5,7.7,7.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 2.41 (dddq, $J=14.2,14.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ H), 2.56 (dd, $J=8.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.76$ (ddd, $J=9.4,9.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $4.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CCH}_{3}\right), 4.72\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=21.2\left(\mathrm{CHCH}_{3}\right), 22.6\left(\mathrm{CH}_{2}=\mathrm{CCH}_{3}\right), 29.7(\mathrm{C}-4), 33.7(\mathrm{C}-3), 36.9(\mathrm{C}-2), 49.7(\mathrm{C}-5)$, $51.0\left(\mathrm{OCH}_{3}\right)$, $55.6(\mathrm{C}-1), 110.7\left(\mathrm{CH}_{2}=\mathrm{CCH}_{3}\right), 145.5\left(\mathrm{CH}_{2}=\mathrm{CCH}_{3}\right), 175.1\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na} 205.11990$, found 205.11972; The spectral data are identical to those previously reported. ${ }^{3}$

(1S,2R,5R)-2-Methyl-5-(prop-1-en-2-yl)cyclopentanecarbaldehyde (18). A solution of ester $17(25.1 \mathrm{~g}, 0.14 \mathrm{~mol})$ in diethyl ether (200 mL) was added dropwise to the suspension of lithium aluminium hydride ($6.3 \mathrm{~g}, 0.17 \mathrm{~mol}$) in diethyl ether $(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 d and then was quenched by careful addition of 15% $\mathrm{NaOH}(70 \mathrm{~mL})$ and water (200 mL). Stirring was continued for 15 min , before MgSO_{4} was added, the mixture stirred for additional 15 min , and filtered to remove salts. Evaporation of the solvent yielded crude alcohol (21.0 g), which was introduced to the next reaction without further purification. $\mathrm{R}_{\mathrm{f}}=0.25$ (petroleum ether/EtOAc, 9:1).

To a stirred solution of the foregoing alcohol ($21.0 \mathrm{~g}, 0.14 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mathrm{~mL})$ were added at room temperature $\mathrm{Et}_{3} \mathrm{~N}(230 \mathrm{~mL}, 1.66 \mathrm{~mol})$ and a solution of $\mathrm{SO}_{3} \times \mathrm{Py}(125 \mathrm{~g}, 0.78$ $\mathrm{mol})$ in DMSO $(400 \mathrm{~mL})$. The reaction mixture was stirred for 1 h before it was quenched with water $(300 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with water $(200 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 200 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$, saturated NaCl solution (200 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was distilled at low pressure (b.p. $100-105^{\circ} \mathrm{C}, 25 \mathrm{mbar}$) to give aldehyde 18 as a colorless oil ($18.0 \mathrm{~g}, 87 \%$, over 2 steps). $\mathrm{R}_{\mathrm{f}}=0.65$ (petroleum ether/EtOAc, $9: 1$); The spectral data are identical to those previously reported. ${ }^{4}$

[^1]

18
19
($1 R, 2 R, 5 R$)-2-Methyl-5-(prop-1-en-2-yl)cyclopentanecarbaldehyde (19). DBU (0.2 mL) was added to a stirred solution of aldehyde $18(17.0 \mathrm{~g}, 0.11 \mathrm{~mol})$ in toluene (150 mL). The resulting mixture was stirred under reflux for 2 d . Then solvent was carefully evaporated to afford a mixture of two stereoisomers $\mathbf{1 9 / 1 8}$ in a ratio of $2: 1(16.5 \mathrm{~g}, 97 \%)$ [as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy via integration of the aldehyde signals (18: 9.48 ppm, 19: 9.72 ppm). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.98\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.13-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.43-$ $1.54(\mathrm{~m}, 1 \mathrm{H}), 1.84-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 2.41-2.49(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.62$ (ddd, $J=8.7,8.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 2.98 (ddd, $J=8.5,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 4.64 (br s, 1 H , $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$), $4.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 9.72(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{O})$.

($1 R, 2 R, 5 R$)-2-Acetyl-5-methylcyclopentanecarbaldehyde (19a). Nitrogen was bubbled through a solution of aldehyde $\mathbf{1 9}(4 \mathrm{~g}, 27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ before ozone was bubbled until a deep blue color was observed. Nitrogen was again applied until no blue color remained. After the addition of $\mathrm{PPh}_{3}(10.5 \mathrm{~g}, 40 \mathrm{mmol})$ the reaction mixture was stirred overnight at room temperature. $\mathrm{R}_{\mathrm{f}}($ ketoaldehyde 19a) $=0.43$ (petroleum ether/EtOAc, 4:1). This solution was used as such for the subsequent keto ester formation. An analytical sample was prepared after evaporation of the solvent followed by flash chromatography (petroleum ether/Et $\left.{ }_{2} \mathrm{O}, 9: 1\right) .[\alpha]^{20}{ }_{\mathrm{D}}=+25.5\left(c 0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.03(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$), $1.32(\mathrm{ddd}, J=15.4,12.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 1.65(\mathrm{ddd}, J=16.1,12.8$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.88$ (dddd, $J=12.6,7.8,6.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 2.10 (dddd, $J=9.9,7.5$, $5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 2.56(\mathrm{app} d d d q, J=14.5,14.5,7.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 3.25$ (ddd, $J=8.4,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.48$ (ddd, $J=9.5,7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 9.81$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{O}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.4\left(\mathrm{CHCH}_{3}\right), 27.7(\mathrm{C}-3), 29.1$ ($\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$), 34.2 (C-4), $36.6(\mathrm{C}-5), 49.5(\mathrm{C}-2), 56.4(\mathrm{C}-1)$, $203.1(\mathrm{CH}=\mathrm{O}), 209.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}+\mathrm{MeOH}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na} 209.11429$, found 209.11450.

