SUPPORTING INFORMATION

Surfactant-free RAFT emulsion polymerization using poly(\mathbf{N}, \mathbf{N}-dimethyl acrylamide) trithiocarbonate macromolecular chain transfer agents.

Jutta Rieger ${ }^{1}$ *, Wenjing Zhang ${ }^{1}$, François Stoffelbach ${ }^{1}$, Bernadette Charleux ${ }^{2}$ *

1 UPMC Univ. Paris 6 and CNRS, Laboratoire de Chimie des Polymères, UMR 7610, 4 place Jussieu, Tour 44-54, 75252 Paris Cedex 05, France
jutta.rieger@upmc.fr

2 Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2, Team LCPP Bat 308F, 43
Bd du 11 novembre 1918, 69616 Villeurbanne, France
bernadette.charleux @1cpp.cpe.fr

A- NMR characterization of the RAFT agents TTCA-12, TTCA-4 and ATTCA

acetone

Figure SI-1. $250 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of TTCA-12 in DMSO-d6 and $63 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum in acetone-d6.
$\stackrel{\sim}{\sim}$

¢	๒®\％\％
ल	「「「「
	4

Figure SI－2． $250 \mathrm{MHz}^{1} \mathrm{H}$ NMR and $63 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra of TTCA－4 in CDCl_{3} ．

a
DMSO

Figure SI-3. $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $50 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra of ATTCA in DMSO-d6.

B- SEC characterization of the PDMAAm macroRAFT agents

Figure SI-4. SEC chromatograms for the PDMAAm macroRAFT agent B3 in THF and in DMF (see Table 1 in the article).

C- Solution polymerization of n-butyl acrylate and styrene in the presence of the PDMAAm macroRAFT agents and characterization of the formed diblock copolymers

Solution polymerization of n-butyl acrylate ($n B A$)

For the synthesis of PDMAAm-PnBA block copolymers, polymerizations of $n B A$ were performed in 1,4-dioxane at $70^{\circ} \mathrm{C}$ with ACPA as an initiator, in the presence of the different macromolecular RAFT agents (see Table SI- 1 for detailed polymerization conditions). In a typical experiment (Table SI-1, entry A2-S1), the polymerization of 1.5 g n BA (4.0 mol. L^{-1}) was carried out with 126 mg PDMAAm-TTC-12, A2, ($M_{\mathrm{n}}=7300 \mathrm{~g} . \mathrm{mol}^{-1} ; 5.8 \times 10^{-3} \mathrm{~mol} . \mathrm{L}^{-1}$) in 1.3 mL of 1,4 -dioxane with 1.1 mg ACPA (0.5 mL of a stock solution at $2.2 \mathrm{~g} . \mathrm{L}^{-1}$). The solution was placed in a septum-sealed flask, purged for 30 min with nitrogen in an ice bath and heated to $70^{\circ} \mathrm{C}$ in a thermostated oil bath under stirring. Sampling was performed at regular time intervals, and the polymerization was stopped by immersion of the flask in iced water. The monomer conversion was determined by gravimetry

Solution polymerization of styrene (S)

For the synthesis of PDMAAm-PS block copolymers, polymerizations of S were performed in 1,4-dioxane at $80^{\circ} \mathrm{C}$ with ACPA as an initiator, in the presence of the different macromolecular RAFT agents (see Table SI-2 for detailed polymerization conditions). In a typical experiment (Table SI-2, entry A3-SS1), the polymerization of 1.51 $\mathrm{g} \mathrm{S}\left(2.0 \mathrm{~mol}^{\left.-\mathrm{L}^{-1}\right)}\right.$ was carried out with 211 mg PDMAAm-TTC-12, A3, $\left(M_{\mathrm{n}}=10700 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; 2.7 \times 10^{-3} \mathrm{~mol}^{-\mathrm{L}^{-1}}\right)$ in 5.6 mL of 1,4 -dioxane with 1.3 mg ACPA (0.5 mL of a stock solution at $2.6 \mathrm{~g} . \mathrm{L}^{-1}$). The solution was placed in a septum-sealed flask, purged for 30 min with nitrogen in an ice bath and heated to $80^{\circ} \mathrm{C}$ in a thermostated oil bath under stirring. The monomer conversion was determined by gravimetry.

Table SI-1. Experimental conditions and results for the solution polymerizations of $n B A$ in 1,4 -dioxane at $70^{\circ} \mathrm{C}$ in the presence of different PDMAAm-TTC macroRAFT agents.

