Brønsted Acid-Mediated Nazarov Cyclization of Vinyl Allenes

Yen-Ku Wu and F. G. West*
Department of Chemistry, University of Alberta, E3-43 Gunning-Lemieux Chemistry Centre, Edmonton, AB, Canada T6G 2G2
frederick.west@ualberta.ca

Supporting Information: Experimental procedures, characterization data for all compounds and synthetic intermediates.

Contents:

Experimental Procedures. S-1-S-18
General Information S-1
Acetylide Adducts 1a-I. S-2-S-6
TES Ethers 2a-l S-6-S-11
Rearrangement Products 4, 5 and 9 S-11-S-17
Stereochemical Assignment via Nitrobenzoate 11 S-17-S-18
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. S-19-S-108

General Information. Reactions were carried out in flame-dried glassware under a positive argon atmosphere unless otherwise stated. Transfer of anhydrous solvents and reagents was accomplished with oven-dried syringes or cannulae. Solvents were distilled before use: methylene chloride from calcium hydride, tetrahydrofuran, diethylether and benzene from sodium/benzophenone ketyl, toluene from sodium metal. All other solvents and commercially available reagents were either purified by standard procedures or used without further purification. Thin layer chromatography was performed on glass plates precoated with 0.25 mm silica gel; the stains for TLC analysis were conducted with $2.5 \% p$-anisaldehyde in $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{EtOH}(1: 3: 85)$ and further heating until development of color. Flash chromatography was performed on 230-400 mesh silica gel with the indicated eluents. Nuclear magnetic resonance (NMR) spectra were recorded in indicated deturated solvents and are reported in ppm in the presence of TMS as internal standard and coupling constants (J) are reported in Hertz (Hz). Infrared (IR) spectra were recorded neat and reported in cm^{-1}. Mass spectra were recorded by using EI or ESI as specified in each case.

(E)-2-Methyl-1,5-diphenylpent-1-en-4-yn-3-ol (1a).

To a flame-dried round bottom flask containing a magnetic stirring bar was added phenylacetylene ($3.98 \mathrm{mmol}, 406 \mathrm{mg}$) and ether (8 mL) under Ar. The temperature of the solution was dropped to -78 ${ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.60 \mathrm{M}$ solution in hexane, $3.98 \mathrm{mmol}, 2.48 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred at the same temperature for 30 min . The α-methyl-trans-cinnamaldehyde (3.98 $\mathrm{mmol}, 581 \mathrm{mg}$) was added and the resulting solution was allowed to warm to room temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with ether. The separated organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated to provide pure compound 1a (850 mg , yield 86%): $\mathrm{R}_{f} 0.28$ (hexane:EtOAc 4:1); IR (film) 3341 (br), 3081, 3056, 3024, 2981, 2917, 2859, 2201, 1664, 1598, 1573, 1489, 1442, 1381, 1361, 1281, 1070, 1008, 998, $756,691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.27(\mathrm{~m}$, $1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHZ , $\left.\mathrm{CDCl}_{3}\right) \delta 137.0,136.7,131.7,129.0,128.5,128.2,128.1,127.2,126.7,122.4,88.0,86.3,68.7,14.1 ;$ HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$ calcd 248.1201, found: m/z 248.1196.

(\boldsymbol{E})-2-Methyl-1-phenylundec-1-en-4-yn-3-ol (1b).

Synthesized according to the previous procedure using α-methyl-trans-cinnamaldehyde (5.61 mmol , 819 mg), 1-octyne ($5.61 \mathrm{mmol}, 619 \mathrm{mg}$), and $n-\operatorname{BuLi}(5.61 \mathrm{mmol}, 3.50 \mathrm{~mL})$ to afford $\mathbf{1 b}(1.187 \mathrm{~g}$, yield 83%) as a pale yellow oil: $\mathrm{R}_{f} 0.50$ (hexane:EtOAc 4:1); IR (film) 3354 (br), 3082, 3057, 3025, 2955, 2930, 2858, 2274, 2223, 1682, 1621, 1600, 1492, 1446, 1378, 1304, 1131, 1011, 751, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 2.26$ (td, $J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}$, $2 \mathrm{H})$ 1.34-1.24 (m, 4H), $0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.6, 137.5, 129.2, 128.3, 126.9, 126.9, 87.6, 79.4, 68.8, 31.5, 28.8, 22.7, 19.0, 14.2 [Two aliphatic carbon signals are missing due to peak overlap.]; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ calcd 256.1827, found: $\mathrm{m} / \mathrm{z} 256.1826$.

(E)-2,6-Dimethyl-1-phenylhepta-1,6-dien-4-yn-3-ol (1c).

Synthesized according to the previous procedure using α-methyl-trans-cinnamaldehyde (4.12 mmol , 601 mg), 2-methylbut-1-en-3-yne ($4.12 \mathrm{mmol}, 272 \mathrm{mg}$), and $n-\operatorname{BuLi}(4.12 \mathrm{mmol}, 2.57 \mathrm{~mL})$ to afford

1c (786 mg , yield 90%) as a pale yellow oil: $\mathrm{R}_{f} 0.61$ (hexane: EtOAC 4:1); IR (film) 3372 (br), 3057, 3025, 2952, 2921, 2856, 2199, 1615, 1446, 1373, 1291, 1073, 1010, 899, 753, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{app}$. quintet, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=1.4,1.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.3, 137.0, 129.2, 128.3, 127.4, 127.0, 126.4, 122.8, 87.8, 87.2, 68.9, 23.5, 14.3. HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ calcd 212.1201, found: $\mathrm{m} / \mathrm{z} 212.1193$.

(E)-4-Methyl-1-phenylhex-4-en-1-yn-3-ol (1d).

Synthesized according to the previous procedure using (E)-2-methylbut-2-enal ($2.69 \mathrm{mmol}, 226 \mathrm{mg}$), phenylacetylene ($2.69 \mathrm{mmol}, 275 \mathrm{mg}$), and $n-\operatorname{BuLi}(2.69 \mathrm{mmol}, 1.68 \mathrm{~mL})$ to afford $\mathbf{1 d}(455 \mathrm{mg}$, yield 91%) as a pale yellow oil: $\mathrm{R}_{f} 0.44$ (hexane:EtOAc 4:1); IR (microsope) 3353 (br), 3080, 3057, 3033, 2978, 2919, 2860, 2198, 1673, 1598, 1489, 1443, 1380, 1069, 1006, 996, 756, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.79(\mathrm{qq}, J=6.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.01(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.3,131.9,128.6,128.5,122.9,122.9,88.9,86.1,68.7,13.5,12.3$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ calcd 186.1045, found: m/z 186.1045.

(E)-3-Methyldodec-2-en-5-yn-4-ol (1e).

Synthesized according to the previous procedure using (E)-2-methylbut-2-enal ($4.29 \mathrm{mmol}, 360 \mathrm{mg}$), 1 -octyne ($4.29 \mathrm{mmol}, 473 \mathrm{mg}$), and $n-\operatorname{BuLi}(4.29 \mathrm{mmol}, 2.68 \mathrm{~mL})$ to afford $\mathbf{1 e}(779 \mathrm{mg}, 94 \%)$ as a pale yellow oil: $\mathrm{R}_{f} 0.56$ (hexane: EtOAc 4:1); IR (microscope) 3347 (br), 2956, 2930, 2859, 2229, $1674,1456,1379,1135,995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68(\mathrm{qq}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (br s, 1H), 2.25 (td, $J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\operatorname{app} \mathrm{t}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.5,122.1,86.8,79.5,68.3,31.3,28.5,28.5,22.5,18.7,14.0,13.2,11.8 ;$ HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ calcd 194.1671, found: m/z 194.1672.