Ethyl 3-((1'R,2'R,5'R)-2'-acetyl-5'-methylcyclopentyl)-3-oxopropanoate (20). Anhydrous tin (II) chloride ${ }^{5}(9.0 \mathrm{~g}, 47 \mathrm{mmol})$ was added, followed by dropwise addition of ethyl diazoacetate ($8 \mathrm{~mL}, 73 \mathrm{mmol}$) to the foregoing solution of crude ketoaldehyde 19 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (the quenched ozonolysis solution). Stirring was continued for 2 h , and then the mixture was transferred to a separatory funnel, containing saturated $\mathrm{NaCl}(100 \mathrm{~mL})$ and diethyl ether (200 $\mathrm{mL})$. After separation of the layers, the aqueous phase was extracted with diethyl ether ($3 \times$ 50 mL). The combined organic layers were washed with water (100 mL), saturated NaCl solution (100 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/Et ${ }_{2} \mathrm{O}, 4: 1$) to give β-keto ester 20 (2.5 g , 66%, over 2 steps) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc, 4:1); $[\alpha]^{20}{ }_{D}=-11.7$ (c $1.02, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$), 1.24 (dd, $\left.J=7.3,7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.42-1.50\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 1.58-1.67\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 1.82-1.92$ (m, 1H, $\left.4^{\prime}-\mathrm{H}\right), 2.07-2.20\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right.$), 2.54 (app dddq, $J=13.7$, $\left.11.3,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 3.40-3.48\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.47(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 4.11-4.30(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.4\left(\mathrm{CHCH}_{3}\right), 27.0(\mathrm{C}-$ $\left.3^{\prime}\right), 29.3\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 33.8\left(\mathrm{C}-4\right.$ '), $37.0\left(\mathrm{C}-5\right.$ '), $49.8(\mathrm{C}-3), 51.2\left(\mathrm{C}-1\right.$ '), $57.0\left(\mathrm{C}-\mathbf{2}^{\prime}\right), 61.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 166.8(\mathrm{C}-1), 203.3(\mathrm{C}-3), 209.2\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$; HRMS (ESI): [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na} 263.12538$, found 263.12538.

Ethyl 3-(($\left.1^{\prime} R, 2^{\prime} R, 5^{\prime} R\right)$-2'-acetyl-5'-methylcyclopentyl)-2-diazo-3-oxopropanoate (22). Triethylamine ($3.9 \mathrm{~mL}, 28.0 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of β-keto ester $20(3.4 \mathrm{~g}, 14 \mathrm{mmol})$ and p-acetamidobenzenesulfonyl azide ${ }^{6}(p$-ABSA, 21) $(4.3 \mathrm{~g}, 18 \mathrm{mmol})$ in acetonitrile (60 mL). The mixture was stirred for 2 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL). The layers were separated, and the aqueous layer was extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water $(100 \mathrm{~mL})$ and saturated NaCl solution (100 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 9:1) to give diazo compound $22(2.7 \mathrm{~g}, 71 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}}=0.70$ (petroleum ether/EtOAc, 2:1); $[\alpha]^{20}{ }_{\mathrm{D}}=-$ 39.2 (c 1.76, MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $1.30\left(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.39$ (dddd, $\left.J=12.8,7.6,7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$, 1.63 (dddd, $J=12.5,8.9,8.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3$ '-H), 1.94 (dddd, $J=12.4,8.6,6.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $4^{\prime}-\mathrm{H}$), 2.07-2.13 (m, 1H, 3'-H), 2.12 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$), 2.61 (app dddq, $J=14.2,14.2,6.9,6.8$ $\mathrm{Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}$), 3.56 (ddd, $J=18.7,9.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 4.07 (dd, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 4.23-4.31 (m, 2H, OCH $\left.{ }_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.8$ $\left(\mathrm{CHCH}_{3}\right), 27.4\left(\mathrm{C}-3^{\prime}\right), 29.1\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 34.0\left(\mathrm{C}-4{ }^{\prime}\right), 36.2\left(\mathrm{C}-5{ }^{\prime}\right), 52.6\left(\mathrm{C}-2^{\prime}\right), 53.1\left(\mathrm{C}-1{ }^{\prime}\right)$, $61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 160.9(\mathrm{C}-1), 192.9(\mathrm{C}-3), 209.2\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na} 289.11588$, found 289.11592.