Entry	Macro-RAFT		$\begin{gathered} {[n B A]_{0}} \\ \left(\mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} {[\text { Macro-RAFT] }]_{0}} \\ \left(\text { mmol.L }{ }^{-1}\right) \end{gathered}$	$\begin{gathered} {[\mathrm{ACPA}]_{0}} \\ \left(\mathrm{mmol} . \mathrm{L}^{-1}\right) \end{gathered}$	$\begin{gathered} {D P_{n, t h}{ }^{b}}_{\text {PnBA block }} \end{gathered}$		conv.$(\%)^{c}$	$\begin{gathered} M_{\mathrm{n}, \mathrm{th}}{ }^{b} \\ \left(\mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} M_{\mathrm{n}, \exp }{ }^{d} \\ \left(\mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$M_{\mathrm{w}} / M_{\mathrm{n}}^{d}$
	\#	$M_{n}{ }^{\text {a }}$									
A1-S1	A1	3.2	4.0	13	2.7	300	30	42	19.1	19.9	1.15
							52	64	27.7	26.3	1.14
A2-S1	A2	7.3	4.0	5.8	1.4	690	25	25	35.4	42.5	1.27
							90	35	43.3	48.7	1.22
A2-S2 ${ }^{\text {e }}$	A2	7.3	bulk	8.9	$0.9{ }^{\text {d }}$	790	160	70	78.0	77.9	1.16
B1-S1	B1	4.2	2.0	2.8	0.7	710	100	43	43.2	28.4	1.36
							190	73	70.3	38.5	1.46
							270	87	83.0	42.0	1.50
B2-S1	B2	8.7	2.0	3.1	0.7	650	40	33	36.4	26.7	1.36
							65	50	50.6	32.2	1.42
							240	90	84.1	39.8	1.58
B3-S1	B3	12.4	4.0	6.6	1.4	600	43	66	63.4	50.7	1.28
C1-S1	C1	6.6	4.0	5.5	1.3	730	48	37	41.7	35.1	1.35
							94	65	67.6	52.6	1.27
							150	79	80.7	59.0	1.26
C2-S1	C2	9.8	4.0	6.5	1.3	620	31	19	24.9	15.7	1.81
							51	33	35.9	23.8	1.56
C2-S2	C2	9.8	2.0	3.8	0.8	520	41	33	31.9	22.3	1.75
							69	52	44.7	33.0	1.51
							145	76	60.8	36.7	1.52
							258	91	70.9	37.5	1.54

${ }^{a} M_{n}$ determined by SEC in DMF by light scattering (LS) ($\left.d n / d c=0.081 \mathrm{~mL} \cdot g^{-1}\right) ;{ }^{b}$ theoretical number-average molar mass, $M_{\mathrm{n}, \mathrm{th}}$, and number-average degree of polymerization, DP_{n}, calculated using conversion ${ }^{c}$; ${ }^{c}$ Monomer conversion determined by gravimetry; ${ }^{d} M_{\mathrm{n}}$ and $M_{\mathrm{w}} / M_{\mathrm{n}}$ determined by SEC in THF with a PS calibration; ${ }^{e}$ Experiment A2-S2 was performed in bulk with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator.

Figure SI-5. Evolution of the monomer conversion with time for the solution polymerization of $n \mathrm{BA}$ in the presence of different PDMAAm macroRAFT agents ($[n B A]_{0}=2 \mathrm{~mol}^{-\mathrm{L}^{-1}}$ (B2-S1, C2-S2) or $4 \mathrm{~mol} \mathrm{~L}^{-1}$ (A1-S1, C1-
 higher initiator concentration being responsible for the faster kinetics.

Figure SI-6. Solution polymerization of $n B A$ in 1,4-dioxane in the presence of different PDMAAm macroRAFT agents (A1, B2, C1 and C2): a) an example of the evolution of the size exclusion chromatograms with monomer conversion (Experiment C1-S1); b) evolution of the number average molar mass, M_{n}, (full symbols) and polydispersity index $\left(M_{w} / M_{\mathrm{n}}\right)$ (open symbols) with time (determined by SEC in THF and calculated with a PS calibration curve). The straight lines correspond to the theoretical $M_{\mathrm{n}} v s$. conversion.

Table SI-2. Experimental conditions and results for the solution polymerizations of styrene (S) in 1,4-dioxane at $80^{\circ} \mathrm{C}$ in the presence of PDMAAm-TTC-12, A1 and A3. ${ }^{\text {a }}$

Entry		croRAFT	$\begin{gathered} \mathrm{DP}_{\mathrm{n}}{ }^{c} \\ (\mathrm{~S}) \end{gathered}$	$\begin{gathered} {[\text { RAFT }]_{0}} \\ (\text { mmol.L } \end{gathered}$	$\begin{gathered} {[\text { ACPA }]_{0}} \\ \left(\text { mmol. }{ }^{-1}\right) \end{gathered}$	t (h)	conv. ${ }^{\text {b }}$ (\%) ${ }^{a}$	$\begin{gathered} M_{\mathrm{n}, \mathrm{th}}{ }^{c} \\ \left(\mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} M_{\mathrm{n}, \exp }^{d} \\ \left(\mathrm{~kg}_{\mathrm{mol}}{ }^{-1}\right) \end{gathered}$	$M_{w} / M_{n}{ }^{\text {d }}$
	\#	$\begin{gathered} M_{\mathrm{n}} \\ \left(\mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$								
A1-SS1	A1	3.2	620	3.2	0.6	20	19	15.5	12.4	1.44
A3-SS1	A3	10.7	736	2.7	0.6	20	20	25.6	14.3	1.46

${ }^{a}[\mathbf{S}]_{0}=2 \mathrm{M} ;{ }^{b}$ Monomer conversion by gravimetry; ${ }^{c}$ Theoretical number-average molar mass, $M_{\mathrm{n}, \mathrm{th}}$, and numberaverage degree of polymerization, DP_{n}, calculated using conversion ${ }^{b} ;{ }^{d} M_{n}$ and M_{w} / M_{n} determined by SEC in THF with a PS calibration.

Figure SI-7. SEC chromatograms in THF for sample A3-SS1 prepared by polymerization of styrene in 1,4dioxane at $80^{\circ} \mathrm{C}$ with macroRAFT agent A3.