(4E)-1-cyclohexenyl-4-methylhex-4-en-1-yn-3-ol (1f).

Synthesized according to the previous procedure using (E)-2-methylbut-2-enal ($4.31 \mathrm{mmol}, 362 \mathrm{mg}$),

1-ethynylcyclohex-1-ene ($4.31 \mathrm{mmol}, 458 \mathrm{mg}$), and $n-\operatorname{BuLi}(4.31 \mathrm{mmol}, 2.69 \mathrm{~mL})$ to afford $\mathbf{1 f}(778$ mg , yield 95%) as a pale yellow oil: $\mathrm{R}_{f} 0.60$ (hexane:EtOAc 4:1); IR (microscope) 3356 (br), 3027, 2930, 2859, 2218, 2184, 1670, 1631, 1436, 1379, 1199, 1003, 918, $841 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.12$ (app. quintet, $\left.J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.69(\mathrm{qqd}, J=6.8,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$, 2.13-2.06 (m, 4H), $1.75(\mathrm{app} \mathrm{t}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 4 \mathrm{H})[\mathrm{OH}$ peak is not observed.]; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.3,135.2,122.4,120.1,87.8,85.7,68.5$, 29.1, 25.6, 22.2, 21.4, 13.2, 11.9; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$ calcd 190.1358, found: $\mathrm{m} / \mathrm{z} 190.1354$.

(E)-4-Methyl-1,7-diphenylhept-4-en-1-yn-3-ol (1g).

Synthesized according to the previous procedure using (E)-2-methyl-5-phenylpent-2-enal (3.18 $\mathrm{mmol}, 554 \mathrm{mg}$), phenylacetylene ($3.18 \mathrm{mmol}, 324 \mathrm{mg}$), and $n-\operatorname{BuLi}(3.18 \mathrm{mmol}, 1.98 \mathrm{~mL})$ to afford $\mathbf{1 g}$ (792 mg , yield 91%) as a pale yellow oil: $\mathrm{R}_{f} 0.55$ (hexane:EtOAc 4:1); IR (film) 3370 (br), 3083, 3061, 3026, 2925, 2857, 2225, 2203, 1671, 1599, 1489, 1453, 1443, 1302, 1029, 1007, 996, 756, 691 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.77$ (tq, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\operatorname{app~q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$ (br s, 1H), $1.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,135.2,131.9,128.7,128.6,128.5$, 128.5, 127.6, 126.1, 122.8, 88.5, 86.2, 68.7, 35.7, 29.9, 12.6; HRMS (EI, M^{+}) for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$ calcd 276.1514, found: m/z 276.1509.

1-Cyclohexenyl-3-phenylprop-2-yn-1-ol (1h).

Synthesized according to the previous procedure using cyclohex-1-enecarbaldehyde ($2.61 \mathrm{mmol}, 287$ mg), phenylacetylene ($2.61 \mathrm{mmol}, 267 \mathrm{mg}$), and $n-\operatorname{BuLi}(2.61 \mathrm{mmol}, 1.63 \mathrm{~mL})$ to afford $\mathbf{1 h}(454 \mathrm{mg}$, yield 82%) as a pale yellow oil: $\mathrm{R}_{f} 0.48$ (hexane:EtOAc 4:1); IR (microscope) 3406 (br), 3056, 3033, 2930, 2858, 2197, 1714, 1669, 1627, 1489, 1443, 1305, 1029, 1010, 916, 756, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 2.33-2.26$ $(\mathrm{m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,131.9,128.6,128.5,125.3,122.9,88.6,86.1,67.5,25.3,24.4$, 22.7, 22.4; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ calcd 212.1201, found: $\mathrm{m} / \mathrm{z} 212.1199$.

1-Cyclohexenylnon-2-yn-1-ol (1i).

Synthesized according to the previous procedure using cyclohex-1-enecarbaldehyde ($3.25 \mathrm{mmol}, 357$ mg), 1-octyne ($3.25 \mathrm{mmol}, 357 \mathrm{mg}$), and $n-\operatorname{BuLi}(3.25 \mathrm{mmol}, 2.03 \mathrm{~mL})$ to afford $\mathbf{1 i}(652 \mathrm{mg}$, yield 92%) as a pale yellow oil: $\mathrm{R}_{f} 0.58$ (hexane:EtOAc 4:1); IR (microscope) 3542 (br), 2930, 2858, 2222, 1636, 1457, 1378, 1136, 992, $847 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H})$, $2.23(\mathrm{td}, J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,124.6,86.9$, $79.7,67.3,31.5,28.8,28.7,25.2,24.3,22.7,22.7,22.5,19.0,14.2$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ calcd 220.1827, found: m/z 220.1827.

3-Cyclohexenyl-1-cyclopentenylprop-2-yn-1-ol (1j).

Synthesized according to the previous procedure using cyclopent-1-enecarbaldehyde $(4.69 \mathrm{mmol}$, 450 mg), 1-ethynylcyclohex-1-ene ($4.69 \mathrm{mmol}, 497 \mathrm{mg}$), and $n-\operatorname{BuLi}(4.69 \mathrm{mmol}, 2.93 \mathrm{~mL}$) to afford $\mathbf{1 j}$ (923 mg , yield 98\%) as a pale yellow oil: $\mathrm{R}_{f} 0.60$ (hexane:EtOAc 4:1); IR (microscope) 3355 (br s), $3026,2931,2855,2217,2185,1713,1629,1436,1298,1040,950,918 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.12(\mathrm{tt}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 2.52-2.28(\mathrm{~m}, 5 \mathrm{H}), 2.13-2.06(\mathrm{~m}$, $4 \mathrm{H}), 1.94$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.66-1.56 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,135.4$, 127.5, 120.1, 87.1, 85.5, 62.0, 32.2, 31.4, 29.1, 25.5, 23.3, 22.2, 21.4; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ calcd 202.1358, found: m/z 202.1353.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-3-phenylprop-2-yn-1-ol (1k).

Synthesized according to the previous procedure using (-)-myrtenal ($3.59 \mathrm{mmol}, 539 \mathrm{mg}$), phenylacetylene ($3.59 \mathrm{mmol}, 366 \mathrm{mg}$), and $n-\operatorname{BuLi}(3.59 \mathrm{mmol}, 2.24 \mathrm{~mL})$ to afford $\mathbf{1 k}(904 \mathrm{mg}$, yield 99%) as an inseparable mixture of two diastereomers ($\mathrm{dr}=1: 1$): $\mathrm{R}_{f} 0.50$ (hexane:EtOAc 4:1); Spectral data for the mixture of isomers: IR (microscope) 3341 (br s), 3081, 3054, 3033, 2985, 2915, 2885, 2830, 2226, 1598, 1490, 1443, 1381, 1365, 1264, 1030, 1014, 1030, 957, 755, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.77(\mathrm{td}, J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.75-5.74 (m, 1H), $5.02(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.31$ (m, 4H), 2.30-2.20 (m, 2H), 2.17-2.14 (m, 2H), $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{dd}, J=8.2,3.0 \mathrm{~Hz}$, $2 \mathrm{H} ; 2$ overlapping 1 H signals), $0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9$, $146.9,131.9,131.9,128.6,128.5,128.5,122.9,120.3,119.4,88.31,85.8,85.6,65.9,65.5,43.2,42.9$, 41.0, 41.0, 38.3, 32.0, 31.9, 31.4, 31.4, 26.3, 21.5, 21.4 [Some carbon signals are missing due to peak overlap.]; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$ calcd 252.1514, found: $\mathrm{m} / \mathrm{z} 252.1513$.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)non-2-yn-1-ol (11).