[^2]
(1R,3aR,4R,7R,8aR)-5-Allyl 7-ethyl 1,4-dimethyl-8-oxo-1,2,3,3a,4,7,8,8a-octahydro-4,7-epoxyazulene-5,7-dicarboxylate (24). $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(30 \mathrm{mg}, 1 \mathrm{~mol} \%)$ was added to a mixture of diazo compound $22(1.0 \mathrm{~g}, 3.8 \mathrm{mmol})$ and allyl propiolate ${ }^{7} \mathbf{2 3}(2 \mathrm{~mL})$ in toluene $(50 \mathrm{~mL})$ at room temperature. Then the closed Schlenck tube was transferred to a preheated oil bath (100 ${ }^{\circ} \mathrm{C}$) and kept with stirring at this temperature for 15 min . The mixture was allowed to cool to room temperature and filtered through a pad of Celite, using diethyl ether as a rinse. The filtrate was concentrated in vacuo to afford crude cycloadduct $24(1.32 \mathrm{~g})$ as a yellowish oil, which was used in the next step without further purification. $\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum ether/EtOAc, 4:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+74.4\left(c 1.84, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.95(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$), $1.31\left(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 3.28$ (dd, $J=11.7,6.4 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{H}), 1.27-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.67(\mathrm{dd}, J=5.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.26\left(\mathrm{dd}, J=10.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33(\mathrm{dd}, J=17.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.92 (dddd, $J=16.8,10.9,5.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 6.93 (s, $1 \mathrm{H}, 6-\mathrm{H})$; further protons could not be assigned. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 17.7\left(\mathrm{OCCH}_{3}\right), 18.8\left(\mathrm{CHCH}_{3}\right), 27.0(\mathrm{C}-3), 29.0(\mathrm{C}-2), 29.8(\mathrm{C}-1), 47.1(\mathrm{C}-3 \mathrm{a})$, $57.0(\mathrm{C}-8 \mathrm{a}), 62.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.6\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 87.2(\mathrm{C}-4), 93.2(\mathrm{C}-7), 118.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 131.4\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 137.2(\mathrm{C}-6), 146.0(\mathrm{C}-5), 162.0\left(\mathrm{CO}_{2} \mathrm{Allyl}\right), 164.3$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, $201.4(\mathrm{C}=\mathrm{O})$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na} 371.14651$, found 371.14627.

(1R,3aR,4R,7R,8S,8aR)-5-Allyl 7-ethyl 8-hydroxy-1,4-dimethyl-1,2,3,3a,4,7,8,8a-octahydro-4,7-epoxyazulene-5,7-dicarboxylate (24a). Cerium (III) chloride heptahydrate ($3.5 \mathrm{~g}, 9.5 \mathrm{mmol}$) was added to the solution of crude ketone $24(1.1 \mathrm{~g}, 3.2 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ and the mixture stirred for 30 min at room temperature, before it was cooled to -78 ${ }^{\circ} \mathrm{C}$ and sodium borohydride ($240 \mathrm{mg}, 6.4 \mathrm{mmol}$) was added in portions. Stirring was continued for 2 h at the same temperature. The reaction was quenched by slow addition of water, and most of methanol was removed in vacuo. Diethyl ether (100 mL) and water (100 mL) were added, the layers separated, and the aqueous layer was extracted with diethyl ether $(4 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated NaCl solution, dried over MgSO_{4}, filtered, and concentrated in vacuo to give crude alcohol $\mathbf{2 4 a}(1.1 \mathrm{~g})$ as a yellowish oil, which was used in the next step without further purification. $\mathrm{R}_{\mathrm{f}}=0.20$ (petroleum ether/EtOAc, 4:1); An analytical sample was obtained by flash chromatography (petroleum ether/EtOAc, 9:1). $[\alpha]^{20}{ }_{\mathrm{D}}=+17.0\left(c 2.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

[^3]$\delta=0.95\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.98-1.03(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.23-1.34(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.31$ (dd, $J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.72-1.78(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.87$ (ddd, $J=12.1,12.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), 1.94-2.02 (m, 2H, 2-H, OH), 2.17 (ddd, $J=12.5,7.4$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$), 2.25 (app dddq, $J=7.4,7.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 4.28$ (2 app dq, $J=14.2$, $7.1,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.51 (dd, $J=4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}$), 4.66 (dd, $J=13.3,5.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.24\left(\mathrm{dd}, J=10.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33(\mathrm{dd}, J=17.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.93 (dddd, $J=16.8,10.9,5.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 7.02 (s, $1 \mathrm{H}, 6-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.1\left(\mathrm{OCCH}_{3}\right), 20.1\left(\mathrm{CHCH}_{3}\right)$, 25.8 (C-3), 31.1 (C-2), $32.5(\mathrm{C}-1), 35.7(\mathrm{C}-3 \mathrm{a}), 47.8(\mathrm{C}-8 \mathrm{a}), 61.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 73.5(\mathrm{C}-8), 87.2(\mathrm{C}-4), 88.4(\mathrm{C}-7), 118.5\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 131.7$ $\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 141.9(\mathrm{C}-6), 144.6(\mathrm{C}-5), 162.6\left(\mathrm{CO}_{2} \mathrm{Allyl}\right), 170.2\left(\mathrm{CO}_{2} \mathrm{Et}\right) ;$ HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}$ 373.16216, found 373.16217.

