SUPPORTING INFORMATION

for

Asymmetric Hydrogenation of Bicyclic Ketones Catalyzed by BINAP/IPHAN-Ru(II) Complex

Noriyoshi Arai, Masaya Akashi, Satoshi Sugizaki, Hirohito Ooka, Tsutomu Inoue, and Takeshi Ohkuma
Division of Chemical Process Engineering, Faculty of Engineering Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
and
Odawara Research Center, Nippon Soda Co., Ltd.
345 Takada, Odawara 250-0280, Japan

CONTENTS

(A) Preparation and Physical Data of trans-RuCl $\mathbf{2}_{\mathbf{(b i n a p}}$)(1,4diamine) Complexes (3a-e)
(B) Asymmetric Hydrogenation of 3-Quinuclidinone (1a)
(C) Asymmetric Hydrogenation of Bicyclo[2.2.2]octan-2-one (1b)
(D) Asymmetric Hydrogenation of (\pm)-3,4-Dihydro-1,4-ethanonaphthalen-2(1H)-one $[(\pm)-4] \quad$ Page 6
(E) Asymmetric Hydrogenation of (\pm)-Norcamphor [(\pm)-7]

Page 8
(F) $\begin{array}{llll}\text { Asymmetric } \quad \text { Hydrogenation of } & (\pm) \text {-2-Diphenylmethyl-3- } & \\ & \text { quinuclidinone }[(\pm)-10] & & \end{array}$ Page 8
(G) Comment on the Catalytic Cycle
(H) References
(I) Spectral Charts

(A) Preparation and Physical Data of trans- RuCl_{2} (binap)(1,4-diamine) complexes (3a-e)