Synthesized according to the previous procedure using (-)-myrtenal ($3.14 \mathrm{mmol}, 471 \mathrm{mg}$), 1-octyne ($3.14 \mathrm{mmol}, 346 \mathrm{mg}$), and $n-\mathrm{BuLi}(3.14 \mathrm{mmol}, 1.96 \mathrm{~mL})$ to afford $\mathbf{1 1}(711 \mathrm{mg}$, yield $87 \%)$ as an inseparable mixture of two diastereomers ($\mathrm{dr}=1: 1$): $\mathrm{R}_{f} 0.56$ (hexane:EtOAc 4:1); Spectral data for the mixture of isomers: IR (microscope) 3365 (br s), 2984, 2930, 2871, 2832, 2222, 1614, 1467, 1381, 1365, 1001, $965 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.65-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}, 4 \mathrm{H})$, $2.12-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 8 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5,119.6,118.9,86.6,86.4$, 79.2, 79.1, 65.7, 65.3, 43.0, 42.8, 41.0, 41.0, 38.1, 38.1, 32.0, 31.9, 31.5, 31.3, 31.3, 28.8, 28.8, 28.7, 28.7, 26.3, 22.7, 21.4, 21.2, 18.9, 14.2 [Some carbon signals are missing due to peak overlap.]; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}$ calcd 260.2140, found: m/z 260.2138.
($($ E)-2-Methyl-1,5-diphenylpent-1-en-4-yn-3-yloxy)triethylsilane (2a).

To a flame-dried round bottom flask containing a magnetic stirring bar was sequentially added hydroxyenyne 1a ($1.06 \mathrm{mmol}, 264 \mathrm{mg}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and 2,6-lutidine ($3.18 \mathrm{mmol}, 0.37 \mathrm{~mL}$) under Ar. The temperature of the solution was dropped to $-78{ }^{\circ} \mathrm{C}$. Triethylsilyl trifluoromethanesulfonate ($1.59 \mathrm{mmol}, 0.36 \mathrm{~mL}$) was added dropwise and the resulting solution was stirred at the same temperature for 30 min . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The separated organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude mixture thus obtained was purified by flash column chromatography (silica gel, 2\% EtOAc/hexane) to give pure siloxyenyne 2a (369 mg , yield 96%): R_{f} 0.80 (hexane:EtOAc 4:1); IR (film) 3081, 3060, 3026, 2956, 2912, 2876, 2203, 1691, 1665, 1490, $1450,1238,1060,1003,754,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35$ $(\mathrm{m}, 7 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.06(\mathrm{~m}, 9 \mathrm{H})$, $0.86-0.80(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,137.5,131.6,129.0,128.2,128.0,126.5$, 125.7, 123.0, 89.2, 85.0, 68.7, 14.1, 6.8, 4.9 [One sp ${ }^{2}$ carbon signal is missing due to peak overlap.]; HRMS ($\mathrm{EI}, \mathrm{M}^{+}$) for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{OSi}$ calcd 362.2066, found: $\mathrm{m} / \mathrm{z} 362.2063$.

((E)-2-Methyl-1-phenylundec-1-en-4-yn-3-yloxy)triethylsilane (2b).

Prepared according to the previous procedure using $\mathbf{1 b}$ ($1.95 \mathrm{mmol}, 500 \mathrm{mg}$), 2,6-lutidine (5.85 mmol, 0.68 mL), triethylsilyl trifluoromethanesulfonate ($2.93 \mathrm{mmol}, 0.66 \mathrm{~mL}$) to afford $\mathbf{2 b}(721 \mathrm{mg}$, yield 99%) as a pale yellow oil: $\mathrm{R}_{f} 0.85$ (hexane:EtOAc 4:1); IR (microsope) 3062, 3029, 2956, 2932, 2875, 2860, 2211, 1712, 1671, 1601, 1455, 1413, 1379, 1239, 1069, 1005, 745, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.23(\operatorname{td} J=$ $7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 4 \mathrm{H})$, $1.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-0.66(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 138.5,137.9,129.2,128.2,126.6,125.4,86.0,80.2,68.7,31.5,28.8,28.8,22.8,19.1,14.2,7.0,5.1$ [One aliphatic carbon signal is missing due to peak overlap.]; HRMS (EI, M^{+}) for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{OSi}$ calcd 370.2692, found: m/z 370.2684.

((E)-2,6-Dimethyl-1-phenylhepta-1,6-dien-4-yn-3-yloxy)triethylsilane (2c).

Prepared according to the previous procedure using $\mathbf{1 c}(0.92 \mathrm{mmol}, 193 \mathrm{mg}), 2,6$-lutidine (2.76 mmol, 0.32 mL), triethylsilyl trifluoromethanesulfonate ($1.38 \mathrm{mmol}, 0.31 \mathrm{~mL}$) to afford $\mathbf{2 c}(283 \mathrm{mg}$, yield 95%) as a pale yellow oil: $\mathrm{R}_{f} 0.78$ (hexane:EtOAc 4:1); IR (film) 3061, 3027, 2956, 2913, 2877, 2204, 1721, 1679, 1616, 1454, 1413, 1239, 1072, 1005, 746, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 5.22$ (app. quintet, $J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J=1.4,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H})$, $0.71(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,137.8,129.2,128.3,126.8,126.7,125.8,122.0$, 88.4, 86.5, 68.8, 23.5, 14.3, 7.0, 5.12; HRMS (EI, M^{+}) for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{OSi}$ calcd 326.2066, found: m / z 326.2063 .

((E)-4-Methyl-1-phenylhex-4-en-1-yn-3-yloxy)triethylsilane (2d).

Prepared according to the previous procedure using 1d ($1.38 \mathrm{mmol}, 258 \mathrm{mg}$), 2,6-lutidine (4.14 $\mathrm{mmol}, 0.48 \mathrm{ml}$), triethylsilyl trifluoromethanesulfonate ($2.07 \mathrm{mmol}, 0.47 \mathrm{ml}$) to afford $\mathbf{2 d}(296 \mathrm{mg}$, yield 72%) as a pale yellow oil: $\mathrm{R}_{f} 0.80$ (hexane:EtOAc 4:1); IR (film) 3081, 3033, 2955, 2937, 2913, 2876, 2202, 1689, 1672, 1632, 1598, 1490, 1458, 1317, 1239, 1055, 1005, 754, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.74(\mathrm{qqd}, J=6.4,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (br s, 1H), 1.82 (app. t, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.70 (dd, $J=6.8,0.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.04 (t, $J=7.8 \mathrm{~Hz}, 9 \mathrm{H}$),
$0.77-0.71(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,131.8,128.4,128.3,123.4,121.2,89.9$, 85.0, 68.8, 13.5, 12.3, 7.0, 5.1; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{OSi}$ calcd 300.1910, found: m/z 300.1906.
((E)-3-Methyldodec-2-en-5-yn-4-yloxy)triethylsilane (2e).