(1R,3aR,4R,7R,8R,8aR)-5-Allyl 7-ethyl 1,4-dimethyl-8-((triethylsilyl)oxy)-1,2,3,3a,4,7,8,8a-octahydro-4,7-epoxyazulene-5,7-dicarboxylate (25). 2,6-Lutidine (0.2 $\mathrm{mL}, 1.7 \mathrm{mmol}$) was added dropwise to a solution of alcohol $\mathbf{2 4 a}(150 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. Then TES-triflate $(0.2 \mathrm{~mL}, 0.8 \mathrm{mmol})$ was added at the same temperature. The mixture was allowed to warm to room temperature, filtered through a pad of silica gel, washed with 50% solution of ethyl acetate in petroleum ether, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 25:1) to give TES-ether 25 ($118 \mathrm{mg}, 59 \%$ over 3 steps) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.53$ (petroleum ether/EtOAc, 9:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+28.2\left(c 2.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.61$ $\left(\mathrm{ddd}, J=15.8,7.6,7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.93(\mathrm{dd}, J=$ $\left.7.9,7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.97-1.05(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.24-1.33(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.33(\mathrm{dd}, J=$ $\left.7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.68-1.75(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.87-1.96(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2,3 \mathrm{a}-\mathrm{H}), 2.07$ (ddd, $J=12.5,6.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 4.28$ (2 app dq, $\left.J=10.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.60-4.75\left(\mathrm{~m}, 3 \mathrm{H}, 8-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.24(\mathrm{dd}, J$ $\left.=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33\left(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.93$ (dddd, $J=16.8,10.9,5.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $6.98(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.8\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 6.8\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.4\left(\mathrm{OCCH}_{3}\right)$, $19.6\left(\mathrm{CHCH}_{3}\right), 24.8(\mathrm{C}-3), 31.1(\mathrm{C}-2), 32.9(\mathrm{C}-1), 35.2(\mathrm{C}-3 \mathrm{a}), 48.3(\mathrm{C}-8 \mathrm{a}), 61.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $65.0\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 73.3(\mathrm{C}-8), 86.8(\mathrm{C}-4), 89.2(\mathrm{C}-7), 118.0\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 132.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 142.8(\mathrm{C}-6), 143.1(\mathrm{C}-5), 162.8\left(\mathrm{CO}_{2} \mathrm{Allyl}\right), 170.1\left(\mathrm{CO}_{2} \mathrm{Et}\right) ;$ HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa} 487.24864$, found 487.24857.

(1R,3aR,4R,7R,8R,8aR)-7-(Ethoxycarbonyl)-1,4-dimethyl-8-((triethylsilyl)oxy)$\mathbf{1 , 2 , 3 , 3 a}, 4,7,8,8 a-o c t a h y d r o-4,7$-epoxyazulene-5-carboxylic acid (26). $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(10 \mathrm{mg})$ was added to a solution of allyl ester $25(42 \mathrm{mg}, 0.09 \mathrm{mmol})$ in a mixture of water/ethanol (2 $\mathrm{mL}, 1: 10)$. Then the closed flask was transferred to a preheated $\left(100^{\circ} \mathrm{C}\right)$ oil bath. The mixture was stirred for 1 h at this temperature, cooled, and then the solvents were removed in vacuo. The residue was purified by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{AcOH}$ (glac.), 4:1:0.01) to give carboxylic acid 26 ($32 \mathrm{mg}, 84 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.2$ (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{AcOH}$ (glac.), 4:1:0.01); $[\alpha]^{20}{ }_{\mathrm{D}}=+50.6\left(c 3.48, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=0.62\left(\mathrm{ddd}, J=15.9,7.8,7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CHCH}_{3}\right), 0.94\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.99-1.07(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.26-1.37(\mathrm{~m}$, $1 \mathrm{H}, 3-\mathrm{H}), 1.33\left(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.68-1.76(\mathrm{~m}, 1 \mathrm{H}$, $3-\mathrm{H}), 1.88-1.96$ (m, 2H, 3a-H, 2-H), 2.09 (ddd, $J=12.4,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 2.17-2.26$ $(\mathrm{m}, 1 \mathrm{H}, 1-\mathrm{H}), 4.29\left(2 \mathrm{app} \mathrm{dq}, J=10.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.67(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, $7.14(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.8\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 6.9\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.4\left(\mathrm{OCCH}_{3}\right), 19.6\left(\mathrm{CHCH}_{3}\right), 24.8(\mathrm{C}-3), 31.0(\mathrm{C}-2), 32.9(\mathrm{C}-1), 35.2(\mathrm{C}-$ 3a), $48.4(\mathrm{C}-8 \mathrm{a}), 61.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.4(\mathrm{C}-8), 86.7(\mathrm{C}-4), 89.2(\mathrm{C}-7), 142.8(\mathrm{C}-5), 145.7(\mathrm{C}-$ 6), $168.2\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.9\left(\mathrm{CO}_{2} \mathrm{H}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{SiNa} 447.21734$, found 447.21730.