The preparative method for these complexes was previously described. ${ }^{1}$ Their physical properties are as follows:
trans- $\mathbf{R u C l}_{\mathbf{2}}[(\boldsymbol{R})$-binap $][(\boldsymbol{S})$-ipban] [(R,S)-3a]. IR (ATR) 3326, 3053, 1433, 1087, 1075, 1021, 741, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27$ (s, 6H), 2.43-2.47 (br $\mathrm{m}, 2 \mathrm{H}$), 2.57-2.75 (m, 4H), 2.93 (br s, 2H), 3.67-3.70(m, 2H), 6.27 (d, 2H, J = 8.2 Hz), 6.47 (br m, 6H), 6.67-6.72 (t-like m, 2H), 7.12-7.17 (t-like m, 2H), 7.39 (br m, 6H), 7.52 (d, 2H, $J=8.0 \mathrm{~Hz}$), 7.62 (br m, 4H), 7.73 (d, 2H, $J=8.5 \mathrm{~Hz}$), 7.91 (br, m, 4H), 8.25-8.30 (m, 2H). ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.5$ (s). HRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ 954.1606 (M^{+}), calcd for $\mathrm{C}_{51} \mathrm{H}_{48}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{102} \mathrm{Ru}$: 954.1612.
trans- $\mathbf{R u C l}_{2}[(\boldsymbol{S})$-binap][(S)-ipban] [(S,S)-3a]. IR (ATR) 3323, 3054, 1434, 1087, 1023, 741, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, 2.67-2.70 (br m, 2H), 2.85 (br m, 2H), 3.06-3.08 (br m, 2H), 3.72-3.74 (m, 2H), 6.28 (d, 2H, $J=8.7 \mathrm{~Hz}$), 6.48 (br m, 6H), 6.68-6.73 (t-like m, 2H), 7.13-7.17 (t-like m, 2H), 7.39 (br m, 6H), 7.52 (d, 2H, $J=8.0 \mathrm{~Hz}$), 7.61 (br m, 4H), 7.71 (d, 2H, $J=8.7 \mathrm{~Hz}$), 7.89 (br, m, 4H), 8.23-8.27 (m, 2H). ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.5$ (s). HRMS (ESI^{+}) m / z 954.1617 $\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{51} \mathrm{H}_{48}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{102} \mathrm{Ru}$: 954.1612.
trans-RuCl $\mathbf{2}_{\mathbf{2}}[\boldsymbol{S})$-binap][(R)-iphan] [(S,R)-3b]. IR (KBr-disk) 3311, 3055, 1569, 1482, 1433, 1370, 1057, 1035, 741, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.54(\mathrm{~d}$, $6 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $1.24(\mathrm{~s}, 6 \mathrm{H}), 2.66-2.75(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 3.04(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.47-3.51(\mathrm{~m}, 2 \mathrm{H})$, $6.25(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.45-6.47(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 6.64-6.70(\mathrm{t}-\mathrm{like} \mathrm{m}, 2 \mathrm{H}), 7.10-7.16$ (tlike m, 2H), 7.39-7.41 (br m, 6H), $7.51(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.63 (br m, 4H), 7.72 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.96(\mathrm{br}, \mathrm{m}, 4 \mathrm{H}), 8.28-8.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($\left.121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 45.7 (s). HRMS (ESI $) \mathrm{m} / \mathrm{z} 982.1918\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{53} \mathrm{H}_{52}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{102} \mathrm{Ru}$: 982.1925. Found: C, $64.62 \%, \mathrm{H}, 5.55 \%$; N, 2.70%. Calcd for $\mathrm{C}_{53} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}$, 64.76%; H, 5.33%; N, 2.85%.
trans- $\mathbf{R u C l}_{\mathbf{2}}[(\boldsymbol{S})$-tolbinap][(R)-iphan] [(S,R)-3c]. IR (ATR) 3309, 2989, 1500, 1223, 1194, 1053, 1038, 808, 756, $744 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.53(\mathrm{~d}, 6 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.63-2.73(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, 3.46-3.51 (m, 2H), 6.20-6.24 (m, 6H), 6.65-6.69 (t-like m, 2H), 7.12-7.16 (t-like m, $2 \mathrm{H}), 7.21$ (d, 4H, $J=8.0 \mathrm{~Hz}$), 7.46 (br m, 4H), 7.50 (d, 2H, $J=7.9 \mathrm{~Hz}$), 7.72 (d, 2H, $J=$ 8.7 Hz), 7.87 (br, m, 4H), 8.28-8.33 (m, 2H). ${ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.5$ (s). HRMS (ESI $)^{+} m / z$ 1038.2580 (M^{+}), calcd for $\mathrm{C}_{57} \mathrm{H}_{60}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{102} \mathrm{Ru}$: 1038.2551. Found: C, $61.34 \%, \mathrm{H}, 5.34 \%$; N, 2.40%. Calcd for $\mathrm{C}_{57} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} \bullet 0.67 \mathrm{CHCl}_{3}$: C, 61.92%; H, 5.47%; N, 2.50%.
trans- $\mathbf{R u C l}_{\mathbf{2}}[(\boldsymbol{S})$-binap $][(\boldsymbol{R}, \boldsymbol{R})$-2,5-hexanediamine $][(\boldsymbol{S}, \boldsymbol{R})-\mathbf{3 d}] . \quad$ IR (ATR) 3320, 3054, $2960,1574,1482,1432,1260,1085,1027,806,738,696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.44(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.25-1.31(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 1.52(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 2.73-2.74$ (br m, 4H), 2.99 (br m, 2H), $6.25(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.45-6.47(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 6.65-6.70(\mathrm{t}-$ like m, 2H), 7.10-7.15 (t-like m, 2H), 7.38 (br m, 6H), 7.52 (d, 2H, $J=7.8 \mathrm{~Hz}$), 7.64 (br $\mathrm{m}, 4 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.98(\mathrm{br}, \mathrm{m}, 4 \mathrm{H}), 8.26-8.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (121 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 45.7$ (s). HRMS (ESI $) ~ m / z 910.1706\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{50} \mathrm{H}_{48}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{102} \mathrm{Ru}: 910.1713$. Found: C, $65.93 \%, \mathrm{H}, 5.31 \%$; N, 3.08\%. Calcd for $\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} \bullet 0.25 \mathrm{CHCl}_{3}: \mathrm{C}, 64.16 \% ; \mathrm{H}, 5.17 \% ; \mathrm{N}, 2.98 \%$.
trans- $\mathrm{RuCl}_{2}[(\boldsymbol{R})$-tolbinap $][(\boldsymbol{S}, \boldsymbol{S})$-2,5-hexanediamine] [(R,S)-3e]. IR (ATR) 3316, 3053, 2919, 1499, 1191, 1089, 1037, $804 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.43(\mathrm{~d}$, $6 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.21-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.71$ (br m, 4H), 2.96 (br m, 2H), 6.20-6.24 (m, 6H), 6.63-6.69 (t-like m, 2H), 7.09-7.19 (m, $6 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.90(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 8.26-8.32(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{31} \mathrm{P}$ NMR (121 MHz, CDCl_{3}) $\delta 43.9(\mathrm{~s})$. HRMS (ESI ${ }^{+}$) $m / z 966.2343\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{54} \mathrm{H}_{56}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{102} \mathrm{Ru}: 966.2339$.
(B) Asymmetric Hydrogenation of 3-Quinuclidinone (1a) ($\mathbf{S} / \mathbf{C}=\mathbf{5 0 , 0 0 0}$)

Solid (S, R)-3b ($3.0 \mathrm{mg}, 0.0031 \mathrm{mmol}$) and 3-quinuclidinone (1a) ($18.78 \mathrm{~g}, 150 \mathrm{mmol}$) were placed in a 200 mL SUS autoclave with a Teflon-coated magnetic stirring bar. Air present in the autoclave was replaced by argon. 2-Propanol (49 mL) was added to the autoclave and degassed. A solution of $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}$ in 2-propanol ($1 \mathrm{M}, 1.0 \mathrm{~mL}, 1.0$ mmol) which had been degassed was added to the autoclave. Hydrogen was initially introduced into the autoclave at a pressure of 5 atm , before being reduced to 1 atm by carefully releasing the stop valve. After this procedure was repeated 5 times, the vessel was pressurized to 50 atm . The reaction mixture was vigorously stirred at $25^{\circ} \mathrm{C}$. After stirring for 24 h and carefully venting the hydrogen gas, the solvent was removed under reduced pressure. The residue was purified by silica-gel (Fuji silysia, Chromatorex NH) column chromatography giving (R)-3-quinuclidinol ${ }^{2,3}$ [(R)-2a] (colorless powder, $18.9 \mathrm{~g}, 99 \%$ yield, 97% ee). The enantiomeric excess of 2a was determined by HPLC analysis of acetylated derivative. Column, CHIRALCEL AD-H; eluent, hexane:ethanol:2-propanol $=90: 5: 5$; flow, $0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; column temp, $25^{\circ} \mathrm{C}$; retention time $\left(t_{\mathrm{R}}\right)$ of $\mathrm{Ac}-(S) \mathbf{- 2 a}, 18.3 \mathrm{~min}(1.5 \%) ; t_{\mathrm{R}}$ of $\mathrm{Ac}-(R) \mathbf{- 2 a}, 24.6 \min (98.5 \%)$. $[\alpha]_{\mathrm{D}}{ }^{28}-42.5(c 1.06,1 \mathrm{M} \mathrm{HCl})\left(\right.$ lit. $^{2}[\alpha]_{\mathrm{D}}{ }^{25}-44.9(c 2.0,1 \mathrm{M} \mathrm{HCl}), 96 \%$ ee $\left.(R)\right)$. IR (KBr-disk) 3109 (br), 2941, 2871, 1456, 1346, 1309, 1116, 1045, 988, 817, 795, 773 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.64-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.82(\mathrm{~m}$, 2H), 2.87-2.95 (m including a broad signal, 2H), 3.13 (ddd, $J=14.1,8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83-3.87(m, 1H). ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.9\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 28.3(\mathrm{CH})$, $46.3\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right), 57.9\left(\mathrm{CH}_{2}\right), 67.5(\mathrm{CH}) . \quad \mathrm{HRMS}\left(\mathrm{EI}^{+}\right), m / z 127.0997\left(\mathrm{M}^{+}\right)$, calcd $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}: 127.0997$. Found: C, $65.81 \%, \mathrm{H}, 10.32 \%$; N, 10.94\%. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 66.10 \%$; $\mathrm{H}, 10.30 \%$; N, 11.01%.

(C) Asymmetric Hydrogenation of Bicyclo[2.2.2]octan-2-one (1b) ($\mathbf{S} / \mathbf{C}=\mathbf{1 , 0 0 0}$)

Solid (S, R)-3b ($1.3 \mathrm{mg}, 1.3 \mu \mathrm{~mol}$), $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}(14.9 \mathrm{mg}, 0.133 \mathrm{mmol}$), and bicyclo[2.2.2]octan-2-one (1b) ($167.9 \mathrm{mg}, 1.35 \mathrm{mmol}$) were placed in a $100-\mathrm{mL}$ glass
autoclave with a Teflon-coated magnetic stirring bar under Ar. A degassed (three freeze-thaw cycles) mixture of 2-propanol (4.8 mL) and tert-butylalcohol (1.6 mL) was added to the autoclave. Hydrogen was initially introduced into the autoclave at a pressure of 10 atm , before being reduced to 1 atm by carefully releasing the stop valve. After this procedure was repeated several times, the vessel was pressurized to 20 atm , and then the reaction mixture was vigorously stirred at $20^{\circ} \mathrm{C}$ for 2 h . After venting the hydrogen gas, the solvent was carefully removed under reduced pressure. The residue was purified by silica-gel column chromatography eluted with a hexane-ethyl acetate (7:1 then 4:1) giving (S)-bicyclo[2.2.2]octan-2-ol ${ }^{4}[(S)$-2b] (colorless crystals, $153.4 \mathrm{mg}, 90 \%$ yield, 98% ee). The enantiomeric excess of $\mathbf{2 b}$ was determined by GC analysis. Column, BETA DEX-120 ($0.25 \times 30, \mathrm{DF}=0.25$); carrier, $\mathrm{He}(100 \mathrm{kPa})$; oven temp, $80^{\circ} \mathrm{C}, 2 \mathrm{~min}$ hold, $1^{\circ} \mathrm{C} / \mathrm{min}$ to $140^{\circ} \mathrm{C}$; t_{R} of $(R)-\mathbf{2 b}, 47.98 \mathrm{~min}(1 \%) ; t_{\mathrm{R}}$ of $(S)-\mathbf{2 b}$, $48.34 \mathrm{~min}(99 \%) . \quad[\alpha]_{\mathrm{D}}{ }^{28}+33.0\left(c 1.01, \mathrm{CHCl}_{3}\right) . \quad\left(\right.$ lit. $^{4}[\alpha]_{\mathrm{D}}{ }^{27}+31.3\left(c 1.4, \mathrm{CHCl}_{3}\right)$, 97.8% ee (S)). IR (KBr-disk) 3357, 2932, 2861, 1456, 1362, 1092, $1034 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.97-2.05(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.5$ $\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 24.7(\mathrm{CH}), 25.6\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 69.6$ (CH). $\operatorname{HRMS}\left(\mathrm{EI}^{+}\right), m / z 126.1045\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}: 126.1045$. Found: C, $76.14 \%, \mathrm{H}, 11.37 \%$. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 76.14 \% ; \mathrm{H}, 11.18 \%$.

(D) Asymmetric Hydrogenation of (\pm)-Benzobicyclo[2.2.2]octen-2-one [(\pm)-4]

Solid (S, R)-3b ($1.3 \mathrm{mg}, 1.3 \mu \mathrm{~mol}$), t - $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}(16.6 \mathrm{mg}, 0.148 \mathrm{mmol})$, and (\pm)-4 $\mathbf{4}^{5}(224.0$ $\mathrm{mg}, 1.30 \mathrm{mmol}$) were placed in a $100-\mathrm{mL}$ glass autoclave with a Teflon-coated magnetic stirring bar under Ar. A degassed (three freeze-thaw cycles) mixture of 2propanol (4.9 mL) and tert-butylalcohol (1.5 mL) was added to the autoclave. Hydrogen was initially introduced into the autoclave at a pressure of 10 atm , before being reduced to 1 atm by carefully releasing the stop valve. After this procedure was repeated several times, the vessel was pressurized to 20 atm , and then the reaction mixture was vigorously stirred at $20^{\circ} \mathrm{C}$ for 2 h . After venting the hydrogen gas, the
solvent was carefully removed under reduced pressure. The residue was purified on silica-gel preparative thin-layer chromatography developed with a toluene-ethyl acetate (10:1) giving ($1 R, 2 S, 4 R$)-benzobicyclo[2.2.2]octen-2-ol ${ }^{4.5}$ (5, exo-alcohol) (colorless crystals, $94.2 \mathrm{mg}, 42 \%$ yield, 99% ee), and ($1 S, 2 S, 4 S$)-benzobicyclo[2.2.2]octen-2-ol ${ }^{4,5}$ (6 , endo-alcohol) (colorless crystals, $103.5 \mathrm{mg}, 46 \%$ yield, 96% ee). The enantiomeric excess of 5 and $\mathbf{6}$ was determined by HPLC analysis. For 5: Column, CHIRALCEL OD-H; eluent, hexane:2-propanol $=95: 5$; flow, $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$; column temp, $40{ }^{\circ} \mathrm{C}$; retention time $\left(t_{\mathrm{R}}\right)$ of $(1 S, 2 R, 4 S)-\mathbf{5}, 13.7 \mathrm{~min}(0.3 \%) ; t_{\mathrm{R}}$ of $(1 R, 2 S, 4 R)-\mathbf{5}, 16.0 \mathrm{~min}$ (99.7\%). For 6: Column, CHIRALCEL OJ-H; eluent, hexane:2-propanol $=90: 10$; flow, $0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; column temp, $40^{\circ} \mathrm{C}$; retention time $\left(t_{\mathrm{R}}\right)$ of $(1 S, 2 S, 4 S)-6,23.8 \mathrm{~min}$ (97.9\%); t_{R} of $(1 R, 2 R, 4 R)-\mathbf{6}, 31.5 \mathrm{~min}(2.1 \%)$. exo-alcohol $(1 R, 2 S, 4 R)-5:[\alpha]_{\mathrm{D}}{ }^{28}+7.3$ (c 1.03, CHCl_{3}), lit. ${ }^{4}[\alpha]_{\mathrm{D}}+7.7\left(\mathrm{CHCl}_{3}\right.$, (S)-config., extrapolated). IR (KBr-disk) 3319 (br), 2945, 1482, 1460, 1077, 1051, 1012, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.23-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.03$ (m, 1H), 2.26-2.34 (m, 1H), 2.96-2.99 (m, 1H), 3.01-3.03 (m, 1H), 3.91-3.94 (m, 1H), 7.11-7.14 (m, 1H), 7.17-7.21 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right)$, $34.6(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 42.2(\mathrm{CH}), 69.5(\mathrm{CH}), 123.5(\mathrm{CH}), 124.7(\mathrm{CH})$, $126.0(\mathrm{CH}), 126.4(\mathrm{CH}), 141.4(\mathrm{C}), 143.8(\mathrm{C}) . \quad$ endo-alcohol ($1 S, 2 S, 4 S)-6:[\alpha]_{\mathrm{D}}{ }^{28}-$ 20.0 (c 1.04, CHCl_{3}), lit. ${ }^{4}[\alpha]_{\mathrm{D}}{ }^{27}-18.55\left(c 0.9, \mathrm{CHCl}_{3}\right), 85 \%$ ee (S)). IR (KBr , disk) 3281 (br), 3211 (br), 2941, 2864, 1485, 1330, 1080, 1035, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.72$ (m, 2H), 2.26 (ddd, $J=14.0,8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03-3.06 (m, 1H), 3.09$3.11(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 22.5\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 34.1(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 69.7$ $(\mathrm{CH}), 123.5(\mathrm{CH}), 126.2(\mathrm{CH}), 126.65(\mathrm{CH}), 126.72(\mathrm{CH}), 138.4(\mathrm{C}), 144.0(\mathrm{C})$.

(E) Asymmetric Hydrogenation of ($\mathbf{\pm})$-Norcamphor [(\pm)-7] ($\mathbf{S / C}=\mathbf{1 , 0 0 0}$)

Solid (S, R)-3b ($1.4 \mathrm{mg}, 1.4 \mu \mathrm{~mol}$), $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}(16.0 \mathrm{mg}, 0.143 \mathrm{mmol}$), and (\pm)norcamphor $[(\pm)-7](158.0 \mathrm{mg}, 1.43 \mathrm{mmol})$ were placed in a $100-\mathrm{mL}$ glass autoclave with a Teflon-coated magnetic stirring bar under Ar. A degassed (three freeze-thaw cycles) mixture of 2-propanol (4.8 mL) and tert-butylalcohol (1.6 mL) was added to the autoclave. Hydrogen was initially introduced into the autoclave at a pressure of 10 atm, before being reduced to 1 atm by carefully releasing the stop valve. After this procedure was repeated several times, the vessel was pressurized to 10 atm , and then the reaction mixture was vigorously stirred at $20{ }^{\circ} \mathrm{C}$ for 2 h . After venting the hydrogen gas, the solvent was carefully removed under reduced pressure. The residue was purified by silica-gel thin layer chromatography developed with a 7:1 hexane-ethyl acetate to give a diastereomeric mixture of norborneol [8 (exo) and $\mathbf{9}$ (endo), 8:9 = 11:89] (colorless crystals, $115.1 \mathrm{mg}, 72 \%$ yield). This sample contained a small amount of ethyl acetate $(4 \%(\mathrm{w} / \mathrm{w}))$. The ratio of diastereomers was determined by GC analysis. Column, BETA DEX-325 ($0.25 x 30, \mathrm{DF}=0.25$); carrier, $\mathrm{He}(100 \mathrm{kPa})$; oven temp, $100{ }^{\circ} \mathrm{C}$ isothernal, t_{R} of $(1 R, 2 R, 4 S)-\mathbf{8}, 17.14 \min (0.28 \%) ; t_{\mathrm{R}}$ of $(1 S, 2 S, 4 R)-\mathbf{8}$, $17.59 \min (11.3 \%), t_{\mathrm{R}}$ of $(1 S, 2 R, 4 R)-9,18.19 \mathrm{~min}(38.5 \%) ; t_{\mathrm{R}}$ of $(1 R, 2 S, 4 S)-9,18.65$ $\min (49.9 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84\left(\mathrm{dt}\right.$, endo- $\left.1 \mathrm{H}, J_{\mathrm{d}}=12.7, J_{\mathrm{t}}=3.4 \mathrm{~Hz}\right)$, 0.98-1.05 (m, exo-2H), 1.10-1.14 (m, exo-1H), 1.26-1.70 (m, endo-6H and exo-6H), 1.84-1.99 (m, endo-2H), 2.14-2.26 (m, endo-2H and exo-2H), 3.76 (br d, exo-1H, $J=6.8 \mathrm{~Hz}$), 4.23 (br m, endo-1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.8$ (endo, CH_{2}), 24.3 (exo, CH_{2}), 28.0 (exo, CH_{2}), 29.8 (endo, CH_{2}), 34.3 (exo, CH_{2}), 35.3 (exo, CH), 37.1 (endo, CH), 37.5 (endo, CH_{2}), 39.3 (endo, CH_{2}), 42.1 (exo, CH_{2}), 42.4 (endo, CH), 44.1 (exo, CH), 72.8 (endo, CH), 74.7 (exo, CH).

(F) Asymmetric Hydrogenation of (\pm)-2-Diphenylmethyl-3-quinuclidinone [\pm)10]

Solid (S, R)-3b ($2.6 \mathrm{mg}, 0.0027 \mathrm{mmol}$) and (\pm)-2-diphenylmethyl-3-quinuclidinone ${ }^{6,7}$ $[(\pm)-10](7.71 \mathrm{~g}, 26.5 \mathrm{mmol})$ were placed in a 200 mL SUS autoclave with a Teflon-
coated magnetic stirring bar. Air present in the autoclave was replaced by argon. 2Propanol (108 mL) and dimethylacetamide (18 mL) were added to the autoclave. Argon was introduced into the autoclave at a pressure of 5 atm , then released to 1 atm . This procedure was repeated 5 times. A solution of $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}$ in 2-propanol (1 M, 2.6 $\mathrm{mL}, 2.6 \mathrm{mmol}$) which had been degassed was added to the autoclave. Hydrogen was initially introduced into the autoclave at a pressure of 5 atm , before being reduced to 1 atm by carefully releasing the stop valve. After this procedure was repeated 5 times, the vessel was pressurized to 50 atm . The reaction mixture was vigorously stirred at $25^{\circ} \mathrm{C}$. After stirring for 24 h and carefully venting the hydrogen gas, the solvent was removed under reduced pressure. The residue was purified by silica-gel (Fuji silysia, Chromatorex NH) column chromatography giving (2S,3S)-2-diphenylmethyl-3quinuclidinol ${ }^{8}[(S, S)-\mathbf{1 1}]$ (colorless powder, $7.73 \mathrm{~g}, 99 \%$ yield, $>99 \%$ ee) as a single diastereomer. The enantiomeric excess of $\mathbf{1 1}$ was determined by HPLC analysis. Column, CHIRALCEL OD-RH; eluent, $\mathrm{CH}_{3} \mathrm{CN}: 0.1 \mathrm{M}$ aq. $\mathrm{KPF}_{6}=70: 30$; flow, 0.5 $\mathrm{mL} \mathrm{min}{ }^{-1}$; column temp, $25^{\circ} \mathrm{C}$; retention time $\left(t_{\mathrm{R}}\right)$ of (R, R)-11, $33.7 \mathrm{~min}\left(t_{\mathrm{R}}\right.$ of racemic 11) $\left(<0.5 \%\right.$ not detected); t_{R} of $(S, S)-\mathbf{1 1}, 41.1 \mathrm{~min}(>99.5 \%) . \quad[\alpha]_{\mathrm{D}}{ }^{26}+11.6(c \quad 1.0$, $\left.\mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{8}[\alpha]_{\mathrm{D}}+11.6\left(c \quad 1, \mathrm{CDCl}_{3}\right), 99.5 \%$ ee $\left.(S, S)\right) . \quad$ IR (KBr-disk) 3430 (br), 3024, 2935, 2869, 1597, 1495, 1450, 1066, 1042, 755, 741, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.12-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 1.47-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.96$ $(\mathrm{m}, 2 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.83(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.67(\mathrm{~m}, 1 \mathrm{H})$, 3.94-3.99 (m, 1H), $4.48(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 7.07-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 28.4(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right), 49.0$ $\left(\mathrm{CH}_{2}\right), 49.2(\mathrm{CH}), 63.3(\mathrm{CH}), 68.9(\mathrm{CH}), 126.1(\mathrm{CH}), 126.7(\mathrm{CH}), 127.6(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 129.3(\mathrm{CH}), 143.6(\mathrm{C}), 144.3(\mathrm{C}) . \quad$ HRMS ($\left.\mathrm{EI}^{+}\right) \mathrm{m} / z 293.1778\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}: 293.1780$. Found: C, $81.36 \%, \mathrm{H}, 8.01 \%$; N, 4.67\%. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 81.87 \% ; \mathrm{H}, 7.90 \% ; \mathrm{N}, 4.77 \%$.

(G) Comment on the Catalytic Cycle

A plausible catalytic cycle for the hydrogenation of ketones with BINAP/1,4-diamineRu complexes 3 in 2-propanol is shown in Scheme S1 by analogy with the mechanism of BINAP/DPEN-Ru catalyzed hydrogenation. ${ }^{9}$ The excellent activity of this catalyst is rationalized by a non-classical "metal-ligand cooperative mechanism" using the NH functionality. The precatalyst dichloride complex \mathbf{A} is converted to the cationic species \mathbf{B} by releasing two HCl molecules with the assistance of a base, followed by hydride donation from 2-propanol or H_{2}. Then, \boldsymbol{B} reacts with an H_{2} molecule to form a cationic intermediate \mathbf{C}, which undergoes deprotonation with a solvent molecule to afford the active RuH_{2} species \mathbf{D}. This process is promoted by a base. Ketone is promptly reduced by \mathbf{D}, resulting in the alcoholic product and the 16 -electron $\mathrm{Ru}-$ amide complex E. This species is easily protonated in an alcoholic solvent to regenerate the cationic amino complex \mathbf{B}, while it partially returns to \mathbf{D} by reaction with H_{2}. The active species \mathbf{D} has a $f a c$-structure for the hydride and two nitrogen atoms of the diamine, so that this species and a ketonic substrate react smoothly through the sixmembered pericyclic transition state \mathbf{F}. Ketone is hydrogenated in the outer coordination sphere of \mathbf{D}, where neither ketone $/ \mathrm{Ru}$ nor alkoxy $/ \mathrm{Ru}$ interaction is involved.

SCHEME S1. Plausible Catalytic Cycle for BINAP/1,4-diamine-Ru-catalyzed Hydrogenation of Ketones. $\mathrm{P}-\mathrm{P}=(S)$-BINAP. $\mathrm{NH}_{2}-\mathrm{NH}_{2}=1,4$-diamine.

(H) References

(1) Ohkuma, T.; Hattori, T.; Ooka, H.; Inoue, T.; Noyori, R. Org. Lett. 2004, 6, 2681-2683.
(2) Nomoto, F.; Hirayama, Y.; Ikunaka, M.; Inoue, T.; Otsuka, K. Tetrahedron: Asymmetry 2003, 14, 1871-1877.
(3) Knight, D. W.; Lewis, N.; Share, A. C.; Haigh, D. J. Chem. Soc., Perkin Trans. 1 1998, 3673-3683.
(4) Nakazaki, M.; Chikamatsu, H.; Naemura, K.; Asao, M. J. Org. Chem. 1980, 45, 4432-4440.
(5) Morrison, H; Muthuramu, K.; Pandey, G.; Severance, D.; Bigot, B. J. Org. Chem. 1986, 51, 3358-3363.
(6) Warawa, E. J.; Mueller, N. J.; Jules, R. J. Med. Chem. 1974, 17, 497-501.
(7) Basford, P. A.; Post, R. J.; Smith, J. D.; Taber, G. P. WO2005075473, 2005; Chem. Abstr. 2005, 143, 230050.
(8) Swain, C. J.; Seward, E. M.; Cascieri, M. A.; Fong, T. M.; Herbert, R.; MacIntyre, D. E.; Merchant, K. J.; Owen, S. N.; Owens, A. P.; Sabin, V.; Teall, M.; VanNiel, M. B.; Williams, B. J.; Sadowski, S.; Strader, C.; Ball, R. G.; Raymond, B. J. Med. Chem. 1995, 38, 4793-4805.
(9) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490-13503.

(I) Spectral Charts

\square
(s)

C: \WINNMR98\COMMON _DEFAULT.ALS
(S,R)-3d
\qquad

				1	

ss_433 13C
(R)-2a