Prepared according to the previous procedure using $\mathbf{1 e}(1.46 \mathrm{mmol}, 284 \mathrm{mg}), 2,6$-lutidine (4.38 mmol, 0.50 ml), triethylsilyl trifluoromethanesulfonate ($2.19 \mathrm{mmol}, 0.49 \mathrm{ml}$) to afford $\mathbf{2 e}(427 \mathrm{mg}$, 95%) as a pale yellow oil: $\mathrm{R}_{f} 0.86$ (hexane:EtOAc 4:1); IR (microscope) 2955, 2934, 2876, 2861, $2229,1458,1379,1093,1045,1005,849,743,728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60(\mathrm{qqd}, J$ $=6.7,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.20(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70($ app. $\mathrm{t}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.61(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.68-0.61(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,120.5,85.7,80.6,68.5$, $31.5,28.8,28.8,22.8,19.0,14.2,13.4,12.1,7.0,5.0$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{OSi}$ calcd 308.2535, found: m/z 308.2541.

((4E)-1-cyclohex-1-enyl-4-methylhex-4-en-1-yn-3-yloxy)triethylsilane (2f).

Prepared according to the previous procedure using $\mathbf{1 f}(2.42 \mathrm{mmol}, 461 \mathrm{mg}), 2,6-\mathrm{lutidine}(7.26 \mathrm{mmol}$, 0.84 mL), triethylsilyl trifluoromethanesulfonate ($3.63 \mathrm{mmol}, 0.82 \mathrm{~mL}$) to afford $\mathbf{2 f}(562 \mathrm{mg}$, yield 77%) as a pale yellow oil: $\mathrm{R}_{f} 0.80$ (hexane:EtOAc 4:1); IR (microscope) 2953, 2876, 2216, 2188, 1718, 1673, 1457, 1239, 1074, 1006, 842, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.06$ (app. quintet, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{qqd}, J=6.6,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{app} . \mathrm{t}$, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{dd}, J=6.8,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.69-0.62$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,134.4,120.5,120.4,86.7,86.6,68.5,29.0$, $25.5,22.2,21.5,13.2,11.9,6.80,4.87$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{32}$ OSi calcd 304.2222, found: m / z 304.2220 .
($($ E)-4-Methyl-1,7-diphenylhept-4-en-1-yn-3-yloxy)triethylsilane (2g).

Prepared according to the previous procedure using $\mathbf{1 g}(2.83 \mathrm{mmol}, 784 \mathrm{mg})$, , 2,6-lutidine (8.49 mmol, 0.98 mL), triethylsilyl trifluoromethanesulfonate ($4.25 \mathrm{mmol}, 0.96 \mathrm{~mL}$) to afford $\mathbf{2 g}(999 \mathrm{mg}$, yield 91%) as a pale yellow oil: $\mathrm{R}_{f} 0.80$ (hexane:EtOAc 4:1); IR (film) 3084, 3027, 2955, 2912, 2876, $2202,1714,1665,1602,1490,1454,1239,1070,1005,747,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8 7.45-7.42 (m, 2H), 7.33-7.27 (m, 5H), 7.23-7.19 (m, 3H), $5.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H})$, 2.72 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41$ (app. q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H})$, $0.74-0.67(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,135.5,131.5,128.4,128.2,128.1,128.0$, 125.7, 125.5, 123.1, 89.6, 84.7, 68.4, 35.5, 29.6, 12.3, 6.8, 4.9; HRMS (EI, M^{+}) for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{OSi}$ calcd 390.2379 , found: m/z 390.2380.

(1-Cyclohexenyl-3-phenylprop-2-ynyloxy)triethylsilane (2h).

Prepared according to the previous procedure using $\mathbf{1 h}(2.25 \mathrm{mmol}, 479 \mathrm{mg}$), 2,6-lutidine (6.75 mmol, 0.785 mL), triethylsilyl trifluoromethanesulfonate ($3.38 \mathrm{mmol}, 0.76 \mathrm{~mL}$) to afford $\mathbf{2 h}(697 \mathrm{mg}$, yield 95%) as a pale yellow oil: $\mathrm{R}_{f} 0.83$ (hexane:EtOAc 4:1); IR (microscope) 3060, 2939, 2875, $2201,1717,1663,1598,1449,1289,1115,1070,1003,757,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.10$ $(\mathrm{m}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.78-0.72(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.7,131.8,128.4,128.3,123.6,123.4,89.8,85.1,67.6,25.3,24.5$, 22.8, 22.6, 7.1, 5.1; HRMS (EI, M^{+}) for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{OSi}$ calcd 326.2066, found: $\mathrm{m} / \mathrm{z} 326.2063$.

(1-Cyclohexenylnon-2-ynyloxy)triethylsilane (2i).

Prepared according to the previous procedure using $1 \mathbf{i}(2.95 \mathrm{mmol}, 651 \mathrm{mg})$, , ,6-lutidine (8.85 mmol , 1.0 mL), triethylsilyl trifluoromethanesulfonate ($4.43 \mathrm{mmol}, 1.0 \mathrm{~mL}$) to afford $\mathbf{2 i}$ (927 mg , yield 94%) as a pale yellow oil: $\mathrm{R}_{f} 0.84$ (hexane:EtOAc 4:1); IR (microscope) 2954, 2933, 2875, 2859, 2838, $2225,1644,1458,1413,1326,1239,1127,1057,1035,1005,742,728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 5.83$ (br s, 1H), $4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.22(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.04$ $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}$, $4 \mathrm{H}), 0.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.70-0.63(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.3,122.9,85.6,80.4,67.3,31.5,28.8,28.7,25.2,24.3,22.8,22.7,22.6,19.0,14.2,7.0$, 5.1; HRMS (EI, M^{+}) for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{OSi}$ calcd 334.2692, found: $\mathrm{m} / \mathrm{z} 334.2688$.

(3-Cyclohexenyl-1-cyclopentenylprop-2-ynyloxy)triethylsilane (2j).

Prepared according to the previous procedure using $\mathbf{1 j}$ ($1.81 \mathrm{mmol}, 366 \mathrm{mg}$), 2,6-lutidine (5.43 mmol , 0.63 mL), triethylsilyl trifluoromethanesulfonate ($2.72 \mathrm{mmol}, 0.61 \mathrm{~mL}$) to afford $\mathbf{2 j}$ (413 mg , yield
73%) as a pale yellow oil: $\mathrm{R}_{f} 0.78$ (hexane:EtOAc 4:1); IR (microscope) 2952, 2876, 2214, 2188, 1717, 1666, 1436, 1239, 1073, 1005, 742, $728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.09(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.93$ (app quintet, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.72-0.65(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.5,134.7,126.6,120.6,86.5,86.5,62.4,32.4,31.8,29.3,25.8,23.6,22.5,21.7,7.0,5.1$; HRMS (EI, M^{+}) for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{OSi}$ calcd 316.2222, found: $\mathrm{m} / \mathrm{z} 316.2219$.

(1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-3-phenylprop-2-ynyloxy)triethylsilane

 (2k).