(1R,3aR,4R,7R,8R,8aR)-Ethyl 5-(azidocarbonyl)-1,4-dimethyl-8-((triethylsilyl)oxy)-1,2,3,3a,4,7,8,8a-octahydro-4,7-epoxyazulene-7-carboxylate (27). Trichloroacetonitrile $(0.03 \mathrm{~mL}, 0.33 \mathrm{mmol})$ was added dropwise to a stirred solution of carboxylic acid $26(70 \mathrm{mg}$, $0.16 \mathrm{mmol})$, sodium azide ($16 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{PPh}_{3}(86 \mathrm{mg}, 0.33 \mathrm{mmol})$ in acetone (2 mL) at room temperature. After 30 min the solvent was removed by a flow of nitrogen and the residue was purified by flash chromatography (petroleum ether/EtOAc, 25:1) to give azide 27 $(66 \mathrm{mg}, 90 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.37$ (petroleum ether/EtOAc, 9:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+40.1(c$ $1.63, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.61$ (ddd, $J=15.9,7.8,7.8 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.94\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.97-1.05(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.25-1.37(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.32\left(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.68-1.76(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.81-1.95(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}, 2-\mathrm{H}), 2.06(\mathrm{ddd}, J=$ $12.4,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$), 2.15-2.25 (m, 1H, 1-H), 4.28 ($2 \mathrm{app} \mathrm{dq}, J=10.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.66(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $4.8\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 6.8\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.2\left(\mathrm{OCCH}_{3}\right), 19.5\left(\mathrm{CHCH}_{3}\right), 24.7$ (C-3), $31.0(\mathrm{C}-2), 32.9(\mathrm{C}-1), 35.2(\mathrm{C}-3 \mathrm{a}), 48.3(\mathrm{C}-8 \mathrm{a}), 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.4(\mathrm{C}-8), 86.9(\mathrm{C}-$ 4), 89.2 (C-7), 144.4 (C-5), 145.8 (C-6), $168.4\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.7\left(\mathrm{CON}_{3}\right)$; HRMS (ESI):
$[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SiNa} 472.22382$, found 472.22384.

(1R,3aR,4R,7R,8R,8aR)-Ethyl 1,4-dimethyl-5-oxo-8-((triethylsilyl)oxy)decahydro-4,7-epoxyazulene-7-carboxylate (28). Azide 27 ($66 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in toluene (2 mL) and stirred for 1 h at $100^{\circ} \mathrm{C}$. Then the solvent was removed in vacuo, the residue was dissolved in THF (2 mL) followed by the addition of $5 \% \mathrm{HCl}(0.5 \mathrm{~mL})$ and THF $(0.5 \mathrm{~mL})$. Stirring was continued for 15 min , then the reaction was quenched with triethylamine (0.5 mL) and the solvents were evaporated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 25:1) to give ketone $\mathbf{2 8}(48 \mathrm{mg}, 83 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.53$ (petroleum ether/EtOAc, 9:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+0.5\left(c 0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.60\left(\mathrm{dddd}, J=16.8,9.9,8.4,1.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.92(\mathrm{~d}, J=9.4$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.93\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 1.13-1.21(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.26$ (s, 3H, OCCH_{3}), $1.32\left(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.40(\mathrm{ddd}, J=10.9,7.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}$), 1.60-1.68 (m, 1H, 3-H), 1.85 (ddd, $J=13.2,10.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 1.92-2.02$ (m, $2 \mathrm{H}, 2-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 2.22-2.31(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.60(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.10(\mathrm{~d}, J=18.1 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 4.28\left(2 \mathrm{app} \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.73(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.8\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 6.9\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.5$ $\left(\mathrm{OCCH}_{3}\right), 19.2\left(\mathrm{CHCH}_{3}\right), 24.0(\mathrm{C}-3), 32.4(\mathrm{C}-1), 32.6(\mathrm{C}-2), 36.4(\mathrm{C}-3 \mathrm{a}), 38.8(\mathrm{C}-6), 45.2(\mathrm{C}-$ $8 \mathrm{a}), 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 71.2(\mathrm{C}-8), 83.0(\mathrm{C}-4), 84.2(\mathrm{C}-7), 171.4\left(\mathrm{CO}_{2} \mathrm{Et}\right), 214.6(\mathrm{C}=\mathrm{O})$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa} 419.22242$, found 419.22238.