Prepared according to the previous procedure using $\mathbf{1 k}$ ($1.99 \mathrm{mmol}, 503 \mathrm{mg}$), 2,6-lutidine (5.97 mmol, 0.69 mL), triethylsilyl trifluoromethanesulfonate ($2.99 \mathrm{mmol}, 0.67 \mathrm{~mL}$) to afford $\mathbf{2 l}(686 \mathrm{mg}$, yield 94%) as an inseparable mixture of two diastereomers ($\mathrm{dr}=1: 1$): $\mathrm{R}_{f} 0.80$ (hexane:EtOAc 4:1); Spectral data for the mixture of isomers: IR (microscope) 3081, 3055, 3033, 2986, 2952, 2913, 2876, 2831, 2224, 1598, 1490, 1465, 1381, 1314, 1238, 1125, 1083, 1064, 1051, 1002, 977, 850, 754, 690 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.43-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 6 \mathrm{H}), 5.68(\mathrm{td}, J=3.0,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.64(\mathrm{td}, J=2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}$, $3 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.03$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.75-0.67(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4,137.2,131.8,131.8,128.4,128.4,128.2,128.2,123.5,123.4,89.3,89.3$, $84.5,84.5,65.9,65.4,43.2,42.9,41.2,41.1,38.3,38.2,32.0,31.8,31.3,31.3,26.5,26.4,21.4,21.3$, 7.0, 7.0, 5.2, 5.1 [Some carbon signals are missing due to peak overlap.]; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{OSi}$ calcd 366.2379, found: m/z 366.2377.
(1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)non-2-ynyloxy)triethylsilane (21).

Prepared according to the previous procedure using 11 ($1.53 \mathrm{mmol}, 399.1 \mathrm{mg}$), 2,6-lutidine (4.59 $\mathrm{mmol}, 0.54 \mathrm{~mL}$), triethylsilyl trifluoromethanesulfonate ($2.30 \mathrm{mmol}, 0.52 \mathrm{~mL}$) to afford $\mathbf{2 l}(500 \mathrm{mg}$, yield 87%) as an inseparable mixture of two diastereomers ($\mathrm{dr}=1: 1$): $\mathrm{R}_{f} 0.90$ (hexane:EtOAc 4:1); Spectral data for the mixture of isomers: IR (microscope) 2986, 2953, 2934, 1916, 2876, 2225, 1607, $1466,1431,1414,1238,1121,1062,1050,1005,852,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.58-5.54 (m, 2H), 4.75-4.73 (m, 2H), 2.44-2.39 (m, 2H), 2.37-2.33 (m, 2H), 2.32-2.30 (m, 2H), 2.28-2.25 (m, 2H), 2.20 (td, $J=7.0,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48$ (m, 4H), 1.43-1.34 (m, $6 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=$
$8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.70-0.64(\mathrm{~m}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9,117.4,117.1,85.1,79.9,65.5,65.1,43.1,42.9,41.2,41.1,38.2,38.1,32.0$, 31.8, 31.6, 31.2, 31.2, 28.8, 28.8, 28.7, 26.4, 26.4, 22.8, 21.4, 21.3, 19.0, 19.0, 14.2, 7.1, 7.0, 5.2, 5.1 [Some carbon signals are missing due to peak overlap.]; HRMS (EI, M^{+}) for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{OSi}$ calcd 374.3005 , found: m/z 374.3008 .

2-Methylene-3,4-diphenylcyclopentanone (4a) and 2-methyl-3,4-diphenylcyclopent-2-enone (5a).

4a

5a

To a flame-dried round bottom flask containing a magnetic stirring bar was added siloxyenyne $\mathbf{2 a}$ $(0.044 \mathrm{mmol}, 16 \mathrm{mg})$ and ether $(4 \mathrm{~mL})$ under Ar. The temperature of the solution was dropped to $-78{ }^{\circ} \mathrm{C}$ (acetone/dry ice bath). KOt - $\mathrm{Bu}(0.07 \mathrm{mmol}, 7 \mathrm{mg})$ was added in one portion and the resulting suspension was stirred vigorously followed by the immediate removal of the cooling bath. Upon consumption of $\mathbf{2 a}$ as determined by thin layer chromatography, the reaction was quenched with 15% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with ether. The separated organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated to give the crude siloxyallene 3a which was used for the next step without further purification. The unpurified 3a thus obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and treated with trifluoroacetic acid (3.0 equiv based on $\mathbf{2 a}, 0.13 \mathrm{mmol}, 10 \mu \mathrm{~L}$) at room temperature. After stirring for 4 h , the reaction was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The separated organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude mixture was purified by flash column chromatography (silica gel, $10 \% \mathrm{EtOAc} /$ hexane) to provide the desired products $\mathbf{4 a}(5.6 \mathrm{mg}$, yield 51%) and $\mathbf{5 a}\left(5.1 \mathrm{mg}\right.$, yield 47%). 4a: $\mathrm{R}_{f} 0.61$ (hexane:EtOAc 4:1); IR (film) 3085, 3061, 3028, 2925, $2854,1718,1601,1495,1453,1119,1075,785,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.17$ (m, 6H), 7.12-7.07 (m, 4H), 6.22 (dd, $J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=3.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (ddd, $J=10.6,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=11.2,11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=18.2,7.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{dd}, J=18.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,149.6,141.1,140.9$, $128.9,128.8,128.8,127.4,127.3,127.2,120.0,56.7,48.9,45.8$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$ calcd 248.1201, found: m/z 248.1201. 5a: $\mathrm{R}_{f} 0.50$ (hexane:EtOAc 4:1); IR (film) 3060, 3027, 2923, 2853, $1698,1624,1495,1454,1443,1378,1342,1076,761,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) § 7.27-7.02 (m, 10H), 4.43 (ddq, $J=7.1,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=19.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dd, $J=19.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.9,169.1,142.4$, 137.7, 135.3, 128.9, 128.7, 128.3, 128.0, 127.3, 126.7, 47.1, 45.1, 9.9; HRMS (EI, M^{+}) for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$ calcd 248.1201, found: m/z 248.1198.

4-Hexyl-2-methyl-3-phenylcyclopent-2-enone (5b).

As described for the synthesis of siloxyallene $\mathbf{3 a}$, compound $\mathbf{2 b}(0.18 \mathrm{mmol}, 69 \mathrm{mg})$ in 3 mL ether was reacted with $\mathrm{KO} t-\mathrm{Bu}(0.27 \mathrm{mmol}, 30 \mathrm{mg})$ followed by workup as described above to give crude 3b. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($0.54 \mathrm{mmol}, 40 \mu \mathrm{~L}$) to afford $\mathbf{5 b}\left(38 \mathrm{mg}\right.$, yield 82%) as a pale yellow oil: $\mathrm{R}_{f} 0.65$ (hexane:EtOAc 4:1); IR (microsope) 3058, 3030, 2955, 2927, 2855, 1702, 1629, 1454, 1379, 1342, $1075,777,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{~m}$, $1 \mathrm{H}), 2.69(\mathrm{dd}, J=18.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=18.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 8 \mathrm{H}), 0.833(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.3,172.0,136.9,135.9,129.1,128.8,127.8,41.2,40.8,33.9,31.8,29.4,27.2,22.7,14.2,9.6$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ calcd 256.1827, found: $\mathrm{m} / \mathrm{z} 256.1826$.