(1R,3aR,4R,5R,7R,8R,8aR)-Ethyl 5-hydroxy-1,4-dimethyl-8-((triethylsilyl)oxy)deca-hydro-4,7-epoxyazulene-7-carboxylate (29). Sodium borohydride ($21 \mathrm{mg}, 0.55 \mathrm{mmol}$) was added in portions to a stirred solution of ketone $\mathbf{2 8}(150 \mathrm{mg}, 0.38 \mathrm{mmol})$ in methanol/THF $(6.6 \mathrm{~mL}, 1: 10)$ at $-10^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature, and then quenched by careful addition of water. Most of the organic solvents were evaporated in vacuo, the residue was diluted with water (10 mL), and the mixture extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 4:1) to give alcohol $29(150 \mathrm{mg}, 85 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.37$ (petroleum ether/EtOAc, 4:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+5.8\left(c 2.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=0.48-$ $0.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.88\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CHCH}_{3}$), $1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.10-1.35(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 1.21(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.47 (dddd, $J=12.4,8.3,8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 1.71 (ddd, $J=13.8,6.2,6.1$, $1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.87-1.96(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.14(\mathrm{dd}, J=13.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.19-2.35(\mathrm{~m}, 3 \mathrm{H}$, $1-\mathrm{H}, 3 \mathrm{a}-\mathrm{H}, 6-\mathrm{H}), 3.60$ (ddd, $J=8.6,8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.10(2 \mathrm{app} \mathrm{dq}, J=10.9,7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.63(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.20(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.3\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.7\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.8\left(\mathrm{CHCH}_{3}\right), 19.9$
$\left(\mathrm{OCCH}_{3}\right), 23.8(\mathrm{C}-3), 32.0(\mathrm{C}-1), 32.7$ (C-3a), 32.8 (C-6), 33.6 (C-2), 44.2 (C-8a), 61.0 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 70.8(\mathrm{C}-8), 76.8(\mathrm{C}-5), 82.5(\mathrm{C}-4), 83.3(\mathrm{C}-7), 171.8\left(\mathrm{CO}_{2} \mathrm{Et}\right) ;$ HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa} 421.23807$, found 421.23845.

(1R,3aR,4R,5R,7R,8R,8aR)-Ethyl 1,4-dimethyl-5,8-bis((triethylsilyl)oxy)decahydro-4,7-epoxyazulene-7-carboxylate (30). 2,6-Lutidine ($0.13 \mathrm{~mL}, 1.15 \mathrm{mmol}$) was added dropwise to a solution of alcohol $29(150 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Then TES-triflate $(0.13 \mathrm{~mL}, 0.58 \mathrm{mmol})$ was added at the same temperature. The mixture was allowed to warm to room temperature (ca 3 h), filtered through a pad of silica gel, the filter cake was washed with mixture of petroleum ether/EtOAc (1:1), and the filtrates concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 25:1) to afford TESether $\mathbf{3 0}$ ($159 \mathrm{mg}, 82 \%$ over 2 steps). $\mathrm{R}_{\mathrm{f}}=0.55$ (petroleum ether/EtOAc, 9:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+2.0(c$ $6.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.51-0.61\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 0.92$ (dd, $J=7.9,7.9 \mathrm{~Hz}, 9 \mathrm{H},\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.95\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H},\left(\mathrm{Si}^{\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 1.00}\right.\right.$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$), $1.18-1.26(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.30(\mathrm{dd}, J=7.1$, $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.30-1.39(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.53$ (dddd, $J=16.9,8.8,8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ H), 1.81 (ddd, $J=14.0,6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.87-1.96(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.22-2.51(\mathrm{~m}, 4 \mathrm{H}, 1-$ H, 3a-H, $6-\mathrm{H}, 6-\mathrm{H}$), 3.77 (dd, $J=9.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 4.21 ($2 \mathrm{app} \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.8\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right)$, $4.9\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.7\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.8\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.7\left(\mathrm{CHCH}_{3}\right), 20.2$ $\left(\mathrm{OCCH}_{3}\right), 24.2(\mathrm{C}-3), 32.7(\mathrm{C}-1), 33.2(\mathrm{C}-3 \mathrm{a}), 34.1(\mathrm{C}-6), 44.6(\mathrm{C}-2), 61.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 71.6$ (C-8), 78.1 (C-5), $83.2(\mathrm{C}-4), 84.4(\mathrm{C}-7), 172.7\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na} 535.32455$, found 535.325022 .