2-Methyl-3-phenyl-4-(prop-1-en-2-yl)cyclopent-2-enone (5c).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 c}(0.57 \mathrm{mmol}, 188 \mathrm{mg})$ in 4 mL ether was reacted with KOt - $\mathrm{Bu}(0.86 \mathrm{mmol}, 96 \mathrm{mg})$ followed by workup as described above to give crude 3c. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($1.71 \mathrm{mmol}, 127 \mu \mathrm{~L}$) to afford $\mathbf{5 c}(43 \mathrm{mg}$, yield $35 \%)$ as a pale yellow oil: $\mathrm{R}_{f} 0.51$ (hexane:EtOAc 4:1); IR (microsope) 3074, 3024, 2924, 2856, 1699, 1648, 1624, 1442, 1377, 1340, 1277, 894, 733, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.83-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.74$ (app. quintet, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01(\mathrm{dt}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=19.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}$, $J=18.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.7$, 168.7, 144.8, 138.2, 135.6, 129.4, 128.6, 128.2, 114.2, 48.9, 40.9, 18.3, 10.1; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ calcd 212.1201, found: $\mathrm{m} / \mathrm{z} 212.1199$.

3-Methyl-2-methylene-4-phenylcyclopentanone (4d) and 2,3-Dimethyl-4-phenylcyclopent-2-enone (5d).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 d}(0.56 \mathrm{mmol}, 170 \mathrm{mg})$ in 3 mL ether was reacted with $\mathrm{KO} t-\mathrm{Bu}(0.84 \mathrm{mmol}, 94 \mathrm{mg})$ followed by workup as described above to give crude 3d. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($1.68 \mathrm{mmol}, 125 \mu \mathrm{~L}$) to afford $\mathbf{4 d}(10 \mathrm{mg}$, yield $10 \%)$ and $\mathbf{5 d}(32 \mathrm{mg}$, yield $30 \%)$.

4d: $\mathrm{R}_{f} 0.64$ (hexane:EtOAc 4:1); IR (film) 3061, 3029, 2691, 2926, 2874, 2853, 1726, 1641, 1602, 1495, 1454, 1376, 1221, 1169, 1123, 1074, 759, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36$ (m, 2H), 7.31-7.27 (m, 3H), $6.13(\mathrm{dd}, J=2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}$, $3 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,150.4,141.8$, 128.9, 127.5, 127.2, 116.6, 48.6, 46.3, 44.2, 16.3; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ calcd 186.1045, found: m/z 186.1041. 5d: $\mathrm{R}_{f} 0.51$ (hexane:EtOAc 4:1); IR (microscope) 3062, 3027, 2961, 2923, 1701, 1648, 1601, 1494, 1454, 1384, 1323, 1073, 764, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{br} \mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $19.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=18.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{q}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{q}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,171.7,142.3,129.1,129.1,127.5,127.2,49.4,44.7,15.7,8.4 ;$ HRMS (EI, M^{+}) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ calcd 186.1045, found: m / z 186.1042.

4-Hexyl-2,3-dimethylcyclopent-2-enone (5e).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 e}(0.58 \mathrm{mmol}, 180 \mathrm{mg})$ in 5 mL ether was reacted with $\mathrm{KO} t-\mathrm{Bu}(0.87 \mathrm{mmol}, 98 \mathrm{mg})$ followed by workup as described above to give crude 3e. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($1.74 \mathrm{mmol}, 129 \mu \mathrm{~L}$) to afford $\mathbf{5 e}(51 \mathrm{mg}, 45 \%)$ as a pale yellow oil: $\mathrm{R}_{f} 0.58$ (hexane:EtOAc 4:1); IR (microscope) 2956, 2927, 2856, 1702, 1648, 1457, 1410, 1384, 1325, 1072 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=18.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=$ $18.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{q}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.88$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.0,172.9,136.2,42.7,40.5,32.8,31.7,9.3$, 27.0, 22.5, 15.1, 14.0, 7.9; HRMS (EI, M^{+}) for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ calcd 194.1671, found: m/z 194.1670.

4-Cyclohexenyl-2,3-dimethylcyclopent-2-enone (5f).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 f}(0.48 \mathrm{mmol}, 147 \mathrm{mg})$ in 3 mL ether was reacted with $\mathrm{KO} t-\mathrm{Bu}(0.72 \mathrm{mmol}, 82 \mathrm{mg})$ followed by workup as described above to give crude 3f. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($1.44 \mathrm{mmol}, 107 \mu \mathrm{~L}$) to afford $\mathbf{5 f}(41 \mathrm{mg}$, yield $45 \%)$ as a pale yellow oil: R_{f} 0.60 (hexane:EtOAc 4:1); IR (microscope) 2927, 2858, 2837, 1701, 1649, 1573, 1437, 1383, 1072 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.57(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=19.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=19.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{q}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$,
1.61-1.54 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.0,171.5,137.2,136.6,125.0,51.2,40.0,25.3$, 23.7, 22.7, 22.4, 15.1, 8.1; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$ calcd 190.1358, found: $\mathrm{m} / \mathrm{z} 190.1358$.

2-Methylene-3-phenethyl-4-phenylcyclopentanone (4g) and 2-methyl-3-phenethyl-4-phenylcyclopent-2-enone (5g).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 g}(0.31 \mathrm{mmol}, 123 \mathrm{mg})$ in 5 mL ether was reacted with $\mathrm{KOt} t-\mathrm{Bu}(0.46 \mathrm{mmol}, 52 \mathrm{mg})$ followed by workup as described above to give crude 3g. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($0.93 \mathrm{mmol}, 69 \mu \mathrm{~L}$) to afford $\mathbf{4 g}(24 \mathrm{mg}$, yield $28 \%)$ and $\mathbf{5 g}(33 \mathrm{mg}, 39 \%) . \quad \mathbf{4 g}$: $\mathrm{R}_{f} 0.53$ (hexane:EtOAc 4:1); IR (microscope) 3084, 3061, 3027, 3003, 2927, 2860, 1725, 1637, 1602, $1495,1453,1370,1222,1171,1158,1030,753,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.17$ $(\mathrm{m}, 8 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{app} . \mathrm{q}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=18.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=18.4$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.41,148.4,142.9,141.6,128.8$, 128.4, 128.2, 127.1, 126.9, 125.9, 117.4, 48.1, 46.2, 45.5, 34.2, 32.7; HRMS (EI, M^{+}) for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$ calcd 276.1514, found: $\mathrm{m} / \mathrm{z} 276.1514$. 5g: $\mathrm{R}_{f} 0.47$ (hexane:EtOAc 4:1); IR (microscope) 3084, 3026, 3002, 2924, 2860, 1700, 1643, 1601, 1494, 1454, 1325, 1076, 756, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 7.37-7.32 (m, 2H), 7.30-7.25 (m, 3H), 7.23-7.19 (m, 1H), 7.11-7.06 (m, 4H), 3.85 (dd, $J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=18.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (dd, $J=18.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.1,173.8,141.8,140.6,137.5,128.9,128.4,128.1,127.4,127.1,126.3,47.2,44.5,33.2,31.0$, 8.1; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$ calcd 276.1514, found: $\mathrm{m} / \mathrm{z} 276.1514$.