2-((1R,3aR,4R,5R,7R,8R,8aR)-1,4-Dimethyl-5,8-bis((triethylsilyl)oxy)decahydro-4,7-epoxyazulen-7-yl)propan-2-ol (31). Freshly prepared methylmagnesium iodide (0.12 mL , 1 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}\right)$ was added dropwise to a stirred solution of ester $30(10 \mathrm{mg}$, $0.019 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$, diluted with water (2 mL) and extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated NaCl solution ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 25:1) to give tertiary alcohol $31(9.7 \mathrm{mg}, 100 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.48$ (petroleum ether/EtOAc, 9:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+3.4\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.57(\mathrm{ddd}, J=16.7,8.6,1.3$
$\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.65\left(\mathrm{ddd}, J=15.9,7.9,2.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.94(\mathrm{dd}, J=7.8$, $\left.7.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.96\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22-1.28$ (m, 1H, 2-H), 1.35 (dddd, $J=12.2,10.3,10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.49-1.58(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 1.69 (ddd, $J=13.6,6.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.88$ (dddd, $J=12.1,10.5,7.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H})$, 1.98 (dd, $J=13.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.15-2.24$ (m, 2H, 1-H, 6-H), 2.55 (ddd, $J=13.6,10.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 3.66$ (dd, $J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.45(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.9\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 5.9\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.8\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 7.2$ $\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 18.6\left(\mathrm{CHCH}_{3}\right), 21.2\left(\mathrm{OCCH}_{3}\right), 24.0(\mathrm{C}-3), 24.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.6$ (C-1), 32.7 (C-6), 33.1 (C-3a), $\left.34.9(\mathrm{C}-2), 45.9(\mathrm{C}-8 \mathrm{a}), 71.0(\mathrm{C}-8), 73.3\left(\mathrm{CH}_{3}\right)_{2}\right), 79.6(\mathrm{C}-$ 5), 81.4 (C-4), 89.1 (C-7); HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na} 521.34528$, found 521.345436 .

(($(1 R, 3 \mathrm{a} R, 4 R, 5 R, 7 S, 8 R, 8 \mathrm{a} R)$-1,4-Dimethyl-7-(prop-1-en-2-yl)decahydro-4,7-epoxyazulene-5,8-diyl)bis(oxy))bis(triethylsilane) (32). Burgess reagent ${ }^{8}$ ($10 \mathrm{mg}, 0.040$ mmol) was added to a stirred solution of alcohol $31(5 \mathrm{mg}, 0.010 \mathrm{mmol})$ in toluene (1 mL) and the mixture stirred at $110^{\circ} \mathrm{C}$ for 5 min . Then the solvent was evaporated and the residue purified by flash chromatography (petroleum ether/EtOAc, 30:1) providing alkene 32 (3.4 $\mathrm{mg}, 71 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.31$ (petroleum ether/EtOAc, 33:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+4.8(c 0.31$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.50-0.60\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 0.92(\mathrm{dd}, J=$ $\left.7.8,7.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.95\left(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 1.00(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.21-1.27(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.30-1.39(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $1.49-1.58(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.73$ (ddd, $J=14.0,5.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CCH}_{3}\right)$, $1.84-1.93(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.04(\mathrm{dd}, J=13.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.19-2.24(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.29$ (dd, $J=13.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 2.49 (ddd, $J=14.0,10.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), 3.68 (dd, $J=9.3$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.88\left(\mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.91$ (br.s, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.0\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 5.4\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.8$ $\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 7.0\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CHCH}_{3}\right), 20.7\left(\mathrm{OCCH}_{3}\right), 23.9(\mathrm{C}-3)$, 32.8 (C-3a), 32.9 (C-1), 34.0 (C-2), 35.0 (C-6), 45.7 (C-8a), 72.4 (C-8), 78.7 (C-5), 80.9 (C4), $85.9(\mathrm{C}-7), 112.1\left(\mathrm{CH}_{3} \mathrm{C}=C \mathrm{H}_{2}\right), 147.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na} 503.33472$, found 503.33510.

[^4](((1R,3aR,4R,5R,7S,8R,8aR)-1,4-Dimethyl-7-(prop-2-yl)decahydro-4,7-epoxyazulene-5,8diyl)bis(oxy))bis(triethylsilane) (33). A 5 mL round-bottom flask was charged with alkene $32(3.40 \mathrm{mg}, 0.007 \mathrm{mmol})$ and a stirring bar. Ethyl acetate (1 mL) and Pd/C $10 \%(4.00 \mathrm{mg})$ were added with stirring. The reaction was placed under H_{2} atmosphere and stirred for 2 h at room temperature. The reaction mixture was filtered through a pad of celite and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 100:1) to afford the title compound $33(2.5 \mathrm{mg}, 72 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=$ 0.60 (petroleum ether/ EtOAc, 60:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+2.7\left(c 0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.52-0.64\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 0.92-1.01\left(\mathrm{~m}, 27 \mathrm{H},\left(\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)_{2}\right.$, $\left(\mathrm{CHCH}_{3}\right)_{3}, 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.17-1.35(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 1.47-1.52(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.60-$ $1.74\left(\mathrm{~m}, 3 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}, 6-\mathrm{H} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.17-2.24(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 1-\mathrm{H})$, 2.40 (ddd, $J=13.8,10.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), 3.52 (dd, $J=8.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.36$ (d, $J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.0\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 5.3\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.8$ $\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 7.0\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.9\left(\mathrm{CHCH}_{3}\right), 20.4$ $\left(\mathrm{OCCH}_{3}\right), 24.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.6(\mathrm{C}-3), 32.6(\mathrm{C}-3 \mathrm{a}), 33.6(\mathrm{C}-1), 34.1(\mathrm{C}-2), 34.7(\mathrm{C}-6), 46.0$ (C-8a), 71.3 (C-8), 78.9 (C-5), 80.6 (C-4), 85.4 (C-7); HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{SiNa} 505.35037$, found 505.35007.

($1 R, 3 \mathrm{a} R, 4 R, 5 R, 7 S, 8 R, 8 \mathrm{a} R$)-1,4-Dimethyl-7-(prop-1-en-2-yl)decahydro-4,7-epoxyazulene$\mathbf{5 , 8}$-diol (34). TBAF $\times 3 \mathrm{H}_{2} \mathrm{O}(38.5 \mathrm{mg}, 0.120 \mathrm{mmol})$ was added in one portion to a stirred solution of silyl ether $\mathbf{3 2}(6.9 \mathrm{mg}, 0.012 \mathrm{mmol})$ in anhydrous THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then the cooling bath was removed and the mixture stirred overnight at room temperature. The solvent was evaporated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 2:1) to give alcohol $34(2.0 \mathrm{mg}, 6.5 \%)$ as white crystals. $\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/EtOAc, 2:1); $[\alpha]^{20}{ }_{\mathrm{D}}=+2.5\left(c 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.08(\mathrm{~d}, J$ $\left.=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.19-1.27(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.36(\mathrm{dddd}, J=11.6$, $11.6,9.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.58-1.65(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.75(\mathrm{dd}, J=1.4,0.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$), 1.86 (ddd, $\left.J=13.6,8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}\right), 1.97(\mathrm{dd}, J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, 2.07-2.15 (m, 1H, 2-H), 2.24-2.37 (m, 3H, 1-H, 3a-H, 6-H), 3.91 (dd, $J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H), $4.17(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.70\left(\mathrm{ddd}, J=3.2,1.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 4.93(\mathrm{dd}, J$ $\left.=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.5\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 20.4$ $\left(\mathrm{CHCH}_{3}\right), 21.5\left(\mathrm{OCCH}_{3}\right), 26.0(\mathrm{C}-3), 31.4(\mathrm{C}-3 \mathrm{a}), 33.8(\mathrm{C}-1), 34.4(\mathrm{C}-2), 38.4(\mathrm{C}-6), 44.8(\mathrm{C}-$ 8a), 73.8 (C-8), $78.9(\mathrm{C}-5), 81.7(\mathrm{C}-4), 86.0(\mathrm{C}-7), 107.9\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 148.4\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right)$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na} 275.16177$, found 275.16169.

26

28

Figure S1. Calculated structure of the cyclic carbonyl ylide (Spartan 08) showing the halfchair conformation in the six-membered ring.

Figure S2. Rendering of the X-ray structure of tricyclic compound $\mathbf{3 4}$.

[^0]: ${ }^{1}$ Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
 ${ }^{2}$ Andrews, S. P.; Ball, M.; Wierschem, F.; Cleator, E.; Oliver, S.; Högenauer, K.; Simic, O.; Antonello, A.; Hünger, U.; Smith, M. D.; Ley, S. V. Chem. Eur. J. 2007, 13, 5688-5712.

[^1]: ${ }^{3}$ Dawson, G. W.; Pickett, J. A.; Smiley, D. W. M. Bioorg. Med. Chem. 1996, 4, 351-361.
 ${ }^{4}$ Sakai, T.; Morita, K.; Matsumura, C.; Sudo, A.; Tsuboi, S.; Takeda, A. J. Org. Chem. 1981, 46, 4774-4779.

[^2]: ${ }^{5} \mathrm{SnCl}_{2} \times \mathrm{H}_{2} \mathrm{O}$ was dehydrated by slow addition to a vigorously stirred solution of acetic anhydride (120 g salt per 100 g anhydride). After 1 h , the anhydrous SnCl_{2} was filtered, washed with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ to removed acetic acid and anhydride, and dried under vacuum.
 Armarego, W.L.F., Chai, C.L.L., Purification of laboratory chemicals, 2003, $5^{\text {th }}$ edition, p 478.
 ${ }^{6}$ Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709-1716.

[^3]: ${ }^{7}$ For the preparation of allyl propiolate 23 see: Feray, L.; Bertrand, M. P. Eur. J. Org. Chem. 2008, 3164-3170.

[^4]: ${ }^{8}$ For the preparation of Burgess reagent see: Burgess, E.M., Penton, H.R., Taylor, E.A. J. Org. Chem. 1973, 38, 26-31.