2,3,3a,4,5,6-Hexahydro-3-phenylinden-1-one (4h) and 2,3,4,5,6,7-hexahydro-3-phenylinden-1-one (5h).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 h}(0.06 \mathrm{mmol}, 19 \mathrm{mg})$ in 3 mL ether was reacted with $\mathrm{KOt} t \mathrm{Bu}(0.09 \mathrm{mmol}, 10 \mathrm{mg})$ followed by workup as described above to give crude 3h. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($0.18 \mathrm{mmol}, 13 \mu \mathrm{~L}$) to afford $\mathbf{4 h}(8 \mathrm{mg}$, yield $65 \%)$ and $\mathbf{5 h}(2 \mathrm{mg}, 14 \%)$. $\mathbf{4 h}$: $\mathrm{R}_{f} 0.52$ (hexane:EtOAc 4:1); IR (microscope) 3061, 3028, 2931, 2858, 1719, 1652, 1601, 1453, 1247, 1223, 1187, 930, 749, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H})$,
6.81 (app. q, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=12.6,10.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=$ $17.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=17.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-32(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dq}, J$ $=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 204.7, 141.8, 141.3, 133.2, 128.9, 127.3, 127.1, 48.4, 46.3, 46.0, 27.3, 25.7, 21.8; HRMS (EI, M^{+}) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ calcd 212.1201, found: m / z 212.1203. 5h: $\mathrm{R}_{f} 0.48$ ((hexane:EtOAc 4:1); IR (microscope) 3061, 3027, 2930, 2858, 1698, 1645, 1453, 1390, 1277, 1245, 766, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}$, 1 H), 2.93 (dd, $J=18.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dd, $J=18.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27-2.25 (m, 2H), 2.10-2.07 (m, 2H), 1.72-1.66 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.4,175.4,142.1,139.5,129.1,127.5$, 127.2, 48.2, 45.1, 26.7, 22.4, 21.8, 20.3; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ calcd 212.1201, found: m / z 212.1197.

3-Hexyl-2,3,3a,4,5,6-hexahydroinden-1-one (4i) and 3-hexyl-2,3,4,5,6,7-hexahydroinden-

 1 -one (5i).

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 i}(0.28 \mathrm{mmol}, 96 \mathrm{mg})$ in 4 mL ether was reacted with $\mathrm{KO} t-\mathrm{Bu}(0.42 \mathrm{mmol}, 48 \mathrm{mg})$ followed by workup as described above to give crude 3i. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($0.84 \mathrm{mmol}, 64 \mu \mathrm{~L}$) to afford $\mathbf{4 i}(21 \mathrm{mg}$, yield $33 \%)$ and $\mathbf{5 i}(12 \mathrm{mg}$, yield $20 \%)$. 4i: $\quad \mathrm{R}_{f} 0.61$ (hexane:EtOAc 4:1); IR (microscope) 2927, 2856, 1720, 1655, 1456, 1248, 1170, 1139 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.911(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.1,142.0,132.0,45.0,44.7,42.5,34.4,32.0,29.7,28.2$, 27.8, 25.6, 22.8, 21.9, 14.3; HRMS (ESI, [M+H] ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}$ calcd 221.1900, found: m/z 221.1901. 5i: $\quad \mathrm{R}_{f} 0.57$ (hexane:EtOAc 4:1); IR (microscope) 2927, 2856, 1698, 1647, 1457, 1437, 1277, 1169 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=18.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.22-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{dd}, J=18.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6,176.7,138.6,42.1,41.3,33.0,31.9,29.6,27.3$, 26.6, 22.8, 22.4, 21.9, 20.2, 14.2; HRMS (ESI, $[\mathrm{M}+\mathrm{H}]^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}$ calcd 221.1900, found 221.1898.

3-Cyclohexylidene-2,3,5,6-tetrahydropentalen-1(4H)-one (7) and (2E)-3-cyclohexenyl-1-cyclopentenylprop-2-en-1-one ($\mathbf{6 j}$).

As described for the synthesis of siloxyallene $\mathbf{3 a}$, compound $\mathbf{2 j}$ ($0.63 \mathrm{mmol}, 202 \mathrm{mg}$) in 5 mL ether was reacted with $\mathrm{KO} t-\mathrm{Bu}(0.95 \mathrm{mmol}, 105 \mathrm{mg})$ followed by workup as described above to give crude $\mathbf{3 j}$. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($1.89 \mathrm{mmol}, 140 \mu \mathrm{~L}$) to afford $7(35 \mathrm{mg}$, yield 28%) and $\mathbf{6 j}(2 \mathrm{mg}$, yield 2%). $\mathbf{7}$: $\mathrm{R}_{f} 0.65$ (hexane:EtOAc 4:1); IR (microscope) 3346, 2929, 2878, 2861, 2818, 1691, 1659, 1635, 1450, 1394, 1277, 1229, 1162, 1098, 1058, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.93-2.88(\mathrm{~m}, 4 \mathrm{H})$, $2.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.3,163.2,154.8,141.3,126.1,35.8,33.5,31.7,27.6,26.8,25.2,22.3,21.8$, 20.2; HRMS ($\mathrm{EI}, \mathrm{H}^{+}$) for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ calcd 202.1358, found: m / z 202.1355. $\mathbf{6 j}$: $\mathrm{R}_{f} 0.70$ (hexane:EtOAc 4:1); IR (microscope) 2928, 2856, 1729, 1650, 1620, 1610, 1588, 1449, 1365, 1297, $1168,1001,981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 2.67-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.96$ (quintet, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.7,146.9,145.7,142.5,139.4,135.3$, 119.2, 34.0, 31.1, 29.6, 26.6, 24.3, 22.8, 22.1; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ calcd 202.1358, found: m/z 202.1348 .

2-((3R,3aS,5R)-2,3,3a,4,5,6-Hexahydro-1-oxo-3-phenyl-1H-inden-5-yl)propan-2-yl 2,2,2trifluoroacetate (9 k).

${ }^{(+)-9 k}$
As described for the synthesis of siloxyallene $\mathbf{3 a}$, compound $\mathbf{2 k}(1.41 \mathrm{mmol}, 516 \mathrm{mg})$ in 5 mL ether was reacted with KOt - $\mathrm{Bu}(2.12 \mathrm{mmol}, 237 \mathrm{mg}$) followed by workup as described above to give crude $\mathbf{3 k}$. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($4.23 \mathrm{mmol}, 315 \mu \mathrm{~L}$) to afford $9 \mathbf{k}\left(193 \mathrm{mg}\right.$, yield 45%): $\mathrm{R}_{f} 0.36$ (hexane:EtOAc 4:1); IR (microscope) 3062, 3030, 2924, 1776, 1721, 1660, 1602, 1454, 1422, 1392, 1372, 1218, 1166, 1134, 776, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H})$, 6.78 (app. q, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=12.6,10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $17.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (dd, $J=18.2,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (app. dq, $J=19.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (app. tdd, $J=11.9,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{ddd}, J=11.9,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.07$ (app. td, $J=12.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.4,156.0(\mathrm{q}, J$ $=40.9 \mathrm{~Hz}), 141.0,140.0,131.2,128.8,127.0,127.0,114.3(\mathrm{q}, J=285.4 \mathrm{~Hz}), 90.5,47.8,46.5,45.9$, 42.7, 28.1, 26.7, 23.3, 22.7; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.0$; HRMS $\left(\mathrm{EI},\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right]^{+}\right.$) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$ calcd 252.1514, found: m/z 252.1512; $[\alpha]_{\mathrm{D}}{ }^{25}:+67.16^{\circ}$ (c 2.87, CHCl_{3}).

2-((1R,6R,7aS)-1-Hexyl-2,3,5,6,7,7a-hexahydro-3-oxo-1H-inden-6-yl)propan-2-yl 2,2,2-trifluoroacetate (91) and 51.

As described for the synthesis of siloxyallene 3a, compound $\mathbf{2 1}(0.14 \mathrm{mmol}, 52 \mathrm{mg})$ in 3 mL ether was reacted with KOt - $\mathrm{Bu}(0.21 \mathrm{mmol}, 23 \mathrm{mg}$) followed by workup as described above to give crude 31. The desired Nazarov product was then prepared according to the previous procedure using trifluoroacetic acid ($0.42 \mathrm{mmol}, 31 \mu \mathrm{~L}$) to afford $\mathbf{9 1}(7 \mathrm{mg}$, yield $13 \%)$ and $\mathbf{5 l}(9 \mathrm{mg}$, yield $25 \%)$. 91: $\mathrm{R}_{f} 0.41$ (hexane:EtOAc 4:1); IR (film) 2955, 2926, 2856, 1778, 1722, 1660, 1466, 1372, 1219, 1167, $1125,1167,1125,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.63(\mathrm{dt}, J=4.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (dd, J $=18.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=18.0$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.04-0.94(\mathrm{~m}, 1 \mathrm{H})$, $0.89-0.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8,156.1(\mathrm{q}, J=41.2 \mathrm{~Hz}), 141.8,130.1,114.4$ ($\mathrm{q}, J=285.0 \mathrm{~Hz}$), 90.8, 45.0, 44.9, 42.8, 42.0, 34.1, 31.7, 29.4, 28.6, 28.0, 26.8, 22.9, 22.8, 22.5, 14.0; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.0$; HRMS (EI, $\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right]^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}$ calcd 260.2140, found: $\mathrm{m} / \mathrm{z} 260.2136 ;[\alpha]_{\mathrm{D}}{ }^{25}:-44.56^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right)$. 51: $\quad \mathrm{R}_{f} 0.50$ (hexane:EtOAc 4:1); IR (film) 2954, 2927, 2857, 1695, 1625, 1466, 1416, 1385, 1239, $1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 2.76-2.68 (m, 1H), 2.68-2.61 (m, 2H), 2.54 (app. dt, $J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (br d, $J=18.8 \mathrm{~Hz}$, 1 H), 2.25 (app. tt, $J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (dd, $J=19.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.57$ $(\mathrm{m}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,175.9,148.8,42.8,41.0,40.6,37.1,33.7,32.4,31.9,31.7$, 29.3, 28.3, 25.8, 22.5, 20.9, 14.0 [One aliphatic carbon signal is missing due to peak overlap.]; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}$ calcd 260.2140, found: $\mathrm{m} / \mathrm{z} 260.2143$; $[\alpha]_{\mathrm{D}}{ }^{25}$: -8.62^{o} (c 0.21 , CHCl_{3}).

Preparation of ester $\mathbf{1 1}$ from enone $\mathbf{4 a}$ for 2D TROESY study.

Alcohol 10: To a solution of $\mathbf{4 a}(0.06 \mathrm{mmol}, 15 \mathrm{mg})$ and cerium (III) chloride heptahydrate (0.06
$\mathrm{mmol}, 22 \mathrm{mg}$) in 3 mL MeOH was added $\mathrm{NaBH}_{4}(0.06 \mathrm{mmol}, 3 \mathrm{mg})$ at room temperature. The mixture was stirred for 8 h then quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography (hexane:EtOAc 2:1) to provide the alcohol as a single diastereomer (13 mg , yield 85%): $\mathrm{R}_{f} 0.25$ (hexane:EtOAc 4:1); IR (microscope) 3411 (br s), 3063, 3028, 2959, 2923, 2857, 1661, 1602, 1469, 1452, 1328, 1211, 1087, 1076, 914, 905, 761, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.21(\mathrm{~m}, 3 \mathrm{H})$, $7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{app} . \mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.81(\mathrm{~m}$, 2 H), 3.81 (app. dq, $J=10.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (ddd, $J=12.4,11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (ddd, $J=12.4$, $6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=12.4,12.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,142.6,141.9,128.4,128.3,128.2,127.3,126.5,126.3,110.1,74.7,57.2,50.0,42.7$; HRMS (EI, M^{+}) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$ calcd 250.1358, found: $\mathrm{m} / \mathrm{z} 250.1358$.
\boldsymbol{p}-Nitrobenzoate 11: To a solution of $\mathbf{1 0}(0.032 \mathrm{mmol}, 8 \mathrm{mg})$ and triethylamine ($0.096 \mathrm{mmol}, 13 \mu \mathrm{~L}$) in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 4-nitrobenzoyl chloride ($0.035 \mathrm{mmol}, 7 \mathrm{mg}$) at room temperature. The mixture was stirred for 8 h then quenched by adding 5 mL water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was separated and washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography (hexane:EtOAc 5:1) to provide $\mathbf{1 1}(10 \mathrm{mg}, 80 \%)$: $\mathrm{R}_{f} 0.60$ (hexane:EtOAc 4:1); IR (microscope) $3109,3085,3061,3029,1724,1605,1528,1347,1273,1119,1103 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36-8.33(\mathrm{~m}, 2 \mathrm{H}), 8.32-8.29(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H})$, 6.11 (app. td, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (app. dq, $J=11.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (app. td, $J=11.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (app. dt, $J=12.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (app. td, $J=12.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,153.0,150.8,141.6,141.4$, $135.9,131.0,128.8,128.7128 .6,127.5,127.0,126.9,123.8, \quad 113.5,77.5,57.5,50.7,39.5$; HRMS (EI, M ${ }^{+}$) for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{4}$ calcd 399.1471, found: $\mathrm{m} / \mathrm{z} 399.1466$.

[^0]

 Pulse Sequence: apt
 100.690 MHz C 13 [H1] apt in cdcl3 (ref. to CDC13 © 77.06 ppm), temp $27.0 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}, \mathrm{m} 400 \mathrm{gz}$ probe

[^1]

Pulse Sequence: s2pul
Yen-Ku, YKW-2-3-m4
$400.393 \mathrm{MHz} \mathrm{H1} \mathrm{1D} \mathrm{in} \mathrm{cdcl3} \mathrm{(ref} \mathrm{to} \mathrm{CDCl} 3 @$.7.26 ppm), temp $27.0 \mathrm{C}->$ actual temp $=27.0 \mathrm{C}, \mathrm{m} 400 \mathrm{gz}$ probe

[^2]

udd 0

$\pm \underbrace{\frac{0}{1}}_{0}$

[^3]

Pulse Sequence: s2pul
$399.794 \mathrm{MHz} \mathrm{H1} 1 \mathrm{D}$ in cdcl3 (ref. to $\mathrm{CDCl3} @ 7.26 \mathrm{ppm}$), temp $26.5 \mathrm{C}->$ actual temp $=27.0 \mathrm{C}$, autoxdb probe

tndzs : өouənbes estnd

 0 dcl3 (ref. to

[^0]: Pulse Sequence: apt

[^1]:

[^2]:

[^3]:

