Supporting Information

> for

Intramolecular Palladium-Catalyzed Alkane C-H Arylation from Aryl Chlorides

Part 1: Synthetic procedures, characterization data and computational studies

Sophie Rousseaux, ${ }^{\dagger}$ Michaël Davi, ${ }^{\ddagger}$ Julien Sofack-Kreutzer, ${ }^{\ddagger}$ Cathleen Pierre, ${ }^{\dagger}$ Christos Kefalidis, ${ }^{\S}$ Eric Clot, ${ }^{*, \S}$ Keith Fagnou* ${ }^{*}{ }^{\dagger}$ and Olivier Baudoin** ${ }^{*}$
${ }^{\dagger}$ Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
${ }^{\dagger}$ Université Claude Bernard Lyon 1, CNRS UMR5246-Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CPE Lyon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
${ }^{8}$ Institut Charles Gerhardt, UMR5253, CNRS-UM2-UM1-ENSCM, case courrier 1501, Place Eugène Bataillon, 34000 Montpellier, France

srous100@uottawa.ca; clot@univ-montp2.fr; olivier.baudoin@univ-lyon1.fr

Table des matières

General information S3
General procedures S5
Synthesis of cyclobutarenes by alkane arylation (Table 2) S7
Synthesis of indanes by alkane arylation (Table 4). S34
Synthesis of dihydrobenzofurans and indolines by alkane arylation (Table 5). S45
Synthesis of indanones by alkane arylation (Table 6) S65
Computational studies S74

General information

Unless otherwise noted, all non-aqueous reactions were performed under an oxygen-free atmosphere of argon with rigid exclusion of moisture from reagents and glassware using standard techniques for manipulating air-sensitive compounds. ${ }^{1}$ Reagents were commercially available and were used without further purification unless otherwise stated including pivalic acid. Palladium(II) acetate was obtained from Strem or Johnson Matthew. $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ and $\mathrm{P}(\mathrm{Cy})_{3} \cdot \mathrm{HBF}_{4}$ was purchased from Strem. $\mathrm{P}(\mathrm{Cyp})_{3} \cdot \mathrm{HBF}_{4}$ was received from Aldrich Chemical Co. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was received from Acros Organics and dried under vaccum at $140^{\circ} \mathrm{C}$ for 24 hours then stored under argon atmosphere in a glovebox. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was purchased from Aldrich, stored in a dessicator and weighed to air. The solvents were dried prior to use using standard methods. ${ }^{2}$ Anhydrous solvents were obtained by distillation over calcium hydride $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$, DCM , pyridine) or by distillation over sodium/benzophenone (THF, toluene, $\mathrm{Et}_{2} \mathrm{O}$). Mesitylene was dried over molecular sieves.

Analytical thin layer chromatography (TLC) was performed using EM Reagent 0.25 mm silica gel $60-\mathrm{F}$ plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). Flash chromatography was performed using EM Silica Gel 60 (60-200 mesh) with the indicated solvent system according to standard technique. ${ }^{3}$

GC analyses were performed with a Shimadzu QP2010 GCMS apparatus, with simultaneous double injection on a DB-5ms column lined with a mass (EI) or a FID detection system.

Melting points were obtained on a Buchi melting point apparatus and are uncorrected. Infrared spectra were taken on a Perkin Elmer Spectrum One FTIR and are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.

Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$, DEPT 135, COSY, HMQC, NOESY) were recorded either on a Bruker ALS 300, AV 300, DRX 300, AV 400 or ARX 400 spectrometer $\left(300,300,300,400\right.$ et 400 MHz respectively) in deuterated chloroform $\left({ }^{1} \mathrm{H} \delta 7.26 \mathrm{ppm},{ }^{13} \mathrm{C} \delta\right.$ 77.0 ppm) unless otherwise noted. The ${ }^{19} \mathrm{~F}$ spectrawere calibrated using CFCl_{3} as internal reference. All spectra were obtained with complete proton decoupling. Data are reported in

[^0]parts per million (ppm) as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad $)$, coupling constant in Hz and integration. When ambiguous, proton and carbon assignments were established using COSY, HMQC and DEPT experiments.

High-resolution mass spectra were measured under chemical ionization (CI), electrospray ionization (ESI) or electronic impact (EI) mode.

General procedures

General procedure A: Synthesis of cyclobutarenes by C-H activation (Table 2)

In a glovebox, a Schlenk tube containing a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(0.1$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ (0.2 equiv) and dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.3 equiv). The flask was closed with a rubber septum. The vessel was connected to a combined argon/vacuum line and evacuated for 1 hour (in order to remove traces of oxygen and water) then backfilled with argon twice. To this flask was added a solution of aryl chloride (1.00 equiv) in dry DMF (0.25 M). The mixture is stirred for 15 minutes at room temperature then stirred at $140^{\circ} \mathrm{C}$ (preheated oil bath) until the reaction showed completion by GC/MS analysis. After cooling, the mixture was diluted with ether and filtered through Celite ${ }^{\circledR}$. The organic solution was washed with brine, dried over magnesium sulfate, and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography or preparative TLC to afford the desired benzocyclobutene.

General procedure B: Synthesis of indanes by alkane arylation (Table 4)

In a glovebox, a Schlenk tube containing a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv), $\mathrm{P}(\mathrm{Cyp})_{3} \cdot \mathrm{HBF}_{4}$ (0.2 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv). The flask was closed with a rubber septum. The vessel was connected to a combined argon/vacuum line and evacuated for 1 hour (in order to remove traces of oxygen and water) then backfilled with argon twice. To this flask was added a solution of aryl chloride (1.00 equiv) in dry DMF (0.2 M). The mixture is stirred for 15 minutes at room temperature then stirred at $140{ }^{\circ} \mathrm{C}$ (preheated oil bath) until the reaction showed completion by GC/MS analysis. After cooling, the mixture was diluted with ether and filtered through Celite ${ }^{\circledR}$. The organic solution was washed with brine, dried over magnesium sulfate, and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography or preparative TLC to afford the desired indane.

General procedure C: Synthesis of dihydrobenzofurans, indolines and indanones by alkane arylation (Table 5 and 6)

A 4 mL screw cap vial equipped with a magnetic stir bar was charged with the starting material (if a solid, 1 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}(10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.1 equiv)
and PivOH ($30 \mathrm{~mol} \%$). The vial was purged with argon for at least 5 minutes after which the starting material (if a liquid, 1 equiv) was added as a stock solution in mesitylene (0.17 M). The resulting mixture was placed in a preheated bath at $140{ }^{\circ} \mathrm{C}$ and stirred overnight (16 h). Upon cooling to room temperature, the reaction was diluted with EtOAc and purified by silica gel flash chromatography.

General procedure D: Synthesis of dihydrobenzofuran precursors

The desired alcohol (1.1 equiv) was added dropwise to a solution of KH (1.1 equiv) in THF $(0.15 \mathrm{M})$ under argon at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 minutes after which the desired ortho-chloro-fluorobenzene was added and the flask was warmed to room temperature. The reaction was stirred for 2 hours (or until judged complete by TLC) and the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3), washed with brine, dried with MgSO_{4} and concentrated under reduced pressure. The product was purified by silica gel flash chromatography.

General procedure E: Synthesis of (o-chloro)ketophenones

The desired aryl halide (1.0 equiv) was added to a solution of KH (3.5 equiv) in THF (0.2 M) at $0{ }^{\circ} \mathrm{C}$ under argon. The resulting mixture was stirred for 10 minutes after which MeI was added (12 equiv). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 hours before warming to room temperature and stirring overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the crude product was extracted with EtOAc, dried with MgSO_{4} and concentrated under reduced pressure. The product was purified by silica gel flash chromatography.

General procedure F : Synthesis of (o-chloro)ketophenones

To a solution of 1-(2-chlorophenyl)-2-methylpropan-1-one (1.0 equiv) in THF (0.2 M) was added a base (1.1-1.5 equiv). The reaction was stirred for 10 minutes before the desired electrophile (1.5-2.0 equiv) was added. The mixture was then stirred at room temperature until judged complete by TLC. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ sat. and the crude product was extracted with EtOAc, dried with MgSO_{4} and concentrated under reduced pressure. The product was purified by silica gel flash chromatography.

Methyl 2-(2-chlorophenyl)-2-methylpropanoate (1a).
LiHMDS (1.06 M in THF, $30.6 \mathrm{~mL}, 32.50 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the ester ($2 \mathrm{~g}, 10.83 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes then MeI ($2.02 \mathrm{~mL}, 32.50 \mathrm{mmol}$) was added dropwise. The reaction was stirred at r.t for 1 h . After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (twice) and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography afforded $\mathbf{1 a}$ as a pale yellow oil in quantitative yield $(2.30 \mathrm{~g}, 10.83 \mathrm{mmol}$, 100% yield). $\mathrm{R}_{f} 0.35$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.18 (m, 2H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 177.4,142.3,133.6,130.6,128.0,126.9,126.7,52.3,46.6$, 26.0 ppm .

IR (neat) v 2982, 2948, 1733, 1472, 1432, $1142 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 213.0682$, found: 213.0683.

Methyl 1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate (2). ${ }^{4}$

The title compound was prepared from 1a according to the general procedure A. 1a (100 mg , $0.47 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(10.5 \mathrm{mg}, 0.047 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(27.2 \mathrm{mg}, 0.094 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(84 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.3$ equiv) in DMF (2 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $2(69 \mathrm{mg}, 83 \%$) was obtained as a colorless oil after flash chromatography (5\% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.35$ (5\% Ethyl acetate/cyclohexane).

[^1]${ }^{1} \mathbf{H}$ NMR (300 MHz, $\mathbf{C D C l}_{3}$) δ 7.24-7.20 $(\mathrm{m}, 2 \mathrm{H})$, 7.16-7.14 (m, 1 H$), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Tert-butyl 2-(2-chlorophenyl)acetate.

DMAP ($143 \mathrm{mg}, 1.17 \mathrm{mmol}$) was added to a solution of the acid ($2 \mathrm{~g}, 11.72 \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}$ ($3.84 \mathrm{~g}, 17.59 \mathrm{mmol}$) in tert-butanol $(30 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 hours, after which the solvent was evaporated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed successively with HCl 1 N , water and brine then dried over MgSO_{4}. The solvent was evaporated under reduced pressure. Purification by flash chromatography (2% Ethyl acetate/cyclohexane) afforded the title compound as a pale yellow oil ($1.76 \mathrm{~g}, 7.76 \mathrm{mmol}$, $66 \%) . \mathrm{R}_{f} 0.31$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 7.38-7.36 (m, 1H), 7.28-7.26 (m, 1 H), 7.23-7.20 (m, 2H), $3.68(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.8,134.5,133.1,131.3,129.3,128.4,126.7,81.1,40.4$, 27.9 ppm .

IR (neat) v 2978, 1731, 1367, 1225, 1142, $746 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 227.0839$, found: 227.0835.

Tert-butyl 2-(2-chlorophenyl)-2-methylpropanoate (3).

LiHMDS (1.06 M in THF, $12.5 \mathrm{~mL}, 13.23 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the tert-butyl 2-(2-chlorophenyl)acetate ($1 \mathrm{~g}, 4.41 \mathrm{mmol}$) in THF $(2 \mathrm{~mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes then MeI ($824 \mu \mathrm{~L}, 13.23 \mathrm{mmol}$) was added
dropwise. The reaction was stirred at r.t for 3 h . After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (twice) and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography afforded $\mathbf{3}$ as a yellow oil $(874 \mathrm{mg}, 3.43$ $\mathrm{mmol}, 78 \%$ yield). $\mathrm{R}_{f} 0.37$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C l} 3$) δ 8.39-7.15 (m, 4H), $1.40(\mathrm{~s}, 9 \mathrm{H}), 1.39$ (s, 6H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 173.2,142.7,133.7,128.1,127.9,127.6,126.6,80.3,47.4$, 27.8, 25.9 ppm .

IR (neat) v 2977, 2933, 1725, 1366, $1255 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 255.1152$, found: 255.1153 .

Tert-butyl 1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate (4). ${ }^{4}$

The title compound was prepared from $\mathbf{3}$ according to the general procedure $\boldsymbol{A} .3$ (200 mg , $0.78 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(17.6 \mathrm{mg}, 0.078 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ ($45.5 \mathrm{mg}, 0.157 \mathrm{mmol}, 0.20$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(141 \mathrm{mg}, 1.02 \mathrm{mmol}, 1.3$ equiv) in DMF (3 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $4(122 \mathrm{mg}, 71 \%)$ was obtained as a colorless oil after flash chromatography (5% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.36$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.22-7.19 (m, 2H), 7.15-7.12 (m, 1H), 7.09-7.07 (m, 1H), 3.67 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

2-(2-chlorophenyl)-2-methylpropionitrile (5).

LiHMDS (1.06 M in THF, $18.67 \mathrm{~mL}, 19.79 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the (2-chlorophenyl)acetonitrile ($1 \mathrm{~g}, 6.59 \mathrm{mmol}$) in THF (10 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes then $\operatorname{MeI}(1.23 \mathrm{~mL}, 19.79 \mathrm{mmol})$ was added dropwise. The reaction was stirred at $\mathrm{r} . \mathrm{t}$ for 1 h . After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (twice) and the combined organic layer were
washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography afforded $\mathbf{5}$ as a yellow oil ($1.06 \mathrm{~g}, 5.93 \mathrm{mmol}, 90 \%$ yield). $\mathrm{R}_{f} 0.42$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C l} 3$) $\delta 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 1.74$ ($\mathrm{s}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 136.9,133.2,131.8,129.3,127.2,126.9,123.4,36.2,27.1$ ppm.
IR (neat) $v 2954,2235,1472,1430 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClN}\left[\mathrm{M}^{+}\right]:$179.0502, found: 179.0500.

1-methyl-1,2-dihydrocyclobutabenzene-1-carbonitrile (6). ${ }^{4}$

The title compound was prepared from 5 according to the general procedure $\boldsymbol{A} .5(100 \mathrm{mg}$, $0.56 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(12.0 \mathrm{mg}, 0.055 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ ($32.0 \mathrm{mg}, 0.111 \mathrm{mmol}, 0.20$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.3$ equiv) in DMF (2.2 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $6(52 \mathrm{mg}, 65 \%)$ was obtained as a colorless oil after flash chromatography (3% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.42$ (10% EtOAc/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.34-7.27 (m, 2H), 7.21-7.19 (1H), 7.16-7.14 (m, 1H), 3.79 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2-(2-Chlorophenyl)-2-methyl-propan-1-ol.

A solution of methyl 2-(2-chlorophenyl)-2-methylpropanoate ($500 \mathrm{mg}, 2.35 \mathrm{mmol}$) in ether (5 mL) was added at $0^{\circ} \mathrm{C}$ to a suspension of lithium aluminium hydride ($2.33 \mathrm{mg}, 5.88 \mathrm{mmol}$) in ether (5 mL). The reaction was stirred overnight and quenched by addition of $20 \% \mathrm{NaOH}$ aqueous. The resulting mixture was vigorously stirred for 30 min at room temperature. The white suspension was filtered through a pad of celite, washed with $\mathrm{Et}_{2} \mathrm{O}$, and concentrated to give a visquous yellow oil. Purification by flash chromatography afforded the title compound as a white solid in quantitative yield ($432 \mathrm{mg}, 2.35 \mathrm{mmol}, 100 \%$ yield). $\mathrm{R}_{f}=0.35$ (20% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.45(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}), 7.23$ (ddd, $J=7.8,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=7.8,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H})$, 1.34 (s(br), 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 142.2,133.4,132.0,129.7,127.8,126.8,69.6,41.7,24.9$ ppm.
IR (neat) v 3372, 2968, 2875, 1470, 1427, 1032, $752 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C} 10 \mathrm{H} 14 \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 185.0733$, found 185.0736.

(2-(2-Chlorophenyl)-2-methylpropoxy)triisopropylsilane (7).

2,6-Lutidine ($0.75 \mathrm{~mL}, 6.51 \mathrm{mmol}$) and triisopropylsilyl triflate ($1.16 \mathrm{~mL}, 4.33 \mathrm{mmol}$) were added successively at $0{ }^{\circ} \mathrm{C}$ to a solution of alcohol ($400 \mathrm{mg}, 2.17 \mathrm{mmol}$) in DCM (10 mL). The reaction mixture was then stirred for 2 h at room temperature, hydrolyzed with a saturated aqueous solution of NaHCO_{3} and the aqueous layer was extracted twice with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Purification by flash chromatography afforded 7 as a colorless oil ($702 \mathrm{mg}, 2.06 \mathrm{mmol}, 95 \%$). $\mathrm{R}_{f}=0.45$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.45(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}), 7.18$ (ddd, $J=8.0,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (ddd, $J=8.0,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H})$, $1.04-0.96(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.5,133.4,131.6,129.7,127.2,126.4,69.7,42.0,24.7$, 17.9, 11.9 ppm .

IR (neat) v 2941, 2864, 1463, 1099, 881, $751 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{ClOSi}[\mathrm{M}+\mathrm{H}]^{+}: 341.2067$, found 341.2065.

Triisopropyl((1-methyl-1,2-dihydrocyclobutabenzen-1-yl)methoxy)silane (8). ${ }^{4}$

The title compound was prepared from 7 according to the general procedure $\boldsymbol{A} .7(100 \mathrm{mg}$, $0.29 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(6.6 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(17.0 \mathrm{mg}, 0.059 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.3$ equiv) in DMF (1.1 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $\mathbf{8}(59 \mathrm{mg}, 66 \%)$ was obtained as a colorless oil after flash chromatography (1% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.39$ (10% EtOAc/cyclohexane).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1,46(\mathrm{~s}$, $3 \mathrm{H}), 1.05(\mathrm{~s}, 21 \mathrm{H}) \mathrm{ppm}$.

Methyl 2-(2-chlorophenyl)-3-methylbutanoate.

To a solution of lithium hexamethyldisilazide ($1.81 \mathrm{~g}, 13.54 \mathrm{mmol}$) in THF (10 mL) was added dropwise a solution of methyl (2-chlorophenyl)acetate ($2 \mathrm{~g}, 10.83 \mathrm{mmol}$) in THF (5 $\mathrm{mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes then $i-\operatorname{PrI}(3.24 \mathrm{~mL}, 32.50$ mmol) was added. The reaction was stirred at r.t overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layer were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (1% Ethyl acetate/cyclohexane) afforded the title compound as a colorless oil ($2.26 \mathrm{~g}, 9.96 \mathrm{mmol}, 92 \%$ yield). $\mathrm{R}_{f}=0.42$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C l} 3$) $\delta 7.56(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 173.8,136.1,134.5,129.4,128.8,128.1,127.0,53.9,51.8$, 32.4, 21.3, 19.5 ppm .

IR (neat) $v 2963,2873,1734,1158 \mathrm{~cm}^{-1}$.
HRMS (EI): calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}\left[\mathrm{M}^{+\bullet}\right]$: 226.0761, found: 226.0761.

Methyl 2-(2-chlorophenyl)-2,3-dimethylbutanoate (9).

LiHMDS (1.06 M in THF, $16.6 \mathrm{~mL}, 17.64 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the methyl 2-(2-chlorophenyl)-3-methylbutanoate ($500 \mathrm{mg}, 2.20 \mathrm{mmol}$) in THF (2 mL). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes then MeI ($2.02 \mathrm{~mL}, 32.50 \mathrm{mmol}$) was added dropwise. The reaction was stirred at r.t overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (1% EtOAc/cyclohexane) afforded 9 as a colorless oil ($514 \mathrm{mg}, 2.13 \mathrm{mmol}, 97 \%$ yield) $. \mathrm{R}_{f}=0.25$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C 1} 3$) δ 7.29-7.22 (m, 2H), 7.19-7.14 (m, 1H), 7.11-7.06 (m, 1H), 3.56 (s, 3H), 2.69 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 176.4,142.1,134.3,131.2,128.7,128.1,126.8,53.6,52.2$, 32.1, 20.6, 19.7, 19.1 ppm .

IR (neat) $v 2947,1734,1220,1101 \mathrm{~cm}^{-1}$.
HRMS (EI): calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2}\left[\mathrm{M}^{+\bullet}\right]: 240.0917$, found: 240.0920 .

Methyl 1-isopropyl-1,2-dihydrocyclobutabenzene-1-carboxylate (10).

The title compound was prepared from 9 according to the general procedure A. 9 (200 mg , $0.83 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(18.6 \mathrm{mg}, 0.083 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ ($48.0 \mathrm{mg}, 0.166 \mathrm{mmol}, 0.20$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(150 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.3$ equiv) in DMF (3.3 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $\mathbf{1 0}(119 \mathrm{mg}, 70 \%)$ was obtained as a colorless oil after flash chromatography (5% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.25$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{qq}, J=7.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.3,146.4,142.9,128.0,127.0,122.8,122.7,61.7,51.8$, 37.8, 33.8, 18.4, 18.3 ppm .

IR (neat) v 2962, 1726, 1457, 1432, $1247 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2}\left[\mathrm{M}^{+\bullet}\right]: 205.1229$, found: 205.1227.

Dimethyl 2-(2-chlorophenyl)malonate.

NaHMDS (2 M in THF, $16.25 \mathrm{~mL}, 32.50 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of methyl (2-chlorophenyl)acetate ($2.0 \mathrm{~g}, 10.83 \mathrm{mmol}$) in freshly distilled THF (5 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and dimethylcarbonate $(2.74 \mathrm{~mL}, 32.50$ mmol) was added dropwise. After stirring at room temperature overnight, the reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4} and evaporated under reduced pressure. The residue was purified by flash chromatography (10% ethyl acetate/cylohexane) to afford the title product as a yellow oil ($2.26 \mathrm{~g}, 9.31 \mathrm{mmol}, 86 \%$). $\mathrm{R}_{f} 0.47$ (20% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 7.46-7.43 (m, 1H), 7.39-7.36 (m, 1H), 7.29-7.23 (m, 2H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 168.0,134.2,130.2,129.5,127.1,54.0,52.9 \mathrm{ppm}$.
IR (neat) v 3026, 2954, 1735, 1434, 1221, $1149 \mathrm{~cm}^{-1}$.

HRMS (EI): calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{4}\left[\mathrm{M}^{+\bullet}\right]:$ 242.0346, found: 242.0344 .

Dimethyl 2-(2-chlorophenyl)-2-methylmalonate (11).

A solution of dimethyl 2-(2-chlorophenyl)malonate the starting material ($1.00 \mathrm{~g}, 4.12 \mathrm{mmol}$) in anhydrous DMF (5 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of sodium hydride $(60 \%$ in oil, 6.18 mmol) in anhydrous DMF (10 mL). The mixture was stirred for 20 min at room temperature and iodomethane ($770 \mu \mathrm{~L}, 12.36 \mathrm{mmol}$) was added dropwise. After stirring at room temperature vernight, the reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4} and evaporated under reduced pressure. The residue was purified by flash chromatography (10% ethyl acetate/cyclohexane) to afford 11 as a yellow oil ($841 \mathrm{mg}, 3.25 \mathrm{mmol}, 79 \%$). $\mathrm{R}_{f} 0.27$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.0,137.5,133.7,131.1,128.8,128.1,126.9,59.8,53.1$,
21.9 ppm .
IR (neat) v 3001, 2951, 1728, 1431, 1240, 1211, 1108, $1037 \mathrm{~cm}^{-1}$.
HRMS (CI): calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 257.0581$, found: 257.0580.

Dimethyl cyclobutabenzene-1,1-(2H)-dicarboxylate(12). ${ }^{4}$

The title compound was prepared from $\mathbf{1 1}$ according to the general procedure A. $\mathbf{1 1}(100 \mathrm{mg}$, $0.39 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(8.7 \mathrm{mg}, 0.039 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(23.0 \mathrm{mg}, 0.078 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(70 \mathrm{mg}, 0.51 \mathrm{mmol}, 1.3$ equiv) in DMF (1.6 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $12(63 \mathrm{mg}, 74 \%)$ was obtained as a yellow oil after flash chromatography (2% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.24$ (5\% Ethyl acetate/cyclohexane).

[^2]

Ethyl 2-(2-chloro-6-fluorophenyl)acetate.

One drop of $\mathrm{H}_{2} \mathrm{SO}_{4}$ conc. was added to a solution of 2-(2-chloro-6-fluorophenyl)acetic acid (1 g, 5.30 mmol$)$ in $\mathrm{EtOH}(30 \mathrm{~mL})$. The reaction mixture was stirred under reflux overnight. After concentration under vaccum, the residue was diluted in $\mathrm{Et}_{2} \mathrm{O}$ then washed with water, a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}. Evaporation of the solvent afforded the desired product as a colorless oil in quantitative yield ($1.15 \mathrm{mg}, 5.30 \mathrm{mmol}, 100 \%$). $\mathrm{R}_{f} 0.28$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 169.5,161.4(\mathrm{~d}, J=247.1$), 135.7 , $128.9(\mathrm{~d}, J=9.4 \mathrm{~Hz}$), $125.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 121.1(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 113.8(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 61.1,31.9(\mathrm{~d}, J=3.3$ Hz), 14.0 ppm .
${ }^{19}$ F NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-113.0 \mathrm{ppm}$.
IR (neat) $v 2983,1735,1579,1452,1175,952,778 \mathrm{~cm}^{-1}$.
HRMS (CI): calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClFO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 217.0432$, found: 217.0432.

Ethyl 2-(2-chloro-5-fluorophenyl)-2-methylpropanoate (13).

LiHMDS (1.06 M in THF, $6.5 \mathrm{~mL}, 6.86 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the ethyl 2-(2-chloro-6-fluorophenyl)acetate ($500 \mathrm{mg}, 2.29 \mathrm{mmol}$) in THF (2 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes then $\mathrm{MeI}(427 \mu \mathrm{~L}, 6.86 \mathrm{mmol})$ was added dropwise. The reaction was stirred at room temperature for 3 hours. After hydrolysis with a
saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (2% Ethyl acetate/cyclohexane) afforded $\mathbf{1 3}$ as a colorless oil ($532 \mathrm{mg}, 2.17 \mathrm{mmol}, 95 \%$ yield). $\mathrm{R}_{f} 0.23$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C l} 3$) $\delta 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.92(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.70(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 176.7,161.8(\mathrm{~d}, J=248.1 \mathrm{~Hz}), 134.9(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 129.8(\mathrm{~d}$, $J=12.5 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 61.1,47.4$ (d, $J=2.7 \mathrm{~Hz}$), $26.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 13.9 \mathrm{ppm}$.
${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-107.7 \mathrm{ppm}$.
IR (neat) $v 2983,1731,1445,1236,1143,881 \mathrm{~cm}^{-1}$.
HRMS (CI): calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 245.0745$, found: 245.0742.

Methyl 6-fluoro-1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate (14). ${ }^{4}$

The title compound was prepared from $\mathbf{1 3}$ according to the general procedure A. $13(100 \mathrm{mg}$, $0.47 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(10.5 \mathrm{mg}, 0.047 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(27.2 \mathrm{mg}, 0.094 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(84 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.3$ equiv) in DMF (2 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $14(69 \mathrm{mg}, 83 \%)$ was obtained as a colorless oil after flash chromatography (5% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.23$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.65(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 173.9(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 155.3(\mathrm{~d}, J=256.4 \mathrm{~Hz}), 144.8(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 119.4(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=19.7$ Hz), 61.0, 51.2, 42.5, 22.3, 14.0 ppm .
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ - 122.0 ppm ;
IR (neat) v 2979, 2933, 1727, 1601, 1473, 1274, 1241, 1145, $752 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}_{2}\left[\mathrm{M}^{+}\right]$: 208.0900, found: 208.0902 .

Methyl 2-(2,6-dichlorophenyl)-2-methylpropanoate (15).

LiHMDS (1.06M in THF, $29.84 \mathrm{~mL}, 27.39 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the methyl (2,6 -dichlorophenyl)acetate ($2 \mathrm{~g}, 9.13 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes then $\mathrm{MeI}(1.70 \mathrm{~mL}, 27.39 \mathrm{mmol})$ was added dropwise. The reaction was stirred at room temperature overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (2%, Ethyl acetate/cyclohexane) afforded 15 as a yellow oil ($1.85 \mathrm{~g}, 7.48 \mathrm{mmol}, 82 \%$ yield). $\mathrm{R}_{f} 0.33$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C 1} 3$) $\delta 7.27(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.06(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 1.79 ($\mathrm{s}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 177.7$, 139.0, 135.2, 130.5, 127.8, 52.5, $50.0,27.0 \mathrm{ppm}$.
IR (neat) $v 2984,2947,1734,1425,1202,1144,1121,779,749 \mathrm{~cm}^{-1}$.
HRMS (CI): calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 247.0292, found: 247.0288 .

Methyl 6-chloro-1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate (16). ${ }^{4}$

The title compound was prepared from 15 according to the general procedure A. $15(100 \mathrm{mg}$, $0.40 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(9.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(23.5 \mathrm{mg}, 0.081 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(72 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.3$ equiv) in DMA (1.6 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $16(61 \mathrm{mg}, 72 \%)$ was obtained as a colorless oil after flash chromatography (2\% Ethyl acetate/cyclohexane). $\mathrm{R}_{f} 0.33$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.23-7.14 (m, 3H), 7.02-7.00(m, 1H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J$ $=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Methyl 2-(2-chloro-5-trifluoromethylphenyl)acetate.

Concentrated sulfuric acid 98% (1 drop) was added to a solution of 2-(2-chloro-5trifluoromethylphenyl)acetic acid ($500 \mathrm{mg}, 2.09 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$. The reaction mixture was stirred under reflux overnight. After concentration under vaccum, the residue was diluted in $\mathrm{Et}_{2} \mathrm{O}$ then washed with water, a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}. Evaporation of the solvent afforded the desired product as a colorless oil in near quantitative yield ($523 \mathrm{mg}, 2.07 \mathrm{mmol}, 99 \%$). $\mathrm{R}_{f} 0.26$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.1,138.4(\mathrm{q}, J=1.4 \mathrm{~Hz}$), 133.3, 130.0, 129.3 (q, $J=32.7$
$\mathrm{Hz}), 128.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.5(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.5(\mathrm{q}, J=270.6 \mathrm{~Hz}), 52.2,38.7 \mathrm{ppm}$.
${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-63.0 \mathrm{ppm} ;$
IR (neat) $v 2956,1739,1326,1120,1081 \mathrm{~cm}^{-1}$.
HRMS (CI): calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 253.0243$, found: 253.0241.

Methyl 2-(2-chloro-5-trifluoromethylphenyl)-2-methylpropanoate (17).

LiHMDS (1.06 M in THF, $3.36 \mathrm{~mL}, 3.56 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of methyl 2-(2-chloro-5-trifluoromethylphenyl)acetate ($300 \mathrm{mg}, 1.19 \mathrm{mmol}$) in THF (1 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes then $\mathrm{MeI}(222 \mu \mathrm{~L}, 3.56 \mathrm{mmol})$ was added dropwise. The reaction was stirred at room temperature for 1 hour. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the
solvent and purification of the residue by flash chromatography $(2 \%$ Ethyl acetate/cyclohexane) afforded $\mathbf{1 7}$ as a yellow oil ($298 \mathrm{mg}, 1.06 \mathrm{mmol}, 89 \%$ yield). $\mathrm{R}_{f}=0.20$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C l} \mathbf{3}_{3}$) $\delta 8.09(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 176.6,145.0,135.0,130.1(\mathrm{q}, J=32.7 \mathrm{~Hz}), 127.8,125.1(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 124.7(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.0(\mathrm{q}, J=373.0 \mathrm{~Hz}), 52.7,48.3,26.3 \mathrm{ppm}$.
${ }^{19}$ F NMR ($282 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-62.8 \mathrm{ppm}$.
IR (neat) v 2950, 1710, 1327, 1116, 1078, $827 \mathrm{~cm}^{-1}$.
HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 281.0556$, found: 247.0560.

Methyl 1-methyl-5-(trifluoromethyl)-1,2-dihydrocyclobutabenzene-1-carboxylate (18). ${ }^{4}$

The title compound was prepared from $\mathbf{1 7}$ according to the general procedure $\boldsymbol{A} .17(100 \mathrm{mg}$, $0.36 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(8.0 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ ($20.6 \mathrm{mg}, 0.071 \mathrm{mmol}, 0.20$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.3$ equiv) in DMF (1.4 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $18(76 \mathrm{mg}, 87 \%)$ was obtained as a colorless oil after flash chromatography (2% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.20$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Methyl-2-(2-chloro-5-fluorophenyl)acetate.

Concentrated sulfuric acid 98\% (1 drop) was added to a solution of (2-Chloro-5-fluorophenyl) acetic acid ($1 \mathrm{~g}, 5.3 \mathrm{mmol}$, 1 equiv) in MeOH . The reaction mixture was stirred under reflux overnight. After concentration under vacuum, the residue was diluted with ethyl acetate, washed with NaHCO_{3}, dried over MgSO_{4}, and evaporated affording the title compound as a yellow oil ($1.056 \mathrm{~g}, 5.23 \mathrm{mmol}, 98 \%$). $\mathrm{R}_{f} 0.74$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.29(\mathrm{dd}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91 (ddd, $J=8.6,8.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 170.2,161.0(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 130.5(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 52.0,38.6$ ppm.
${ }^{19}$ F NMR ($282 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-115.73 \mathrm{ppm}$.
IR (neat) $v 2954,1737,1476,1239,1152,1114,812 \mathrm{~cm}^{-1}$.
GC/MS (m/z) C9 $\mathrm{H}_{8}{ }^{35} \mathrm{ClFO}_{2}\left[\mathrm{M}^{+\bullet}\right] 202,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{9} \mathrm{H}_{8}{ }^{37} \mathrm{ClFO}_{2}[\mathrm{M}+] 204.$.

Methyl-2-(2-chloro-5-fluorophenyl)-2-methylpropanoate (19).

LiHMDS 1.06 M in THF ($9.3 \mathrm{~mL}, 9.9 \mathrm{mmol}, 4 \mathrm{eq}$) was added dropwise with a syringe at $0^{\circ} \mathrm{C}$ to a solution of methyl-2-(2-chloro-5-fluorophenyl)acetate ($500 \mathrm{mg}, 2.47 \mathrm{mmol}, 1$ equiv) and MeI ($614 \mu \mathrm{~L}, 9.9 \mathrm{mmol}, 4$ equiv) in THF $(13 \mathrm{~mL})$. The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with brine and dried over MgSO_{4}. The crude was purified by flash chromatography (10% Ethyl acetate/cyclohexane) affording the title compound 19 as a yellow oil (553 mg , $2.40 \mathrm{mmol}, 97 \%) . \mathrm{R}_{f} 0.76$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.29(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=10.3,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.94-6.88 (m, 1H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 176.7,161.5(\mathrm{~d}, J=245.7 \mathrm{~Hz}), 144.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 131.8(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 52.5,46.7$, 25.9 ppm .
${ }^{19}$ F NMR ($282 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-115.04 \mathrm{ppm}$.
IR (neat) $v 2950,1734,1465,1242,1142,1104,812 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClFO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 243.0588$, found: 231.0585.

Methyl 5-fluoro-1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate (20).

The title compound was prepared from 19 according to the general procedure $\boldsymbol{A} .19$ (50 mg , $0.22 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.8 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(12.5 \mathrm{mg}, 0.043 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(39 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.3$ equiv) in DMA $(0.86 \mathrm{~mL})$ at $140^{\circ} \mathrm{C}$. After flash chromatography ($1 \% \mathrm{EtOAc} /$ cyclohexane), a 3.9:1 inseparable mixture of 20a and 20b was isolated as a pale yellow oil ($26 \mathrm{mg}, 0.26 \mathrm{mmol}, 75$ \%). $\mathrm{R}_{f} 0.36$ (5\% Ethyl acetate/cyclohexane).

Major regioisomer

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.04(\mathrm{dd}, J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.64(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Minor regioisomer

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Methyl 2-(2-chloro-4-methoxyphenyl)acetate.

Concentrated sulfuric acid $98 \%(2 \mathrm{~mL})$ was added dropwise to a stirred solution of 2-chloro-4-methoxyphenylacetonitrile ($500 \mathrm{mg}, 2.75 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then refluxed overnight. After cooling, water (80 mL) was added and the mixture was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the residue by flash chromatography (5% ethyl acetate/cyclohexane) afforded the title compound as a yellow oil ($413 \mathrm{~g}, 1.92 \mathrm{mmol}, 70 \%$ yield). $\mathrm{R}_{f}=0.25$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H} \operatorname{NMR}(300 \mathrm{MHz} \mathrm{CDCl} 3) \delta 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J$ $=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.3,159.3,134.9,131.8,124.3,114.8,113.0,55.4,52.0$, 38.0 ppm .

IR (neat) v 3019, 1716, 1610, 1500, 1437, $1214 \mathrm{~cm}^{-1}$.
HRMS (EI): calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}\left[\mathrm{M}^{+\bullet}\right]$: 214.0397, found: 214.0394.

Methyl 2-(2-chloro-4-methoxyphenyl)-2-methylpropanoate (21).

LiHMDS (1.06M in THF, $6.6 \mathrm{~mL}, 6.98 \mathrm{mmol}$) was added dropwise with a syringe at $0^{\circ} \mathrm{C}$ to a solution of methyl 2-(2-chloro-4-methoxyphenyl)acetate ($500 \mathrm{mg}, 2.33 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was then stirred at room temperature for 30 minutes, then MeI ($435 \mu \mathrm{~L}, 6.98 \mathrm{mmol}$) was added dropwise. The reaction was stirred at room temperature overnight, then a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layer were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (5% ethyl acetate/cyclohexane) afforded 21 as a colorless oil in quanttative yield ($564 \mathrm{mg}, 2.33 \mathrm{mmol}$, 100 \% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z ~ C D C l} 3$) $\delta 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J$ $8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

[^3]IR (neat) $v 2980,2946,1731,1602,1488,1230,1143,1034,836 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 243.0788$, found: 243.0786.

Methyl 4-methoxy-1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate (22). ${ }^{4}$

The title compound was prepared from 21 according to the general procedure A. $21(100 \mathrm{mg}$, $0.41 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}(\mathrm{OAc})_{2}(9.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(23.9 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(74 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.3$ equiv) in DMF (1.6 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $22(56 \mathrm{mg}, 66 \%)$ was obtained as a colorless oil after flash chromatography (5\% Ethyl acetate/cyclohexane). $\mathrm{R}_{f} 0.26$ (10\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 2.98(\mathrm{~d}, J=14.0 \mathrm{~Hz})$, $1.66(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Methyl 2-(2-chloro-4-fluorophenyl)acetate.

Concentrated sulfuric acid 98% (1 drop) was added to a solution of 2-(2-chloro-4fluorophenyl)acetic acid ($1 \mathrm{~g}, 5.30 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The reaction mixture was stirred under reflux overnight. After concentration under vaccum, the residue was diluted in $\mathrm{Et}_{2} \mathrm{O}$ then washed with water, a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}. Evaporation of the solvent afforded the desired product as a colorless oil ($932 \mathrm{mg}, 4.61 \mathrm{mmol}, 87 \%$). $\mathrm{R}_{f} 0.29$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta$ 7.27-7.24 (m, 1H), 7.15-7.12 (m, 1H), 6.98-6.93 (m, 1H), $3.74(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.2,162.1(\mathrm{~d}, J=247.9 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 132.7$ (d, $J=8.6 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 52.6$, 38.5 ppm .
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-113.4 \mathrm{ppm}$.
IR (neat) v 2954, 1737, 1605, 1493, 1236, 1158, $856 \mathrm{~cm}^{-1}$.
HRMS (EI): calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClFO}_{2}\left[\mathrm{M}^{+}\right]:$202.0197, found: 202.0197.

Methyl 2-(2-chloro-4-fluorophenyl)-2-methylpropanoate (23).

LiHMDS (1.06 M in THF, $7.0 \mathrm{~mL}, 7.40 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of methyl 2-(2-chloro-4-fluorophenyl)acetate ($500 \mathrm{mg}, 2.47 \mathrm{mmol}$) in THF (2 mL). The reaction mixture was then stirred at room temperature for 30 minutes and MeI ($460 \mu \mathrm{~L}, 7.40 \mathrm{mmol}$) was added dropwise. The reaction was stirred at room temperature overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine and dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (5\% ethyl acetate/cyclohexane) afforded $\mathbf{2 3}$ as a colorless oil ($458 \mathrm{mg}, 1.98 \mathrm{mmol}, 80 \%$ yield). $\mathrm{R}_{f} 0.23$ (5\% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.37(\mathrm{dd}, J=8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 177.1,161.1(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 138.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 134.2$ (d, $J=9.8 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 117.8(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=20.3 \mathrm{~Hz}), 52.4$, 46.2, 26.1 ppm .
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-114.9 \mathrm{ppm}$.
IR (neat) $v 2983,2949,1733,1599,1488,1241,1143,1103,846 \mathrm{~cm}^{-1}$.
HRMS (CI): calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClFO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$231.0588, 231.0588 .

Methyl 4-fluoro-1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylate(24). ${ }^{4}$

The title compound was prepared from $\mathbf{2 3}$ according to the general procedure A. 23 (100 mg , $0.43 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(9.6 \mathrm{mg}, 0.043 \mathrm{mmol}, 0.10$ equiv $), \mathrm{P}(t-$ $\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(25.2 \mathrm{mg}, 0.087 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(78.0 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.3$ equiv) in DMF (1.7 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $24(63 \mathrm{mg}, 76 \%)$ was obtained as a colorless oil after flash chromatography (5% EtOAc/cyclohexane). $\mathrm{R}_{f} 0.23$ (5\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.11-7.08 (m, 1H), 6.93-6.88 (m, 1H), 6.85-6.83 (m, 1H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Ethyl (3-chloro-pyridin-4-yl)acetate.

LiHMDS 1.06 M in THF ($29.6 \mathrm{~mL}, 31.4 \mathrm{mmol}$, 4 equiv) was added at $0^{\circ} \mathrm{C}$ to a solution of 3-chloro-4-methylpyridine ($863 \mu \mathrm{~L}, 7.84 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{2} \mathrm{CO}_{3}(1.23 \mathrm{~mL}, 10.19 \mathrm{mmol}$, 1.3 equiv) in THF (8.9 mL) under argon atmosphere. The solution was then stirred for 3 h . After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether and the combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (15% Ethyl acetate/cyclohexane) affording the title compound as an incolor oil ($1.443 \mathrm{~g}, 7.23 \mathrm{mmol}$, 92%). Rf 0.34 (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 169.0,149.4,147.8,141.1,132.5,125.8,61.4,38.3,14.1 \mathrm{ppm}$. IR (neat) $v=2962,1732,1229,1158,1096,1028,826 \mathrm{~cm}^{-1}$.
GC/MS (m/z) $\mathrm{C}_{9} \mathrm{H}_{10}{ }^{35} \mathrm{ClNO}_{2}\left[\mathrm{M}^{+}\right] 199,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{9} \mathrm{H}_{10}{ }^{37} \mathrm{ClNO}_{2}\left[\mathrm{M}^{+}\right] 201$.

Ethyl 2-(3-chloro-pyridin-4-yl)-2-methylpropionate (25).

LiHMDS 1.06 M in THF ($19 \mathrm{~mL}, 20.3 \mathrm{mmol}, 3$ equiv) was added dropwise with a syringe at $0{ }^{\circ} \mathrm{C}$ to a solution of compound ethyl (3-chloro-pyridin-4-yl)acetate ($1.35 \mathrm{~g}, 6.76 \mathrm{mmol}, 1$ equiv) in THF (28 mL). The reaction mixture was then stirred at room temperature for 2 h . MeI ($1.3 \mathrm{~mL}, 20.3 \mathrm{mmol}, 3$ equiv) was added dropwise and the reaction was stirred at room temperature overnight. Monitoring GCMS showed about 80% conversion. Therefore 4 mL of LiHMDS were added and the reaction mixture stirred for two extra hours. Then $300 \mu \mathrm{~L}$ of MeI were added and the solution was stirred for three hours. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. Organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (15% Ethyl acetate/cyclohexane) affording the title compound 25 as a yellow oil ($1.377 \mathrm{~g}, 6.05 \mathrm{mmol}, 90 \%$). $\mathrm{R}_{f} 0.41$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 175.3,150.9,150.2,148.3,131.6,121.6,61.4,46.5,25.1,13.9$ ppm.

IR (neat) v 2962, 1732, 1248, 1146, 1126, 1040, $1024 \mathrm{~cm}^{-1}$.
HRMS (CI) calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2}\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}:$228.0791, found: 228.0791 .

7-methyl-3-aza-bicyclo[4.2.0]octa-1(6), 2,4-triene-7-carboxylic acid ethyl ester (26).

The title compound was prepared from 25 according to the general procedure A. $26(300 \mathrm{mg}$, $1.32 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(29.6 \mathrm{mg}, 0.132 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(76.6 \mathrm{mg}, 0.087 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(237.0 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.3$ equiv) in DMF (5.0 mL) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $26(146 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%)$ was obtained as a pale yellow oil after flash chromatography (30% Ethyl acetate/cyclohexane). $\mathrm{R}_{f} 0.21$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.50(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 173.5,157.5,148.5,143.9,139.0,116.9,61.3,53.6,41.8$, 22.6, 14.2 ppm .

HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}\left[\mathrm{M}^{+\bullet}\right]: 191.0946$, found: 191.0942 .

3-chloro-4-methylquinoline.

$\mathrm{NaOH}(1.14 \mathrm{~mL})$ in water (2.28 mL) was added to a vigorously stirred solution of 3methylindole ($500 \mathrm{mg}, 3.8 \mathrm{mmol}, 1 \mathrm{eq}$) and benzyltriethylammonium chloride ($86 \mathrm{mg}, 0.38$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$) in chloroform (5 mL) under ice-cooling bath. The reaction mixture was
stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h and left overnight at room temperature. The aqueous layer was separated and extracted with chloroform. The organic layers were dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (5\% Ethyl acetate/cyclohexane) affording the title compound as a brown oil ($450 \mathrm{mg}, 2.54 \mathrm{mmol}, 67 \%$). $\mathrm{R}_{f} 0.61$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.8,146.3,140.8,130.2,129.1,128.6,128.5,127.5,123.9$, 15.1 ppm .

IR (neat) $v 2920,1455,1159,1118,1011,749 \mathrm{~cm}^{-1}$.
GC/MS $(\mathrm{m} / \mathrm{z}) \mathrm{C}_{10} \mathrm{H}_{8}{ }^{35} \mathrm{ClN}\left[\mathrm{M}^{+}\right] 177,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{10} \mathrm{H}_{8}{ }^{37} \mathrm{ClN}\left[\mathrm{M}^{+}\right] 179$.

Methyl 2-(3-chloroquinolin-4-yl)acetate.

LiHMDS 1.06 M in THF ($3.2 \mathrm{~mL}, 3.4 \mathrm{mmol}, 4 \mathrm{eq}$) was added at $0{ }^{\circ} \mathrm{C}$ to a solution of 3-chloro-4-methylquinoline ($150 \mathrm{mg}, 0.84 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{Me}_{2} \mathrm{CO}_{3}(92 \mu \mathrm{~L}, 1.09 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF (1 mL) under argon atmosphere. The solution was then stirred for 3 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The aqueous layer was extracted with ether and the combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a pale yellow solid ($143 \mathrm{mg}, 0.67 \mathrm{mmol}, 79 \%$). $\mathrm{Mp}: 103.4^{\circ} \mathrm{C}$. $\mathrm{R}_{f} 0.52$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 169.6,149.9,146.7,136.7,130.5,129.5,129.4,128.2,128.1$, 123.5, 52.7, 34.7 ppm .

IR (neat) $v 2962,1719,1333,1234,1213,1184,957,764 \mathrm{~cm}^{-1}$.
GC/MS (m/z) $\mathrm{C}_{12} \mathrm{H}_{10}{ }^{35} \mathrm{ClNO}_{2}\left[\mathrm{M}^{+}\right] 235,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{12} \mathrm{H}_{10}{ }^{37} \mathrm{ClNO}_{2}\left[\mathrm{M}^{+\bullet}\right] 237$.

Methyl 2-(3-chloroquinolin-4-yl)-2-methylpropanoate (27).

LiHMDS 1.06 M in THF ($1.31 \mathrm{~mL}, 1.39 \mathrm{mmol}, 3 \mathrm{eq}$) was added dropwise with a syringe at 0 ${ }^{\circ} \mathrm{C}$ to a solution of compound methyl 2-(3-chloroquinolin-4-yl)acetate ($100 \mathrm{mg}, 0.46 \mathrm{mmol}, 1$ eq) in THF (2.3 mL). The reaction mixture was then stirred at room temperature for 30 min . MeI ($100 \mu \mathrm{~L}, 1.39 \mathrm{mmol}, 3 \mathrm{eq}$) was added dropwise and the reaction was stirred at room
temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with EtOAc. Organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the crude was purified by flash chromatography (5\% Ethyl acetate/cyclohexane) affording the title compound 27 as a yellow oil ($99 \mathrm{mg}, 0.41 \mathrm{mmol}, 88 \%$). $\mathrm{R}_{f} 0.57$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, 1.86 ($\mathrm{s}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 177.9,152.0,147.0,144.5,130.8,128.4,127.9,127.6,126.9$, 123.6, 52.5, 49.1, 27.7 ppm .

IR (neat) $v 2948,1732,1255,1148,1130,760 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{2}\left[\mathrm{M}^{+}\right]:$263.0713, found:263.0712.

Methyl 1,2-dihydro-1-methylcyclobuta[c]quinoline-1-carboxylate (28).

The title compound was prepared from 27 according to the general procedure A. 27 (50 mg , $0.19 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.3 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(11.0 \mathrm{mg}, 0.038 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(34.0 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.3$ equiv) in DMF ($760 \mu \mathrm{~L}$) at $140{ }^{\circ} \mathrm{C}$. The desired cyclobutarene $28(27 \mathrm{mg}, 0.12 \mathrm{mmol}, 63 \%)$ was obtained as a yellow oil after flash chromatography (20% Ethyl acetate/cyclohexane). R_{f} 0.27 (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.25(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 173.1,153.0,146.4,144.5,134.7,129.8,128.1,126.5,122.6$, 121.8, 52.7, 51.6, 40.8, 21.4 ppm .

IR (neat) $v 2931,1728,1282,1147,766,756 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}\left[\mathrm{M}^{+\bullet}\right]:$ 227.0946, found: 227.0947.

6,7-dihydro-1-tosyl-1 H -indol-4(5H)-one.

To a solution of $1,5,6,7$-Tetrahydro- 4 H -indol-4-one ($500 \mathrm{mg}, 3.7 \mathrm{mmol}, 1$ equiv) in dichloromethane $(9.3 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL}, 11.1 \mathrm{mmol}, 3$ equiv) dropwise at room temperature. To the resulting suspension was added $\mathrm{TsCl}(705 \mathrm{mg}, 3.7 \mathrm{mmol}, 1$ equiv) and DMAP ($45 \mathrm{mg}, 0.37 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The reaction mixture was stirred until TsCl was consumed. The mixture was poured into water and extracted twice with dichloromethane. Combined organic layers were dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (10% Ethyl acetate/cyclohexane) affording the title compound 30d as a pale pink solid ($884 \mathrm{mg}, 3.05 \mathrm{mmol}, 83 \%$). Mp: $135.8^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.39(50 \%$ Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.14-2.04$ (m, 2H) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 194.4,146.0,143.8,135.4,130.5,127.3,124.9,122.4,108.3$, 37.5, 23.4, 21.8 ppm .

IR (neat) $v 2964,1660,1373,1119,701,673,656 \mathrm{~cm}^{-1}$.
GC/MS m/z C ${ }_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}^{+}\right] 289$.

5,5-dichloro-6,7-dihydro-1-tosyl-1 H -indol-4(5H)-one.

Compound 6,7-dihydro-1-tosyl-1 H-indol-4(5H)-one ($2 \mathrm{~g}, 6.9 \mathrm{mmol}, 1$ equiv) was dissolved in 50% acetic acid solution (10 mL). Then $\mathrm{CuCl}_{2}(5.6 \mathrm{~g}, 41.4 \mathrm{mmol}, 6$ equiv) was added and the mixture stirred under reflux for 4 h . Mainly monochlorinated compound was observed. CuCl_{2} ($1 \mathrm{~g}, 3.46 \mathrm{mmol}, 0.5$ equiv) was added and the mixture stirred under reflux overnight. The mixture was poured into water and extracted twice with dichloromethane. Combined organic layers were dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (30% Ethyl acetate/cyclohexane) affording the title compound as a pale pink solid ($884 \mathrm{mg}, 3.05 \mathrm{mmol}, 83 \%$). Mp: $144.1{ }^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.65$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (s, 3 H) ppm.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.1,146.6,141.5,134.9,130.7,127.3,123.9,120.1,109.9$, 85.7, 43.6, 22.1 ppm .

IR (neat) $v=3123,1688,1378,1174,1134,1108,715,678,659 \mathrm{~cm}^{-1}$.
GC/MS m/z C ${ }_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}^{+}\right] 357$.

2-(5,5-dichloro-6,7-dihydro-1-tosyl-1 H -indol-4(5H)-ylidene)acetonitrile.

A solution prepared from diethylcyanomethylphosphonate ($666 \mu \mathrm{~L}, 4.10 \mathrm{mmol}, 1.47$ equiv) and $\mathrm{NaH} 60 \%$ oil ($123 \mathrm{mg}, 3.069 \mathrm{mmol}, 1.1$ equiv) was stirred at room temperature for 30 min under argon atmosphere. Compound 5,5-dichloro-6,7-dihydro-1-tosyl-1 H -indol-4(5H)one ($1 \mathrm{~g}, 2.79 \mathrm{mmol}, 1$ equiv) was added to this solution of sodium salt of diethylcyanomethylphosphonate at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 3 h at room temperature. GC/MS monitoring did not show a complete conversion and another solution of sodium salt of diethylcyanomethylphosphonate was added. The mixture was washed with water and extracted twice with EtOAc. Organic layers were dried over MgSO_{4}. After filtration and evaporation, the crude was purified by flash chromatography (50% Ethyl acetate/cyclohexane) affording the title compound as an orange solid in quantitative yield $(1.065 \mathrm{~g}, 2.79 \mathrm{mmol}, 100 \%) . \mathrm{Mp}: 96.8^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.73$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7,36(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 151.7,146.2,135.2,132.8,130.5,127.1,123.4,118.3,117.5$, 109.7, 92.1, 85.6, 43.3, 22.4, 21.8 ppm .

IR (neat) $v 2956,1171,1158,1144,688,660 \mathrm{~cm}^{-1}$.
GC/MS $\mathrm{m} / \mathrm{z} \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}(-\mathrm{HCl})\right] 344$.

2-(5-chloro-1-tosyl-1 H -indol-4-yl)acetonitrile.

A mixture of compound 2-(5,5-dichloro-6,7-dihydro-1-tosyl-1 H -indol-4(5H)ylidene) acetonitrile ($1.065 \mathrm{~g}, 2.79 \mathrm{mmol}, 1$ equiv) and LiCl ($201 \mathrm{mg}, 4.75 \mathrm{mmol}, 1.7$ equiv) was stirred in DMF (100 mL) under argon atmosphere at refluxing temperature for 3 h . The mixture was poured into water and extracted with dichloromethane. The dichloromethane solution was dried over MgSO_{4} and concentrated. The crude was purified by flash chromatography (25% Ethyl acetate/cyclohexane) affording the title compound as a pale brown solid ($815 \mathrm{mg}, 2.36 \mathrm{mmol}, 85 \%$). Mp: $200.1{ }^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.67$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$
$3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (s, 2H), 2.36 ($\mathrm{s}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 145.8,134.8,133.4,131.2,130.3,129.0,128.4,126.9,125.8$, 120.2, 116.5, 114.9, 106.3, 21.7, 18.8 ppm .

IR (neat) $v=3137,1372,1167,1144,1123,708,667 \mathrm{~cm}^{-1}$.
GC/MS (m/z) $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right] 344,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{17} \mathrm{H}_{13}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right] 346$.

2-(5-chloro-1-tosyl-1 H -indol-4-yl)-2-methylpropanenitrile (29).

LiHMDS 1.06 M in THF ($2.19 \mathrm{~mL}, 2.32 \mathrm{mmol}, 4$ equiv) was added dropwise with a syringe at $0{ }^{\circ} \mathrm{C}$ to a solution of compound 2-(5-chloro-1-tosyl- 1 H -indol-4-yl)acetonitrile (200 mg , $0.58 \mathrm{mmol}, 1$ equiv) in THF (3 mL). The reaction mixture was then stirred at room temperature for 30 min . MeI ($144 \mu \mathrm{~L}, 2.32 \mathrm{mmol}, 4$ equiv) was added dropwise and the reaction was stirred at room temperature overnight. After hydrolysis with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with EtOAc. Organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the crude was purified by flash chromatography (15% Ethyl acetate/cyclohexane) affording the title compound $\mathbf{2 9}$ as a pale brown solid ($182 \mathrm{mg}, 0.49 \mathrm{mmol}, 84 \%$). $\mathrm{R}_{f} 0.65$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ (s, 3H), $2.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 145.6,134.6,134.2,130.1,129.5,129.2,128.3,128.3,127.1$, 126.9, 124.7, 114.2, 108.2, 37.8, 28.9, 21.6 ppm .

IR (neat) $v=3143,2230,1379,1159,1137 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+\bullet}\right]: 372.0699$, found: 372.0701.

6,7-dihydro-7-methyl-3-tosyl-3H-cyclobuta[e] indole-7-carbonitrile (30).

The title compound was prepared from 29 according to the general procedure A. $29(100 \mathrm{mg}$, $0.27 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(6.1 \mathrm{mg}, 0.027 \mathrm{mmol}, 0.10$ equiv), $\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}\left(15.7 \mathrm{mg}, 0.054 \mathrm{mmol}, 0.20\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(48.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.3$ equiv) in DMF (1.1 mL) at $140^{\circ} \mathrm{C}$. Mixture was stirred under argon atmosphere at $140{ }^{\circ} \mathrm{C}$ overnight. After preparative thin layer chromatography (10\% Ethyl acetate/cyclohexane), a mixture of 30a and 30b (ratio: 1:2.5) was isolated as a colorless oil ($60 \mathrm{mg}, 0.18 \mathrm{mmol}, 69 \%$). After an other preparative thin layer chromatography (15% Ethyl acetate/cylohexane) with several elutions, the major product $\mathbf{3 0 b}$ was isolated as a pure fraction, and the minor product as an inseparable mixture of 30a and 30b (ratio: 3.4:1). $\mathrm{R}_{f} 0.54$ (50% Ethyl acetate/cyclohexane).

Major product 30b

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=$ $16.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=16.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 145.2,143.2,136.5,135.7,130.3,130.1,129.1,126.9,123.4$, $122.9,117.9,117.0,113.8,48.6,44.3,27.4,21.7 \mathrm{ppm}$.

Minor product 30a

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 145.4,135.7,135.4,135.1,130.1,129.0,128.4,127.0,124.5$, 122.3, 119.4, 115.4, 104.6, 44.6, 37.7, 23.6, 21.7 ppm .

IR (neat) $v 2926,1360,1173,1158,1073,764,670 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 336.0932, found: 336.0931.

Synthesis of indanes by alkane arylation (Table 4).

2-(2-Chloro-phenyl)-2-isopropyl-3-methyl-butyronitrile (31a).

LiHMDS 1.06 M in THF ($30 \mathrm{~mL}, 30.8 \mathrm{mmol}, 2.4$ equiv) was added dropwise with a syringe at $0{ }^{\circ} \mathrm{C}$ to a solution of 2-bromophenylacetonitrile ($1.6 \mathrm{~mL}, 12.9 \mathrm{mmol}, 1$ equiv) and isopropyliodide ($4 \mathrm{~mL}, 40 \mathrm{mmol}, 3$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. Combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a colorless oil ($2.6 \mathrm{~g}, 11 \mathrm{mmol}$, $91 \%) . \mathrm{R}_{f} 0.83$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H})$, $2.99(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 142.9,134.8,132.3,132.2,128.7,126.5,120.2,60.7,32.8$, 20.1 ppm .

HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}\left[\mathrm{M}^{+}\right]:$235.1128, found: 235.1127.
IR (neat) $v 2971,1038,752,718 \mathrm{~cm}^{-1}$.

1-Isopropyl-2-methyl-indan-1-carbonitrile (32a). ${ }^{5}$

Following general procedure B starting from $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($61.8 \mathrm{mg}, 0.44 \mathrm{mmol}, 2$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.9 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cyp}_{3} \mathrm{P}^{2} \cdot \mathrm{HBF}_{4}(15.6 \mathrm{mg}, 0.048 \mathrm{mmol}, 0.20$ equiv), compound 31a ($51.7 \mathrm{mg}, 0,22 \mathrm{mmol}, 1$ equiv) and DMF (1.1 mL). Mixture was stirred for 2.5 h . The crude was purified by preparative thin layer chromatography (10% Ethyl

[^4]acetate/cyclohexane) affording the title compound as a yellow oil ($40.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 92 \%$). $\mathrm{R}_{f} 0.72$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=21.4,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=21.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{sept}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.07$ (d, $J=9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05$ (d, $J=9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

2-(2-Chloro-5-fluoro-phenyl)-2-isopropyl-3-methyl-butyronitrile (34).

LiHMDS 1.06 M in THF ($10 \mathrm{~mL}, 10.6 \mathrm{mmol}$, 6 equiv) was added dropwise with a syringe at $0{ }^{\circ} \mathrm{C}$ to a solution of 2-bromo-4-fluorophenylacetonitrile ($290 \mathrm{mg}, 1.71 \mathrm{mmol}, 1$ equiv) and isopropyliodide ($1.5 \mathrm{~mL}, 15 \mathrm{mmol}, 9$ equiv) in THF (2 mL). The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. Combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a yellow solid ($331 \mathrm{mg}, 1.3 \mathrm{mmol}$, 76%). Mp: $55.2^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.81$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H})$, $2.94(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.7(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}), 119.9,119.8,116.9(\mathrm{~d}, J=22 \mathrm{~Hz}), 61.1,33.0,20.3 \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-114.4 \mathrm{ppm}$.
HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClFN}$ [M $\left.{ }^{+}\right]$: 253.1034, found 253.1035.
IR (neat) v 2986, 1463, 1231, $822 \mathrm{~cm}^{-1}$.

6-Fluoro-1-isopropyl-2-methyl-indan-1-carbonitrile (35a).

Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}(67.9 \mathrm{mg}, 0.49 \mathrm{mmol}, 2$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}\left(2.6 \mathrm{mg}, 0.011 \mathrm{mmol}, 0,05\right.$ equiv), $\mathrm{Cyp}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(17.9 \mathrm{mg}, 0.055 \mathrm{mmol}, 0.20$ equiv), compound 34 ($51.7 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) and DMF (1.1 mL). Mixture was stirred for 12 h . The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($37.2 \mathrm{mg}, 0.17 \mathrm{mmol}, 84 \%$). $\mathrm{R}_{f} 0.70$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.15(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.96 (td, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=15.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=$ $15.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{sept}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.5(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 142.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}), 120.6,115.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 112.5(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 58.6,39.3,38.5,34.9,19.8$, 18.7, 18.6 ppm.
${ }^{19}$ F NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-115.0 \mathrm{ppm}$.
HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FN}\left[\mathrm{M}^{+\bullet}\right]: 217.1267$, found: 217.1265.
IR (neat) v 2968, 1488, 1260, $812 \mathrm{~cm}^{-1}$.

2-(2-Chloro-5-trifluoromethyl-phenyl)-2-isopropyl-3-methyl-butyronitrile (36).

LiHMDS 1.06 M in THF ($10 \mathrm{~mL}, 10.6 \mathrm{mmol}, 4$ equiv) was added dropwise with a syringe at $0^{\circ} \mathrm{C}$ to a solution of compound 2-chloro-5-trifluoromethylphenylacetonitrile ($492 \mathrm{mg}, 2.24$ mmol, 1 equiv) and isopropyliodide ($1.5 \mathrm{~mL}, 15 \mathrm{mmol}, 6$ equiv) in THF (2 mL). The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. The combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5\% Ethyl acetate/cyclohexane) affording the title compound as a white solid ($610 \mathrm{mg}, 2.01 \mathrm{mmol}, 89 \%$). Mp: $52.8^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.80$ (5% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz} 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 133.1,129.2(\mathrm{q}, J=32.9 \mathrm{~Hz}), 129.0,128.4,128.3,125.6(\mathrm{q}, J$ $=3.2 \mathrm{~Hz}), 123.5(\mathrm{q}, J=270.6 \mathrm{~Hz}), 119.7,61.1,33.2,20.1 \mathrm{ppm}$.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.1 \mathrm{ppm}$.
HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}$ [$\left.\mathrm{M}^{+}\right]$: 303.1002, found: 303.1004.
IR (neat) v 2977, 1162, 1124, $1087 \mathrm{~cm}^{-1}$.

1-Isopropyl-2-methyl-6-trifluoromethyl-indan-1-carbonitrile (37a).

Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($97.7 \mathrm{mg}, 0.70 \mathrm{mmol}, 2$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}\left(3.9 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cyp}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(24.3 \mathrm{mg}, 0.074 \mathrm{mmol}, 0.20$ equiv), compound $\mathbf{3 6}$ ($100 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv) and DMF (1.65 mL). Mixture was stirred for 6 h . The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($72.5 \mathrm{mg}, 0.27 \mathrm{mmol}, 82 \%$). $\mathrm{R}_{f} 0.70$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{dd}, J=16.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 145.96,141.96,129.7(\mathrm{q}, J=32.1 \mathrm{~Hz}), 125.9(\mathrm{q}, J=3.1 \mathrm{~Hz})$, $125.8,124.2(\mathrm{q}, J=270.6 \mathrm{~Hz}), 122.4(\mathrm{q}, J=3.9 \mathrm{~Hz}), 120.3,58.5,39.1,38.9,34.9,19.8,18.7$, 18.6 ppm .
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta-62.5 \mathrm{ppm}$.
HRMS (EI) calculated $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}\left[\mathrm{M}^{+\bullet}\right]: 267.1235$, found: 267.1235.
IR (neat) $v 2921,1320,1162,1120 \mathrm{~cm}^{-1}$.

2-(2-Chloro-4-methoxy-phenyl)-2-isopropyl-3-methyl-butyronitrile (38).

LiHMDS 1.06 M in THF ($6 \mathrm{~mL}, 6.36 \mathrm{mmol}, 6$ equiv) was added dropwise with a syringe at 0 ${ }^{\circ} \mathrm{C}$ to a solution of 2-chloro-5-methoxyphenylacetonitrile ($205.1 \mathrm{mg}, 1.13 \mathrm{mmol}, 1$ equiv) and isopropyliodide ($0.8 \mathrm{~mL}, 8 \mathrm{mmol}, 7$ equiv) in THF (2 mL). The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. Combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a colorless oil ($297 \mathrm{mg}, 0.12$ $\mathrm{mmol}, 99 \%) . \mathrm{R}_{f} 0.82$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=2.8,8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.0,138.1,125.7,120.8,117.6,112.2,59.7,55.4,33.1$, 20.1 ppm .

HR/MS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClNO}\left[\mathrm{M}^{+}\right]:$263.1233, found: 265.1235 .
IR (neat) $v 2970,1495,1298,1234,1036 \mathrm{~cm}^{-1}$.

1-Isopropyl-5-methoxy-2-methyl-indan-1-carbonitrile (39a).

Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 0.80 \mathrm{mmol}, 2$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.7 \mathrm{mg}, 0.021 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Cyp}_{3} \mathrm{P}^{2} \cdot \mathrm{HBF}_{4}(27.9 \mathrm{mg}, 0.085 \mathrm{mmol}, 0.20$ equiv), compound 38 ($104 \mathrm{mg}, 0.39 \mathrm{mmol}, 1$ equiv) and DMF (2 mL). Mixture was stirred for 12 h . The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($80.3 \mathrm{mg}, 0.35 \mathrm{mmol}, 88 \%$). $\mathrm{R}_{f} 0.67$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=16.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=$ $16.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 0.94 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 160.2,143.4,133.0,126.1,121.3,112.9,110.3,57.8,55.4$, $39.3,39.0,34.9,19.9,18.7,18.6 \mathrm{ppm}$.

HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}\left[\mathrm{M}^{+\bullet}\right]: 229.1467$, found: 229.1463 .
IR (neat) v 2965, 1490, 1258, $1081 \mathrm{~cm}^{-1}$.

1-(2-Chloro-phenyl)-2,5-dimethyl-cyclopentanecarbonitrile (40).

LiHMDS 1.06 M in THF ($3.18 \mathrm{~mL}, 3 \mathrm{mmol}, 6$ equiv) was added dropwise with a syringe at 0 ${ }^{\circ} \mathrm{C}$ to a solution 2-bromophenylacetonitrile ($72 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ equiv) in THF (2 mL). The mixture was added to a solution of ditosylate ${ }^{6}$ ($205 \mathrm{mg}, 0.48 \mathrm{mmol}, 1$ equiv) in THF (2 mL). The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. Combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5\% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($68 \mathrm{mg}, 0.29 \mathrm{mmol}, 61 \%$). $\mathrm{R}_{f} 0.85$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 2.76$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.50 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 135.2,133.7,131.6,129.2,128.8,126.9,121.1,55.1,41.2$, 38.0, 31.0, 30.3, 18.8, 15.7 ppm .

HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}\left[\mathrm{M}^{+}\right]$: 233.0971, found: 233.0974.
IR (neat) v 2952, 1065, 780, $754 \mathrm{~cm}^{-1}$.

3-Methyl-2,3,8,8a-tetrahydro- \mathbf{H}-cyclopenta[a]indene-3a-carbonitrile (41). ${ }^{5}$

Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}(64.3 \mathrm{mg}, 0.46 \mathrm{mmol}, 2$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2 \mathrm{mg}, 0.009 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cyp}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(13.1 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.20$ equiv), compound 40 ($45 \mathrm{mg}, 0.19 \mathrm{mmol}, 1$ equiv) and DMF (1.1 mL). Mixture was stirred over

[^5]night. The crude was purified by preparative thin layer chromatography (10\% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($30 \mathrm{mg}, 0.15 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$ ppm.

1-(2-Chloro-4-methoxy-phenyl)-2,5-dimethyl-cyclopentanecarbonitrile (42).

LiHMDS 1.06 M in THF ($5 \mathrm{~mL}, 5.3 \mathrm{mmol}$, 5 equiv) was added dropwise with a syringe at $0^{\circ} \mathrm{C}$ to a solution of 2-bromo-5-methoxyphenylacetonitrile ($184 \mathrm{mg}, 1 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (2 mL). The mixture was added to a solution of dimesylate ${ }^{7}$ ($880 \mathrm{mg}, 3.2 \mathrm{mmol}, 3$ equiv) in THF $(2 \mathrm{~mL})$. The reaction mixture was then stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. The combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a yellow solid ($195 \mathrm{mg}, 0.74 \mathrm{mmol}, 74 \%$). Mp: $64.9{ }^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.72$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J$ $=2.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.74$ $(\mathrm{m}, l \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}): 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.5,135.7,129.3,125.5,121.4,116.8,112.7,55.6,54.6$, 41.3, 38.1, 30.9, 30.2, 18.7, 15.7 ppm.

HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}$ [M ${ }^{+\bullet}$]: 263.1077, found: 263.1074.

[^6]IR(neat) $v 2963,1239,1042,1031 \mathrm{~cm}^{-1}$.

6-Methoxy-3-methyl-2,3,8,8a-tetrahydro-1H-cyclopenta[a]indene-3a-carbonitrile (43).
Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($104 \mathrm{mg}, 0.75 \mathrm{mmol}, 2$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cyp}_{3} \mathrm{P}^{2} \cdot \mathrm{HBF}_{4}(28 \mathrm{mg}, 0.085 \mathrm{mmol}, 0.20$ equiv), compound 42 ($101.5 \mathrm{mg}, 0.38 \mathrm{mmol}, 1$ equiv) and DMF (1.8 mL). Mixture was stirred over night. The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($68 \mathrm{mg}, 0.32 \mathrm{mmol}, 84 \%$). $\mathrm{R}_{f} 0.68$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.46$ $(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 160.4,143.9,134.5,124.2,122.5,113.8,110.1,57.4,55.4$, $51.5,45.5,39.3,35.1,32.5,16.7 \mathrm{ppm}$.
HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}\left[\mathrm{M}^{+}\right]$: 227.1310, found: 227.1309.
IR (neat) $v 2962,1491,1242,1043 \mathrm{~cm}^{-1}$

2-(2-chlorothiophen-3-yl)acetonitrile (45d).

NBS ($939 \mathrm{mg}, 5.28 \mathrm{mmol}, 1$ equiv) and benzoyl peroxide ($256 \mathrm{mg}, 1 \mathrm{mmol}, 0.20$ equiv) were added to a solution of 2-chloro-3-methylthiophene $\mathbf{4 5 c}\left(700 \mathrm{mg}, 5.28 \mathrm{mmol}\right.$, 1 equiv) in CCl_{4} $(15 \mathrm{~mL})$. The reaction mixture was stirred for 40 min . After cooling, the solvent was evaporated under reduced pressure. The residue obtained was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}$ (52 $\mathrm{mL})$ and TMSCN ($919 \mu \mathrm{~L}, 6.86 \mathrm{mmol}, 1.3$ equiv). TBAF 1 M in THF ($6.86 \mathrm{~mL}, 6.86 \mathrm{mmol}$, 1.3 equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at r.t for 3 h . Then the solvent was evaporated under reduced pressure. The residue was purified by flash
chromatography (5\% Ethyl acetate/cyclohexane) affordind the title compound 45d as an orange oil ($550 \mathrm{mg}, 3.49 \mathrm{mmol}, 66 \%$ for the two steps). $\mathrm{R}_{f} 0.64$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.15(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 127.7$, 126.9, 126.5, 123.9, 116.6, 16.8 ppm.
IR (neat) $v=3112,2252,1414,1034,827,689 \mathrm{~cm}^{-1}$.
GC/MS (m/z) C $\mathrm{C}_{6} \mathrm{H}_{4}{ }^{35} \mathrm{ClNS}\left[\mathrm{M}^{+\bullet}\right] 157,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{6} \mathrm{H}_{4}{ }^{37} \mathrm{ClNS}\left[\mathrm{M}^{+\bullet}\right] 159$.

2-(2-chlorothiophen-3-yl)-2-isopropyl-3-methylbutanenitrile (44).

LiHMDS 1.06 M in THF ($2.4 \mathrm{~mL}, 2.54 \mathrm{mmol}, 4$ equiv) was added dropwise with a syringe at $0^{\circ} \mathrm{C}$ to a solution of compound $\mathbf{4 5 d}(100 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) in THF (3 mL). The reaction mixture was then stirred at room temperature for 30 min . Isopropyl iodide ($642 \mu \mathrm{~L}$, $2.54 \mathrm{mmol}, 4$ equiv) was added dropwise and the reaction was stirred at room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the crude was purified by flash chromatography (5\% Ethyl acetate/cyclohexane) affording the title compound $\mathbf{4 4}$ as a pale yellow solid ($141 \mathrm{mg}, 0.58$ $\mathrm{mmol}, 92 \%) . \mathrm{Mp}: 56.3^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.71$ (50\% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.11(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 130.2,129.9,126.7,122.1,120.9,55.2,33.4,19.0,18.3 \mathrm{ppm}$.
IR (neat) v 2976, 2229, 1467, 1392, 1021, 849, $721 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}^{35} \mathrm{NS}\left[\mathrm{M}^{+\bullet]: ~ 241.0686, ~ f o u n d: ~ 241.0689 . ~}\right.$

5,6-dihydro-4-isopropyl-5-methyl-4H-cyclopenta[b]thiophene-4-carbonitrile (45).

Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($84.6 \mathrm{mg}, 0.61 \mathrm{mmol}, 2$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}\left(3.5 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cyp}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(20.6 \mathrm{mg}, 0.062 \mathrm{mmol}, 0.20$ equiv), compound 44 ($74 \mathrm{mg}, 0.31 \mathrm{mmol}, 1$ equiv) and DMF (1.47 mL). Mixture was stirred for 2.5 h . After preparative thin layer chromatography (5% Ethyl acetate/cyclohexane), a mixture of inseparable diastereoisomers $\mathbf{4 5 a}$ and $\mathbf{4 5 b}$ was isolated as a yellow oil (46 mg , $0.23 \mathrm{mmol}, 72 \%) . \mathrm{R}_{f} 0.68$ (50\% Ethyl acetate/cyclohexane)

Major diastereoisomer 45a

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.21(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J$
$=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.01(\mathrm{~m}, J=6.8$
$\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{dd}, J=6.3,6.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.0,128.9,121.9,120.5,55.0,45.1,36.1,35.5,19.9,18.7$, 18.4 ppm .

Minor diastereoisomer 45b

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 6.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=$ $15.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 143.6,141.9,128.1,123.5,122.4,51.4,50.8,35.9,32.3,20.3$, 17.8, 14.3 ppm .

IR (neat) $v 2966,1465,1389,838,713 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NS}\left[\mathrm{M}^{+\bullet}\right]:$ 205.0925, found: 205.0928.

2-(5-chloro-1-tosyl-1 \boldsymbol{H}-indol-4-yl)-2-isopropyl-3-methylbutanenitrile (46).

LiHMDS 1.06 M in THF ($1.09 \mathrm{~mL}, 1.16 \mathrm{mmol}, 4$ equiv) was added dropwise with a syringe at $0{ }^{\circ} \mathrm{C}$ to a solution of compound $\mathbf{3 0 g ^ { 8 }}(100 \mathrm{mg}, 0.29 \mathrm{mmol}, 1$ equiv) and isopropyliodide ($1.44 \mathrm{~mL}, 14.5 \mathrm{mmol}, 50$ equiv) in THF $(0.75 \mathrm{~mL})$. The reaction mixture was then stirred at

[^7]room temperature overnight. After hydrolysis with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted twice with ether. The combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation, the reaction was run on the residue an extra time. The crude was purified by preparative thin layer chromatography (5% Ethyl acetate/cyclohexane) affording the title compound 46 as a colorless oil ($69 \mathrm{mg}, 0.16 \mathrm{mmol}$, 55%). $\mathrm{R}_{f} 0.72$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.95(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~m}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 145.5,135.1,133.8,133.1,130.2,129.0,127.9,127.8,127.0$, $126.5,121.8,113.8,109.8,58.7,33.9,21.7,20.6,20.5 \mathrm{ppm}$.
IR (neat) $v 3026,1604,1495,1171,1030 \mathrm{~cm}^{-1}$.
HR/MS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]: 428.1325$, found: 428.1325.

3,6,7,8-tetrahydro-8-isopropyl-7-methyl-3-tosylcyclopenta[e] indole-8-carbonitrile (47).
Following general procedure \boldsymbol{B} starting from $\mathrm{K}_{2} \mathrm{CO}_{3}\left(27 \mathrm{mg}, 0.19 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv), $\mathrm{Cyp}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(6.39 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.20$ equiv), compound 46 ($42 \mathrm{mg}, 0.098 \mathrm{mmol}$, 1 equiv) and DMF ($490 \mu \mathrm{~L}$). Mixture was stirred overnight. The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound 47 as a white oil ($24 \mathrm{mg}, 0.061 \mathrm{mmol}$, $62 \%) . \mathrm{R}_{f} 0.72$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=15.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $2.23(\mathrm{~m}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 145.2,136.7,135.4,134.6,132.5,130.1,127.8,127.3,127.0$, $121.4,120.9,113.9,106.7,58.6,39.5,38.2,35.8,21.7,20.5,19.5,18.3 \mathrm{ppm}$.
IR (neat) $v=2967,1371,1174,1136,1088,685,663 \mathrm{~cm}^{-1}$.
HR/MS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+\bullet}\right]: 392.1558$, found: 392.1563.

Synthesis of dihydrobenzofurans and indolines by alkane arylation (Table 5).

1-tert-butoxy-2-chlorobenzene (48). ${ }^{9}$

A large excess of isobutene was added via cold finger to a solution of 2-chlorophenol (1.29 g , $10.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 1.0 \mathrm{M})$ under argon at $-78^{\circ} \mathrm{C}$. $\mathrm{TfOH}(60 \mu \mathrm{~L}, 0.80$ mmol, 0.08 equiv) was then added dropwise and the solution was sittred at $-78^{\circ} \mathrm{C}$ for 4 hours. $\mathrm{Et}_{3} \mathrm{~N}(0.20 \mathrm{~mL})$ was added and the mixture was brought to room temperature. The crude reaction mixture was concentrated and purified by silica gel flash chromatography ($1 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 1.30 g of a clear oil in 70% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.36(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J$ $=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

2,3-dihydro-2,2-dimethylbenzofuran (49). ${ }^{9}$

The title compound was prepared according to the general procedure \boldsymbol{C} using 1-tert-butoxy-2-chlorobenzene 48 ($130 \mathrm{mg}, 0.704 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($1 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 80 mg of clear oil in 77% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (s, 2H), 1.47 (s, 6H) ppm.

[^8]

1-tert-butoxy-2-chloro-4-methoxybenzene (50).

A large excess of isobutene was added via cold finger to a solution of 2-chloro-4methoxyphenol ($1.60 \mathrm{~g}, 10.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 1.0 \mathrm{M})$ under argon at $78^{\circ} \mathrm{C}$. TfOH ($60 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 0.08$ equiv) was then added dropwise and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 hours. $\mathrm{Et}_{3} \mathrm{~N}(0.20 \mathrm{~mL})$ was added and the mixture was brought to room temperature. The crude reaction mixture was concentrated and purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 1.40 g of a clear oil in 65% yield. $\mathrm{R}_{f}=0.33$ ($1 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J$ $=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 155.8,145.6,129.9,125.6,115.3,113.0,81.0,55.8,28.9$ ppm.

HRMS Calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$214.0761, found 214.0738.
IR (neat) 3075, 2978, 2837, 1490, 1367, 1163, 1053, $861 \mathrm{~cm}^{-1}$.

2,3-dihydro-5-methoxy-2,2-dimethylbenzofuran (51). ${ }^{9}$

The title compound was prepared according to the general procedure \boldsymbol{C} using 1-tert-butoxy-2-chloro-4-methoxybenzene $\mathbf{5 0}$ ($150 \mathrm{mg}, 0.700 \mathrm{mmol}$, 1 equiv). The product was purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 120 mg of yellow oil in 96% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.74(\mathrm{dd}, J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 2.99$ (s, 2H), 1.46 (s, 6H) ppm.

1-tert-butoxy-2-chloro-4-nitrobenzene (52).

Prepared according to general procedure \boldsymbol{D} using potassium tert-butoxide ($352 \mathrm{mg}, 3.13$ mmol, 1.1 equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($500 \mathrm{mg}, 2.85 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica gel flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 470 mg of a clear oil in 72% yield. $\mathrm{R}_{f}=0.33\left(1 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.51(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3,142.3,128.6,126.1,123.0,121.1,83.5,29.0 \mathrm{ppm}$.
HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Cl}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ 214.0271, found 214.0268.
IR (neat) 3093, 2983, 2938, 1584, 1520, 1345, 1160, $730 \mathrm{~cm}^{-1}$.

2,3-dihydro-2,2-dimethyl-5-nitrobenzofuran (53). ${ }^{9}$

The title compound was prepared according to the general procedure \boldsymbol{C} using 1-tert-butoxy-2-chloro-4-nitrobenzene 52 ($62 \mathrm{mg}, 0.270 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 46 mg of yellow oil in 88% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.10(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.05(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

1-(tert-pentyloxy)-2-chloro-4-nitrobenzene (54).

Prepared according to general procedure \boldsymbol{D} using 2-methylbutan-2-ol ($271 \mu \mathrm{~L}, 2.51 \mathrm{mmol}$, 1.1 equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($400 \mathrm{mg}, 2.28 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica gel flash chromatography ($3.5 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 426 mg of a yellow oil in 77% yield. $\mathrm{R}_{f}=0.37\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.29(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 158.2,141.9,128.1,126.1,123.0,120.1,85.7,35.1,26.1,8.5$ ppm.

HRMS Calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$243.0662, found 243.0602.
IR (neat) 3089, 2980, 2942, 1517, 1345, 1281, $744 \mathrm{~cm}^{-1}$.

2-ethyl-2,3-dihydro-2-methyl-5-nitrobenzofuran (55). ${ }^{9}$

The title compound was prepared according to the general procedure \boldsymbol{C} using 1-(tert-pentyloxy)-2-chloro-4-nitrobenzene 54 ($150 \mathrm{mg}, 0.616 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 107 mg of orange oil in 84% yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.10(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.05(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

1-(1-methylcyclopentyloxy)-2-chloro-4-nitrobenzene (56).

Prepared according to general procedure D using 1-methylcyclopentanol ($314 \mathrm{mg}, 3.13$ mmol, 1.1 equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($500 \mathrm{mg}, 2.85 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 405 mg of a pale yellow solid in 63% yield. M.p.: $60-62{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.38\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) δ 158.1, 140.9, 126.4, 126.1, 123.2, 116.6, 92.2, 40.1, 24.9, 24.5 ppm .

HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ 240.0427, found 240.0436.
IR (neat) 2967, 1584, 1343, 1282, $742 \mathrm{~cm}^{-1}$.

2,3-dihydro-2,2-spirocyclopentyl-5-nitrobenzofuran (57).

The title compound was prepared according to the general procedure C using 1-(1-methylcyclopentyloxy)-2-chloro-4-nitrobenzene 56 ($150 \mathrm{mg}, 0.665 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($4 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 93 mg of a yellow solid in 64% yield. M.p.: $74-75^{\circ} \mathrm{C}$. $\mathrm{R}_{f}=0.26\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.09(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.04(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.24(\mathrm{~s}, 2 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.71(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 164.6,141.6,128.8,125.9,121.3,109.2,100.4,39.6,39.1$, 23.9 ppm .

HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$219.0895, found 219.0900.
IR (neat) 2963, 1597, 1340, $1276 \mathrm{~cm}^{-1}$.

1-(2,3-dimethylbutan-2-yloxy)-2-chloro-4-nitrobenzene (58).

Prepared according to general procedure \boldsymbol{D} using 2,3-dimethylbutan-2-ol ($1.12 \mathrm{~mL}, 9.02$ $\mathrm{mmol}, 1.1$ equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($1.44 \mathrm{~g}, 8.20 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica gel flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 1.44 g of an orange oil in 68% yield. $\mathrm{R}_{f}=0.36\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3,141.8,128.1,126.2,123.1,119.9,88.3,38.5,23.7$, 17.7 ppm .

HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{Cl}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ 242.0584, found 242.0589.
IR (neat) 2979, 2880, 1584, 1518, 1344, 1282, 1137, $735 \mathrm{~cm}^{-1}$.

2,3-dihydro-2-isopropyl-2-methyl-5-nitrobenzofuran (59).

The title compound was prepared according to the general procedure \boldsymbol{C} using
1-(2,3-dimethylbutan-2-yloxy)-2-chloro-4-nitrobenzene $\mathbf{5 8}$ ($150 \mathrm{mg}, 0.582 \mathrm{mmol}, 1$ equiv).
The product was purified by silica gel flash chromatography ($4 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to
afford 99 mg of a yellow solid in 77% yield. M.p.: $66-68^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.24\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.08(\mathrm{ddd}, J=8.8,2.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.03(\mathrm{~m}, 1 \mathrm{H}), 6.74$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (sept, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 164.8,141.5,128.6,125.9,121.6,109.1,95.4,38.2,37.2$, 23.5, 17.4, 17.3 ppm .

HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$221.1052, found 221.1045.
IR (neat) 2969, 2879, 1597, 1343, $1277 \mathrm{~cm}^{-1}$.

2-(2-methyl-1,3-dioxolan-2-yl)propan-2-ol.

Synthesized according to a reported procedure, ${ }^{10}$ using 3-hydroxy-3-methylbutan-2-one ($1.05 \mathrm{~mL}, 9.80 \mathrm{mmol}, 1.0$ equiv), ethylene glycol ($26.4 \mathrm{~mL}, 473.4 \mathrm{mmol}, 48.3$ equiv), p-toluenesulfonic acid ($100 \mathrm{mg}, 0.58 \mathrm{mmol}, 0.06$ equiv) and benzene ($165 \mathrm{~mL}, 0.06 \mathrm{M}$). The product was obtained in 25% yield (354 mg).

[^9]${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 4.02(\mathrm{~s}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

2-(2-(2-chloro-4-nitrophenoxy)propan-2-yl)-2-methyl-1,3-dioxolane (60).

Prepared according to general procedure \boldsymbol{D} using 2-(2-methyl-1,3-dioxolan-2-yl)propan-2-ol ($350 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.1$ equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($382 \mathrm{mg}, 2.18 \mathrm{mmol}$, 1.0 equiv). The product was purified by silica gel flash chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 238 mg of a green oil in 36% yield. $\mathrm{R}_{f}=0.30\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.99(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.7,142.4,128.6,125.7,122.7,122.4,111.8,88.3,65.4$, 22.2, 19.8 ppm .

HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{Cl}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ 286.0482, found 286.0460.
IR (neat) 3107, 2989, 2888, 1583, 1348, 1103, $752 \mathrm{~cm}^{-1}$.

2,3-dihydro-2-methyl-2-(2-methyl-1,3-dioxolan-2-yl)-5-nitrobenzofuran (61).

The title compound was prepared according to the general procedure \boldsymbol{C} using 2-(2-(2-chloro-4-nitrophenoxy)propan-2-yl)-2-methyl-1,3-dioxolane $\mathbf{6 0}$ ($130 \mathrm{mg}, 0.431 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 109 mg of a yellow solid in 95% yield. M.p.: $81-83{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.26\left(4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.09(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.04(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.48(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,141.9,128.6,125.8,121.3,111.2,109.0,95.0,66.1$, 66.1, 37.7, 23.1, 20.2 ppm .

HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$265.0950, found 265.0926.
IR (neat) 2991, 2899, 1514, 1335, $1275 \mathrm{~cm}^{-1}$.

3-hydroxy-3-methylbutoxytriisopropylsilane.

Synthesized according to a reported procedure, ${ }^{11}$ using 3-methylbutane-1,3-diol (2.05 mL , $19.20 \mathrm{mmol}, 1.0$ equiv), triisopropylsilyl chloride ($4.52 \mathrm{~mL}, 21.12 \mathrm{mmol}, 1.1$ equiv), imidazole ($2.61 \mathrm{~g}, 38.40 \mathrm{mmol}, 2.0$ equiv) and dimethylformamide ($19 \mathrm{~mL}, 1.0 \mathrm{M}$). The product was purified by silica gel flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give 4.54 g of a clear oil in 91% yield. $\mathrm{R}_{f}=0.62\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether $)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 4.01(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H})$, 1.17-1.05 (m, 21H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 71.0,61.6,43.1,29.4,18.1,11.8 \mathrm{ppm}$.
HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ 245.1937, found 245.1922.
IR (neat) $3390,2941,2869,1464,1088 \mathrm{~cm}^{-1}$.

(3-(2-chloro-4-nitrophenoxy)-3-methylbutoxy)triisopropylsilane (62).

Prepared according to general procedure \boldsymbol{D} using 2-(2-methyl-1,3-dioxolan-2-yl)propan-2-ol $(2.00 \mathrm{~g}, 7.68 \mathrm{mmol}, 1.1$ equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($1.23 \mathrm{~g}, 6.98 \mathrm{mmol}$, 1.0 equiv). The product was purified by silica gel flash chromatography ($1 \% \mathrm{Et}_{2} \mathrm{O}$ in

[^10]petroleum ether) to afford 1.30 g of a green oil in 45% yield. $\mathrm{R}_{f}=0.35\left(2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.14-1.02$ (m, 21H) ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) δ 158.1, 142.1, 128.4, 126.1, 123.1, 120.5, 84.7, 59.5, 45.3, 27.2, 18.2, 12.1 ppm .

HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClNO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ 372.1398, found 372.1403.
IR (neat) 2944, 2866, 1520, 1345, 1126, $747 \mathrm{~cm}^{-1}$.

(2-(2,3-dihydro-2-methyl-5-nitrobenzofuran-2-yl)ethoxy)triisopropylsilane (63).

The title compound was prepared according to the general procedure \boldsymbol{C} using (3-(2-chloro-4-nitrophenoxy)-3-methylbutoxy)triisopropylsilane $\mathbf{6 2}$ ($200 \mathrm{mg}, 0.481 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 159 mg of a yellow oil in 87% yield. $\mathrm{R}_{f}=0.27$ ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.09(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.03(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05(\mathrm{td}, J=6.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.01(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.5,141.7,128.9,125.9,121.7,109.2,91.6,59.4,43.4$, 41.0, 26.9, 18.1, 12.0 ppm .

HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ 336.1631, found 336.1632.
IR (neat) 2943, 2866, 1597, 1518, 1481, 1337, $1101 \mathrm{~cm}^{-1}$.

1-(dipropylamino)-2-methylpropan-2-ol.

Synthesized according to a reported procedure, ${ }^{12}$ using 2,2-dimethyloxirane (1.85 mL , 20.80 mmol , 1.0 equiv), dipropylamine (3.42 mL , 24.96 mmol , 1.2 equiv) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL}, 2.6$ $\mathrm{M})$. The product was obtained as 1.95 g of a clear oil 55% yield. $\mathrm{R}_{f}=0.44\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 3.49(\mathrm{br}, 1 \mathrm{H})$, 2.51-2.47 (m, 4H), $2.39(\mathrm{~s}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}$, $4 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 69.1,66.3,58.5,28.5,20.8,11.9 \mathrm{ppm}$.
HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{NO}\left(\mathrm{M}^{+}\right)$173.1780, found 173.1758.
IR (neat) $3431,2962,2874,1468,1076 \mathrm{~cm}^{-1}$.

N-(2-(2-chloro-4-nitrophenoxy)-2-methylpropyl)- N-propylpropan-1-amine (64).

Prepared according to general procedure \boldsymbol{D} using 1-(dipropylamino)2-methylpropan-2-ol ($542 \mathrm{mg}, 3.13 \mathrm{mmol}, 1.1$ equiv) and 2-chloro-1-fluoro-4-nitrobenzene ($500 \mathrm{mg}, 2.85 \mathrm{mmol}$, 1.0 equiv). The product was purified by silica gel flash chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in

[^11]petroleum ether) to afford 528 mg of a yellow oil in 56% yield. $\mathrm{R}_{f}=0.35\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ and 6% $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.4,142.0,128.0,126.1,122.9,121.0,87.2,65.4,57.8$, 25.1, 20.3, 11.9 ppm .

HRMS Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ 299.1162, found 299.1126.
IR (neat) 3094, 2961, 2873, 1584, 1345, 1124, $748 \mathrm{~cm}^{-1}$.

N-((2,3-dihydro-2-methyl-5-nitrobenzofuran-2-yl)methyl)- N -propylpropan-1-amine

 (65).The title compound was prepared according to the general procedure \boldsymbol{C} using N -(2-(2-chloro-4-nitrophenoxy)-2-methylpropyl)- N-propylpropan-1-amine 64 ($150 \mathrm{mg}, 0.457 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{3} \mathrm{~N}$ and $6 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 74 mg of a yellow oil in 55% yield. $\mathrm{R}_{f}=0.45\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ and 6% $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.07(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 164.8,141.6,129.4,125.7,121.4,108.9,93.8,62.8,57.8$, 38.3, 25.5, 20.6, 11.9 ppm .

HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$292.1787, found 292.1754.
IR (neat) 2959, 2930, 1598, 1336, 1272, $1060 \mathrm{~cm}^{-1}$.

Methyl-2,2-dimethylindoline-1-carboxylate (67). ${ }^{13}$

The title compound was prepared according to the general procedure C using compound $\mathbf{6 6}^{13}$ ($50 \mathrm{mg}, 0.207 \mathrm{mmol}, 1$ equiv). The product was purified by preparative thin layer chromatography (5\% Ethyl acetate/cyclohexane) to afford 35 mg of a pale yellow oil in 83% yield.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.75(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

[^12]tert-Butyl-(2-chloro-5-trifluoromethyl-phenyl)-amine.
To a solution of 2-chloro-5-(trifluoromethyl)aniline ($1 \mathrm{~mL}, 7.3 \mathrm{mmol}, 1$ equiv) in cyclohexane (5 mL) were added tert-butyl-2,2,2-trichloroacetimidate ($3.4 \mathrm{~mL}, 19 \mathrm{mmol}, 3$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(200 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 0.15$ equiv) at room temperature under argon. The mixture was stirred at room temperature overnight. The mixture was diluted with ethyl acetate, washed with saturated NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated under vaccum. The crude material was purified by flash chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a colorless oil ($1.17 \mathrm{~g}, 4.6 \mathrm{mmol}, 63 \%$). $\mathrm{R}_{f} 0.42$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.1,129.9(\mathrm{q}, J=31.9 \mathrm{~Hz}), 129.7,124.3$ ($\mathrm{q}, ~ J=270.5 \mathrm{~Hz}$), $123.6,113.3$ (q, $J=3.9 \mathrm{~Hz}$), 110.3 (q, $J=3.8 \mathrm{~Hz}$), 51.6, 29.7 ppm .
${ }^{19}$ F NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.2 \mathrm{ppm}$.
HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}\left[\mathrm{M}^{+}\right]:$251.0684, found 251.0686.
IR (neat) $v 3421,2979,1120,1080 \mathrm{~cm}^{-1}$.

tert-Butyl-(2-chloro-5-trifluoromethyl-phenyl)-carbamic acid methyl ester (68).

A solution of tert-Butyl-(2-chloro-5-trifluoromethyl-phenyl)-amine ($690 \mathrm{mg}, 2.7 \mathrm{mmol}, 1$ equiv) and methyl chloroformate (20 mL) was heated under reflux overnight. Methyl chloroformate was concentrated under vaccum and the crude material was purified by flash chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a white solid ($760 \mathrm{mg}, 2.4 \mathrm{mmol}, 88 \%$). $\mathrm{Mp}: 91.5^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.71$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.6,140.1,139.0,130.5,129.7(\mathrm{q}, J=33 \mathrm{~Hz}), 128.1(\mathrm{q}, J$ $=3.6 \mathrm{~Hz}), 125.4(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.7(\mathrm{q}, J=270.6 \mathrm{~Hz}), 58.5,52.6,29.3 \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-62.9 \mathrm{ppm}$.
HRMS (CI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.0822$, found: 310.0822 .
IR (neat) v 3003, 1706, 1323, 1116, $1084 \mathrm{~cm}^{-1}$.

Methyl 2,2-Dimethyl-6-(trifluoromethyl)indoline-1-carboxylate (69).

Following general procedure \boldsymbol{C} starting from $\mathrm{Cs}_{2} \mathrm{CO}_{3}(94.7 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.6 \mathrm{mg}, 0.011 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cy}_{3} \mathrm{P}^{2} \cdot \mathrm{HBF}_{4}(9.7 \mathrm{mg}, 0.026 \mathrm{mmol}, 0.10$ equiv), compound 68 ($73.6 \mathrm{mg}, 0.23 \mathrm{mmol}, 1$ equiv) and mesitylene (2 mL). Mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 20 h . The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($52.7 \mathrm{mg}, 0.19 \mathrm{mmol}, 84 \%$). $\mathrm{R}_{f} 0.67$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}$, 6H) ppm.

tert-Butyl-(2-chloro-5-nitro-phenyl)-amine.

To a solution of 2-chloro-5-nitroaniline ($500 \mathrm{mg}, 2.8 \mathrm{mmol}, 1$ equiv) in cyclohexane (4 mL) were added tert-butyl-2,2,2-trichloroacetimidate ($2.54 \mathrm{~mL}, 4.2 \mathrm{mmol}, 5$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(160 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 0.5$ equiv) at room temperature under argon. The mixture was stirred at room temperature overnight. The mixture was diluted with ethyl acetate, washed with saturated NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated under vaccum. The crude material was purified by flash chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a colorless oil ($291 \mathrm{mg}, 1.3 \mathrm{mmol}, 51 \%$). $\mathrm{R}_{f} 0.45$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.4,143.1,129.4,126.2,111.1,107.3,51.6,29.4 \mathrm{ppm}$.

HRMS (EI) calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]:$228.0666, found 228.0666.
IR (neat) v 3414, 2977, 1522, $1342 \mathrm{~cm}^{-1}$.

tert-Butyl-(2-chloro-5-nitro-phenyl)-carbamic acid methyl ester (70).

A solution of tert-Butyl-(2-chloro-5-nitro-phenyl)-amine ($209 \mathrm{mg}, 0.91 \mathrm{mmol}, 1$ equiv) and methyl chloroformate (20 mL) was heated under reflux overnight. Methyl chloroformate was concentrated under vacuum and the crude material was purified by flash chromatography (5% Ethyl acetate/cyclohexane) affording the title compound as a yellow solid ($205 \mathrm{mg}, 0.72$ $\mathrm{mmol}, 80 \%$). Mp: $72.1^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.68$ (10% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.11(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 146.5,142.5,140.6,130.5,126.1,123.4,58.7,52.8,29.3$ ppm.
HRMS (CI) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 287.0799$, found: 287.0799 .
IR (neat) $v 2977,1776,1320,1095 \mathrm{~cm}^{-1}$.

Methyl 2,2-Dimethyl-6-(nitro)indoline-1-carboxylate (71). ${ }^{13}$

Following general procedure \boldsymbol{C} starting from $\mathrm{Cs}_{2} \mathrm{CO}_{3}(62.4 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.96 \mathrm{mg}, 0.0087 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}(6.41 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.10$ equiv), PivOH ($5.3 \mathrm{mg}, 0.052 \mathrm{mmol}, 0.30$ equiv) and compound $70(50 \mathrm{mg}, 0.17 \mathrm{mmol}, 1$ equiv) in mesytilene ($900 \mu \mathrm{~L}$). Mixture was stirred at $140^{\circ} \mathrm{C}$ for 20 h . The crude was purified by preparative thin layer chromatography (10% Ethyl acetate/cyclohexane) affording the title compound as a yellow oil ($27 \mathrm{mg}, 0.17 \mathrm{mmol}, 62 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

73

N-tert-butyl-2-chloro-5-fluorobenzenamine.

To a solution of 2-chloro-5-fluoroaniline ($500 \mathrm{mg}, 3.45 \mathrm{mmol}, 1$ equiv) in cyclohexane (5 mL) were added tert-butyl-2,2,2-trichloroacetimidate ($1.54 \mathrm{~mL}, 8.63 \mathrm{mmol}, 2.5$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(100 \mu \mathrm{~L}, 25.8 \mathrm{~mL} / \mathrm{mol})$ at room temperature under argon atmosphere. The mixture was stirred at room temperature for 6 h then tert-butyl-2,2,2-trichloroacetimidate (1 mL) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(100 \mu \mathrm{~L})$ were added. The reaction mixture was stirred for four extra hours. The mixture was diluted with ethyl acetate, washed with NaHCO_{3}, dried over MgSO_{4}, and evaporated. The crude material was purified by flash chromatography (100% cyclohexane) affording the title compound as a pale yellow oil ($655 \mathrm{mg}, 3.25 \mathrm{mmol}, 94 \%$). $\mathrm{R}_{f} 0.79$ (50% Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.14(\mathrm{dd}, J=8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.32-6.25 (m, 1H), $4.43(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.2(\mathrm{~d}, J=240.3 \mathrm{~Hz}), 144.0(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 103.2(\mathrm{~d}, J=23.3), 101.3(\mathrm{~d}, J=27.8), 51.4,29.6 \mathrm{ppm}$.

${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-114.07 \mathrm{ppm}$.

IR (neat) v 3418, 2977, 1609, 1514, 1203, $831 \mathrm{~cm}^{-1}$.
GC/MS (m/z) C $\mathrm{C}_{10} \mathrm{H}_{13}{ }^{35} \mathrm{ClFN}\left[\mathrm{M}^{+}\right]$201, (m/z) $\mathrm{C}_{10} \mathrm{H}_{13}{ }^{37} \mathrm{ClFN}\left[\mathrm{M}^{+} \cdot\right] 203$.

A mixture of N-tert-butyl-2-chloro-5-fluorobenzenamine ($320 \mathrm{mg}, 1.59 \mathrm{mmol}, 1$ equiv) and methyl chloroformate (20 mL) was refluxed overnight. The mixture was evaporated and the residue was purified by flash chromatography (5% Ethyl acetate/cyclohexane) affording the title compound 72 as a white solid ($386 \mathrm{mg}, 1.49 \mathrm{mmol}, 93 \%$). Mp: $61.2{ }^{\circ} \mathrm{C} . \mathrm{R}_{f} 0.93(50 \%$ Ethyl acetate/cyclohexane).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.36(\mathrm{dd}, J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J$ $=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 160.9(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 154.6,140.6(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 130.4$ (d, $J=8.9 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 118.4(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 58.4$, 52.6, 21.1 ppm .
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-114.97 \mathrm{ppm}$.
IR (neat) $v 2986,1709,1328,1294,1098,826 \mathrm{~cm}^{-1}$.
GC/MS (m/z) C9 $\mathrm{H}_{13}{ }^{35} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] 184,(\mathrm{~m} / \mathrm{z}) \mathrm{C}_{9} \mathrm{H}_{13}{ }^{37} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] 186$.

Methyl-6-fluoro-2,2-dimethylindoline-1-carboxylate (73).

Following general procedure \boldsymbol{C} starting from $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($68 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.16 \mathrm{mg}, 0.0096 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}(6.99 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.10$ equiv), PivOH ($5.82 \mathrm{mg}, 0.057 \mathrm{mmol}, 0.30$ equiv) and compound $72(50 \mathrm{mg}, 0.19 \mathrm{mmol}, 1$ equiv) in mesytilene (1 mL). Mixture was stirred at $140^{\circ} \mathrm{C}$ for 20 h under argon atmosphere. The crude was purified by preparative thin layer chromatography (5\% Ethyl acetate/cyclohexane) affording the title compound 73 as a yellow oil ($35 \mathrm{mg}, 0.16 \mathrm{mmol}$, 83%). $\mathrm{R}_{f} 0.76$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.49(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 7.00(\mathrm{dd}, J=6.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{td}, J=$ $2.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $\mathbf{3}^{2}$) $\delta 161.0(\mathrm{~d}, J=239.0 \mathrm{~Hz}), 153.9,127.0,125.0(\mathrm{~d}, J=9.4 \mathrm{~Hz})$, $124.0,109.0(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 104.0(\mathrm{~d}, ~ J=29.2 \mathrm{~Hz}), 52.4,44.9,27.3 \mathrm{ppm}$.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-115.17 \mathrm{ppm}$.
IR (neat) $v=2957,1702,1368,1315,1073,764 \mathrm{~cm}^{-1}$.
HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FNO}_{2}\left[\mathrm{M}^{+\bullet}\right]: 223.1009$, found: 223.1008.

N-tert-butyl-2-chloropyridin-3-amine. ${ }^{14}$

To a solution of 3-amino-2-chloropyridine ($1 \mathrm{~g}, 7.75 \mathrm{mmol}$, 1 equiv) in cyclohexane (10 mL) were added tert-butyl-2,2,2-trichloroacetimidate ($3.46 \mathrm{~mL}, 19.3 \mathrm{mmol}, 2.5$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(200 \mu \mathrm{~L}, 25.8 \mathrm{~mL} / \mathrm{mol})$ at room temperature under argon atmosphere. The mixture was stirred at room temperature for 6 h . Monitoring GC/MS did not show a complete conversion. Therefore tert-butyl-2,2,2-trichloroacetimidate (1 mL) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(100 \mu \mathrm{~L})$ were added. The reaction mixture was stirred for two extra hours. The mixture was diluted with ethyl acetate, washed with NaHCO_{3}, dried over MgSO_{4}, and evaporated. The crude material was purified by flash chromatography (10% Ethyl acetate/cyclohexane) affording the title compound 75b as an incolor oil ($1.374 \mathrm{~g}, 7.47 \mathrm{mmol}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J$ $=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

Methyl tert-butyl-2-chloropyridin-3-ylcarbamate (74).

A mixture of N-tert-butyl-2-chloropyridin-3-amine ($600 \mathrm{mg}, 3.26 \mathrm{mmol}, 1$ equiv) and methyl chloroformiate (16 mL) was heated at $45^{\circ} \mathrm{C}$ overnight. The mixture was evaporated and the residue was purified by flash chromatography (10% Ethyl acetate/cyclohexane) affording the

[^13]title compound 74 as a white solid ($250 \mathrm{mg}, 1.03 \mathrm{mmol}, 32 \%$). $\mathrm{R}_{f} 0.5$ (50% Ethyl acetate/cyclohexane).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.33(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26 (dd, $J=7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (s, 3H), 1.42 ($\mathrm{s}, 9 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 154.5,152.3,148.1,139.4,136.3,122.6,58.6,52.6,29.3 \mathrm{ppm}$. IR (neat) $v=2952,1709,1403,1331,1289,1094,771 \mathrm{~cm}^{-1}$.

HRMS (CI) calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 243.0900$, found: 243.0899.

Methyl-2,2-dimethyl-2,3-dihydropyrrolo[3,2-b]pyridine-1-carboxylate (75). ${ }^{13}$
Following general procedure \boldsymbol{C} starting from $\mathrm{Cs}_{2} \mathrm{CO}_{3}(75 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.36 \mathrm{mg}, 0.0105 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}(7.73 \mathrm{mg}, 0.021 \mathrm{mmol}, 0.10$ equiv), PivOH ($6.43 \mathrm{mg}, 0.063 \mathrm{mmol}, 0.30$ equiv) and compound $74(50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv) in mesytilene (1 mL). Mixture was stirred at $140^{\circ} \mathrm{C}$ for 16 h . The crude was purified by preparative thin layer chromatography (20% Ethyl acetate/cyclohexane) affording the title compound 75 as a yellow oil ($38 \mathrm{mg}, 0.18 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.09(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-8.20(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 7.04(\mathrm{dd}, J=$ $5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

Synthesis of indanones by alkane arylation (Table 6)

1-(2-chlorophenyl)-2,2-dimethylpropanone (74a) ${ }^{15}$

Prepared according to general procedure \boldsymbol{E} using 2'-chloroacetophenone ($400 \mathrm{~g}, 2.59 \mathrm{mmol}$, 1.0 equiv). The product was purified by silica gel flash chromatography ($1 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 214 mg of clear oil in 42% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=7.2,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (ddd, $J=7.2,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

1-(2-bromophenyl)-2,2-dimethylpropanone (74b) ${ }^{15}$

Prepared according to general procedure \boldsymbol{E} using 2'-bromoacetophenone (0.17 mL , $1.29 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica gel flash chromatography (gradient from 100% petroleum ether to $2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 186 mg of clear oil in 60\% yield.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.57(\mathrm{ddd}, J=7.9,1.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (ddd, $J=7.5,7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

2,3-dihydro-2,2-dimethylindenone (75) ${ }^{16}$

[^14]The title compound was prepared according to the general procedure \boldsymbol{C} using 1-(2-bromophenyl)-2,2-dimethylpropanone (or 1-(2-chlorophenyl)-2,2-dimethylpropanone) ($140 \mathrm{mg}, 0.581 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($4 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 92 mg of a clear oil in 98% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=7.4,7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

1-(2-chlorophenyl)-2-methylpropanone. ${ }^{17}$

A flame dried flask containing magnesium ($3.11 \mathrm{~g}, 128 \mathrm{mmol}, 2.2$ equiv) under argon was fitted with a condenser. Ether (4 ml) was added to the flask after which 2-bromopropane ($14.30 \mathrm{~g}, 116 \mathrm{mmol}, 2.0$ equiv) was slowly added as a solution in ether ($100 \mathrm{~mL}, 1.2 \mathrm{M}$), keeping the reaction at reflux. A solution of 2-chlorobenzonitrile ($8 \mathrm{~g}, 58.2 \mathrm{mmol}, 1.0$ equiv) in benzene ($100 \mathrm{ml}, 0.58 \mathrm{M}$) was slowly added. The reaction was refluxed overnight. The solution was then cooled in an ice bath and the reaction was quenched by the slow addition of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}(200 \mathrm{ml})$. The solution was heated to reflux for 48 hours to complete the hydrolysis after which the organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$. The combined organic extracts were washed with $10 \% \mathrm{HCl}$, water and saturated NaHCO_{3}. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by distillation to afford 7.60 g of a clear oil in 72% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.41-7.28(\mathrm{~m}, 4 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.17(\mathrm{~m}, 6 \mathrm{H})$ ppm.

[^15]

1-(2-chlorophenyl)-2,2-dimethylpentanone (78).

Prepared according to general procedure \boldsymbol{F} using LiHMDS (1.06M in THF) $(5.3 \mathrm{~mL}, 5.34$ $\mathrm{mmol}, 1.3$ equiv) and iodopropane ($0.80 \mathrm{~mL}, 8.21 \mathrm{mmol}, 2.0$ equiv). The crude product was purified by neutral aluminum oxide flash chromatography (10% toluene in petroleum ether) to afford 281 mg of a pale pink oil in 30% yield. $\mathrm{R}_{f} 0.20(10 \%$ toluene in petroleum ether on aluminum TLC plate).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H})$, 7.12-7.10 (m, 1H), 1.64-1.60 (m, 2H), 1.41-1.32 (m, 2H), $1.22(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H) ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 211.3,140.7,130.1,129.8,129.7,126.3,126.1,48.7,42.2$, 24.7, 17.9, 14.8 ppm .

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OCl}\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$: 181.0420, found 181.0398.
IR $\left(\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}\right) 3066,2962,2873,1696,1471,741 \mathrm{~cm}^{-1}$.

2,3-dihydro-2-methyl-2-propylindenone (79)

The title compound was prepared according to the general procedure \boldsymbol{C} using 1-(2-chlorophenyl)-2,2-dimethylpentanone 78 ($140 \mathrm{mg}, 0.623 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 59 mg of a yellow oil in 50% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{ddd}, J=7.4,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (ddd, $J=7.7,0.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=$
$17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 211.7,152.9,136.3,134.9,127.5,126.6,124.3,49.3,40.9$, 40.4, 24.1, 18.1, 14.7 ppm .

HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+\bullet}\right): 188.1201$, found 188.1204 .
IR (neat) $3074,3040,2959,2930,1714,1609,1466 \mathrm{~cm}^{-1}$.

Methyl 4-(2-chlorophenyl)-3,3-dimethyl-4-oxobutanoate (80).

Prepared according to general procedure \boldsymbol{F} using LiHMDS (1 M solution in THF) (2.71 mL , $2.71 \mathrm{mmol}, 1.1$ equiv) and methyl 2-iodoacetate ($739 \mathrm{mg}, 3.70 \mathrm{mmol}, 1.5$ equiv). The crude product was purified by silica gel flash chromatography ($15 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 330 mg of a clear oil in 53% yield. $\mathrm{R}_{f}=0.27\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 7.49-7.47 (m, 1H), 7.41-7.38(m, 1H), 7.34-7.27(m, 2H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 209.2,172.1,139.7,130.1,130.0,129.6,127.6,126.3,51.7$, 47.0, 44.0, 25.6 ppm .

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right)$254.0710, found 254.0701.
IR (neat) $3075,2973,1737,1700,1199,743 \mathrm{~cm}^{-1}$.

Methyl 2-(2,3-dihydro-2-methyl-1-oxo-1H-inden-2-yl)acetate (81).

The title compound was prepared according to the general procedure \boldsymbol{C} using methyl 4-(2-chlorophenyl)-3,3-dimethyl-4-oxobutanoate $\mathbf{8 0}$ ($150 \mathrm{mg}, 0.589 \mathrm{mmol}, 1$ equiv). The
product was purified by silica gel flash chromatography ($15 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 99 mg of a white solid in 77% yield. M.p.: $49-52{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.17\left(15 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=7.4,7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97$ (d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}$, 3H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 209.3,171.9,152.3,135.3,134.9,127.6,126.7,124.5,51.7$, 46.8, 41.5, 40.3, 24.8 ppm .

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$218.0943, found 218.0958.
IR (neat) 3073, 2958, 2927, 1746, 1710, $1210 \mathrm{~cm}^{-1}$.

1-(2-chlorophenyl)-4,4,4-trifluoro-2,2-dimethylbutanone (82).

Prepared according to general procedure \boldsymbol{F} using KH ($30 \mathrm{wt} \%$) ($403 \mathrm{mg}, 3.01 \mathrm{mmol}$, 1.1 equiv) and $1,1,1$-trifluoro-2-iodoethane ($0.40 \mathrm{~mL}, 4.11 \mathrm{mmol}, 1.5$ equiv). The crude product was purified by silica gel flash chromatography (gradient 10% toluene in petroleum ether to $1 \% \mathrm{Et}_{2} \mathrm{O}$ and 10% toluene in petroleum ether) to afford 103 mg of a clear oil in 14% yield. $\mathrm{R}_{f} 0.27$ ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.42(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{ddd}, J=7.6,7.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{ddd}, J=7.4,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{q}, J=11.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 208.1,139.2,130.4,130.0,129.7,126.8,126.6(\mathrm{q}, J=276$ $\mathrm{Hz}), 126.5,46.0,41.6(\mathrm{q}, J=27 \mathrm{~Hz}), 25.1 \mathrm{ppm}$.

HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClO}\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CF}_{3}\right)$ 181.0420, found 181.0339.
IR (neat) $3068,2988,1704,1109,742 \mathrm{~cm}^{-1}$.

2-(2,2,2-trifluoroethyl)-2,3-dihydro-2-methylindenone (83).

The title compound was prepared according to the general procedure \boldsymbol{C} using 1-(2-chlorophenyl)-4,4,4-trifluoro-2,2-dimethylbutanone $\mathbf{8 2}$ ($65 \mathrm{mg}, 0.246 \mathrm{mmol}, 1$ equiv). The crude product was purified by silica gel flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 50 mg of a yellow oil in 89% yield. $\mathrm{R}_{f} 0.29$ ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{dd}, J=7.7,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=7.5,7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48$ (ddd, $J=7.7,0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ $(\mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dq}, J=15.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dq}, J=15.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ ($\mathrm{s}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 207.9,152.1,135.6,134.2,128.0,126.9(q, J=276 \mathrm{~Hz}$), $126.8,125.0,46.0(\mathrm{q}, J=1.7 \mathrm{~Hz}), 40.0(\mathrm{q}, J=27.6 \mathrm{~Hz}), 39.9(\mathrm{q}, J=1.6 \mathrm{~Hz}), 24.4(\mathrm{q}, J=1.4$ Hz) ppm.

HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OF}_{3}\left(\mathrm{M}^{+}\right)$228.0762, found 228.0765.
IR (neat) 3085, 2939, 1717, 1609, $1260 \mathrm{~cm}^{-1}$.

1-(2-chlorophenyl)-2-fluoro-2-methylpropanone (84).

To a solution of 1-(2-chlorophenyl)-2-methylpropan-1-one ($400 \mathrm{mg}, 2.19 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(22 \mathrm{ml}, 0.1 \mathrm{M})$ was added Selectfluor ${ }^{\circledR}(1.55 \mathrm{~g}, 4.38 \mathrm{mmol}, 2.0$ equiv). The reaction was refluxed for 24 hours after which the mixture was cooled to room temperature, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3), dried with MgSO_{4} and concentrated. The crude product was purified by silica
gel flash chromatography (10% toluene in petroleum ether) to afford 310 mg of a pale yellow oil in 71% yield. $\mathrm{R}_{f}=0.24$ (10% toluene in petroleum ether).
${ }^{1}$ H NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\delta 7.44-7.26(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 205.7(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 131.2,130.7(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}), 130.1,127.9(\mathrm{~d}, J=4.5 \mathrm{~Hz}) 126.4,99.0(\mathrm{~d}, J=180.3 \mathrm{~Hz}), 25.2(\mathrm{~d}, J=23.9 \mathrm{~Hz})$ ppm.

HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClOF}\left(\mathrm{M}^{+}\right)$200.0404, found 200.0391.
IR (neat) 3073, 2989, 1716, 1436, 1195, $741 \mathrm{~cm}^{-1}$.

2-fluoro-2,3-dihydro-2-methylindenone (85). ${ }^{18}$

The title compound was prepared according to the general procedure C using 1-(2-chlorophenyl)-2-fluoro-2-methylpropanone $\mathbf{8 4}$ ($139 \mathrm{mg}, 0.691 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica gel flash chromatography (gradient of 2% to $4 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford 53 mg of a yellow oil in 47% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=7.5,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46-7.41 (m, 2H), 3.46 (dd, $J=22.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=17.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}$, $J=22.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

[^16]
2-benzyl-1-(2-chlorophenyl)-2-methylpropanone (86).

Prepared according to general procedure \boldsymbol{F} using KH ($30 \mathrm{wt} \%$) ($659 \mathrm{mg}, 4.93 \mathrm{mmol}$, 1.5 equiv) and benzyl bromide ($843 \mathrm{mg}, 4.93 \mathrm{mmol}, 1.5$ equiv). The product was purified by silica gel flash chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ and 20% toluene in petroleum ether) to afford 636 mg of a clear oil in 71% yield. $\mathrm{R}_{f}=0.24\left(2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ and 20% toluene in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.37-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{ddd}, J=7.6,1.6$, $0.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (s, 2H), 1.22 (s, 6H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 211.5,140.8,137.6,131.1,129.9,129.8,129.3,128.2,126.6$, 126.4, 125.9, 49.5, 45.5, 24.9 ppm .

HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}\left(\mathrm{M}^{+}\right)$272.0968, found 272.0978.
IR (neat) $3029,2972,2933,1696,703 \mathrm{~cm}^{-1}$.

2-benzyl-2,3-dihydro-2-methylindenone (87a).
The title compound was prepared according to the general procedure \boldsymbol{C} using 2-benzyl-1-(2-chlorophenyl)-2-methylpropanone 86 ($109 \mathrm{mg}, 0.400 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography $\left(2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ and 20% toluene in petroleum ether) to afford 61 mg of a clear oil in 65% yield. $\mathrm{R}_{f}=0.14\left(2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ and 20% toluene in petroleum ether).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.30(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 5 \mathrm{H}), 3.24(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 210.9,152.6,137.9,135.8,134.9,130.3,128.2,127.4,126.6$, $126.5,124.4,50.5,43.4,39.0,24.7 \mathrm{ppm}$.

HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right)$236.1201, found 236.1207.
IR (neat) 3063, 3029, 2924, 1712, 1609, $980 \mathrm{~cm}^{-1}$.

6,6-Dimethyl-6,7-dihydro-dibenzo[a,c]cyclohepten-5-one (87b).
The title compound was prepared according to the general procedure \boldsymbol{C} using 2-benzyl-1-(2-chlorophenyl)-2-methylpropanone 86 ($109 \mathrm{mg}, 0.400 \mathrm{mmol}, 1$ equiv). The product was purified by silica gel flash chromatography $\left(2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ and 20% toluene in petroleum ether) to afford 30 mg of a clear oil in 32% yield. $\mathrm{R}_{f}=0.19\left(2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ and 20% toluene in petroleum ether)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.55(\mathrm{ddd}, J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29$ (ddd, $J=7.3,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 212.3,139.9,138.8,138.3,137.0,131.4,130.0,129.3,128.6$, 128.1, 128.0, 127.8, 127.7, 54.0, 44.3, 25.3 ppm.

HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right)$236.1201, found 236.1193.
IR (neat) 2962, 2927, 1684, 1207, $914 \mathrm{~cm}^{-1}$.

Computational studies

Complete reference for Gaussian03:
Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

TSCC-a'

TSCC-b ${ }^{\prime}$

TSCC-c ${ }^{\prime}$

TSCC-d'

Figure S1. Optimized geometries for the various extrema along pathways a, b, c and d corresponding to $\mathrm{C}-\mathrm{H}$ activation of $\mathbf{9}^{\prime}$ by $\mathrm{Pd}\left(\mathrm{PCyp}_{3}\right)$.

Figure S2. Comparison of the Gibbs free energy profiles along pathways a, b, c and d for CH activation of $\mathbf{9}^{\prime}$ by $\operatorname{Pd}\left(\mathrm{PCyp}_{3}\right)$.

Cartesian coordinates ($\mathbf{\AA}$), Gibbs free energy G (a.u.) for the molecules optimized.

Agos-a

```
Sum of PCM and thermal Free Energies= -1919,437208
```

C, 0, 2. $1905692565,-1.1050942706,2.4798493573$ C, 0, 3. 3299347113,-1.5390874055,3.1572923878 C, 0, 4. 5614228784,-1.5067571696,2.5125256983 C, 0, 4. 6389263588, -1.052842365,1.1993531946 C, 0, 3. $5009793514,-0.6223617848,0.5004198585$ C, 0, 2. $2565127476,-0.6497924224,1.1579597844$ H, 0, 1. $2329652508,-1.1085617845,2.9922420962$ $\mathrm{H}, 0,3.2505071812,-1.8919923209,4.1826007915$ H, 0, 5. $4637482929,-1.8296123621,3.0243756976$ $\mathrm{H}, 0,5.6062405921,-1.0262170882,0.7053177355$ C, 0, 3. $6251996255,-0.1480292765,-0.9580393897$ $\mathrm{H}, 0,0.9905808693,-1.5205077291,-0.7917877553$ Pd, 0, 0.4571625359,-0.2127741477,0.3472621709 C, 0, 0. $4704167295,2.0135881125,2.0727831686$ $0,0,0.0087959818,0.7896666519,2.0719238946$ $0,0,0.3192078991,2.6195727823,3.2802930714$ $0,0,0.9689229593,2.6255140505,1.1421735068$ H, 0, -0.0345240512,1.9515418669,3.8818159414 C, 0, 2. $8300638989,-1.1104747321,-1.9151738812$ $\mathrm{H}, 0,3.0530036177,-0.7749855323,-2.9358262544$ C, 0, 3. $2057969921,1.3637960178,-1.0868233923$

H, 0,2.2018803935,1.4417416313,-0.6504074949
C, 0, 1. $3199676883,-1.0001435904,-1.7585004512$ H, 0, 0.9551162492,0.0235995424,-1. 8955985094 H, 0, 0. $8010973711,-1.6211874647,-2.4943716753$ C, 0, 3. $2827472759,-2.5671389386,-1.7926025345$ H, 0, 2. $7659589603,-3.1866916077,-2.5335048895$ H, 0, 4.3573719475,-2.665292503,-1.9680409968 H, 0, 3. $0646978025,-2.9678411936,-0.797545411$ C, 0, 3. 1711972734,1.8627466655,-2.5335205528 H, 0, 2. $4346135835,1.3422869309,-3.155383275$ H, 0, 2. $9084908341,2.9251552496,-2.5447503762$ H, 0, 4. 1502274124,1.7595956631,-3.0156551538 C, 0, 4. 1089408254, 2.2629140654,-0.2393435316 H, 0, 3. $7165974233,3.2831869827,-0.2452175337$ H, 0, 4.1394246963,1.9309283834,0.8009267384 H, 0, 5.132776618,2.2839069796,-0.6296627514 C, 0,5.0231371301,-0.2362203359,-1.4195251451 $\mathrm{N}, 0,6.1036274601,-0.286830424,-1.8446386075$ P, 0, -1.9122768536,0.0657659835,-0.300270409 C, 0, -2.3982786602,1.7479884124,-0.9793165454 C, 0, -2. $894404582,-0.1722709413,1.2730557952$ C, 0, -2. $6543641579,-1.1222606011,-1.5470634678$ C, 0, -3. $8484497161,1.9455379942,-1.5203059313$ C, 0, -2.1607257122, 2.919317603,-0.0036024132 H, 0, -1.6993585281,1.8769313946,-1.8164327215 C, 0, -4.4312165555,-0.1682872217,1.2351288714 C, 0, -2. $5135580131,-1.4651463958,2.0471847565$ H, 0, $-2.5635892979,0.6759486583,1.8838002286$ C, 0,-2. $2719433063,-2.6091258398,-1.3303350302$ C, 0, -2.2750105189,-0.8372700255,-3.0121542875 H, 0, -3. $7439605602,-1.0224992374,-1.4669404909$ C, 0, $-4.3046573241,3.326295464,-0.9966014929$ H, 0, -4.537821915,1.1563196651,-1. 2086076413 H, 0, -3. $8393751924,1.9315733722,-2.6150876509$ C, 0, -3.009493175,4.0430563067,-0.602421914 H, 0, -1.101999621,3.1621969373,0.109288869 H, 0, -2. $5496144738,2.6793531217,0.994229015$ C, 0, -4. $7970251133,-0.7455435017,2.6070787627$ H, 0, -4. $8131353474,-0.8313267334,0.4475080053$ H, $0,-4.8503652121,0.8273468861,1.0622035335$ C, 0, -3. $8015779402,-1.9005547115,2.7922064005$ H, 0, -1. $6856475441,-1.253729465,2.7282432507$ H, 0, -2.1704991739,-2.2606787589,1.3800122986 C, 0, -2.1820799753,-3.2405473776,-2.7456468174 H, 0, -3. $0118602842,-3.1147720518,-0.7029961533$ H, 0, -1. $3114677815,-2.6945916782,-0.8093897984$ C, 0, -2. $6454499168,-2.1450486111,-3.7189422757$ H, 0,-1.1983979028,-0.6509486132,-3.1093589455 H, 0, -2. $7940717785,0.032376768,-3.4237243916$ H, 0, $-4.9000891034,3.875944446,-1.7323214188$ H, 0, -4.9339417758, 3.200173777,-0.1067248464 H, 0, -2. $5135745293,4.4527464278,-1.492145487$ H, 0, -3.1701000557,4.8726163285,0.0930580851 H, 0, -4. $6395352201,0.0197058282,3.3776475252$ H, 0, -5. $8420690962,-1.0647261198,2.6746394944$ H, 0, -3. $6158939483,-2.1277509189,3.8462077098$ H, 0, -4. $2074498041,-2.8127857567,2.3396966259$ H, 0,-1.1471431845,-3.5258996491,-2.9656400513 H, 0, - $2.7805624852,-4.1521870269,-2.8317533257$ H, 0, -2.19582091,-2.2373960786, -4.7125874828 H, 0, -3.7337511981,-2.1898438463,-3.850543579

Agos-b

Sum of PCM and thermal Free Energies=
$-1919,430637$

C,0,2.2447837081,-1.5430769025,-2.1388329155 C, 0, 3. $4254427137,-1.8811401486,-2.8000289304$ C,0,4.6367770146,-1.3865829051,-2.3291641358 C, 0, 4.656386563,-0.5602705992,-1.2092434344
C,0,3.4771983399,-0.2043275977,-0.5377438474 C,0,2.2530398891,-0.7053761813,-1.0182250331 H, 0,1.3004901658,-1.9458568521,-2.4938775789 H, 0, 3.3932937996,-2.5301429439,-3.6717172343 H, 0, 5. $5695325605,-1.6439623628,-2.8233296403$ H, 0, 5. $6097846277,-0.1893787076,-0.8432847479$ C, 0, 3. $5294429984,0.7390503087,0.6845236801$ H, 0,1.0602785636,1.4083541362,-0.8278655621 $\mathrm{Pd}, 0,0.4167156333,-0.2038869844,-0.3439675908$ C, 0, 0. $2052694699,-2.8398415413,0.6431455039$ $0,0,-0.0784544415,-2.1807212147,-0.4497198825$ $0,0,0.027447996,-4.1796069675,0.4955384892$ $0,0,0.5683144972,-2.3883033538,1.7174262862$ H, 0,-0.1984929923,-4.3264342816,-0.4322460879 C, 0, 2. $8554354565,2.1027472073,0.2495498852$ C,0,2.9294201719,0.0029938299,1.9399352922 H, 0, 1. $9308602909,-0.3427748698,1.6420805203$ C, 0, 1. $3400840957,1.9970543788,0.1128426178$ H, 0, 0.8587421983,1.6696911748,1.0406387701 H, 0, 0.9015041367,2.9665143467,-0.1407404779 C, 0, 2. $7940063097,0.8675650676,3.1949902985$ H, 0, 2.0452337846,1.6585832653,3.0921564727 H, 0, 2. $4781545528,0.2352060366,4.0306985381$ H, 0, 3. $7459954265,1.3326375343,3.474767043$ C, 0, 3. $7357031726,-1.2584542697,2.2669975234$ н, 0, 3. $2100679667,-1.83357234,3.0332338392$ H, 0, 3. $8478719719,-1.9039812792,1.3928625884$ H, 0, 4.7341528981,-1.0078472314,2.6431432799 C, 0, 4.9289865974,1.0657945327,1.0052506328 $\mathrm{N}, 0,6.0176863166,1.3506104852,1.2959743141$ P, 0, -1.9712233479, 0.3093180395,0.0625201071 C, 0,-2.5797609948,0.1562584334,1.8318769177 C, 0,-2.9482386725,-0.9383519814,-0.9333743217 C, 0, -2. $6076380766,1.9915607256,-0.4704159503$ C, 0, - $4.0240571551,0.626642601,2.1803475606$ C, 0, -2.4662791972,-1.2657871857,2.4173587742 H, 0, -1. $8724404483,0.7879831651,2.3863419624$ C, 0, -4.4848789353,-0.8558737771,-0.9646095936 C, 0,-2. $5104903379,-1.0270009623,-2.4258254693$ H, 0,-2. $6640823171,-1.8843571635,-0.4588815576$ C, 0, - $2.1050955666,2.4627293262,-1.8616586246$ C, 0, -2. $2453653559,3.1451864015,0.4839245782$ H, 0, -3. $7017414814,1.920188256,-0.4973352126$ C, 0, -4. $5597884952,-0.3980924192,3.2102776284$ H, 0, $-4.6766960134,0.6794557725,1.3052063137$ H, 0, -3.9975585931,1.6337487449,2.60785167 C, 0, -3.3252156196,-1.1772207757,3.6798910227 H, 0, -1. $4318825845,-1.5714456497,2.5901090584$ H, 0, -2. $9154805943,-2.0009777424,1.7365574983$ C, 0,-4.8470027899,-1.7172888203,-2.1791527537

```
H,0,-4.826192527,0.1731262316,-1.1381630291
H,0,-4.9461060126,-1.204665026,-0.0359064445
C,0,-3.8059886893,-1.3036261162,-3.2261210113
H,0,-1.7768114809,-1.82890103,-2.5385110211
H,0,-2.0239430707,-0.1142176483,-2.779567754
C,0,-1.9020361502,3.9968375913,-1.748886272
H,0,-2.8279415531,2.204513004,-2.6413390124
H,0,-1.1651189021,1.9687743147,-2.1326684831
C,0,-2.4776140766,4.3883149914,-0.3802173629
H,0,-1.1912276871,3.0906767796,0.7819123862
H,0,-2.8427382134,3.1423697842,1.3993171272
H,0,-5.1051460714,0.0808995257,4.0293868554
H,0,-5.2602040781,-1.0867672306,2.7224209872
H,0,-2.789383679,-0.6149053512,4.4556734009
H,0,-3.5707482166,-2.1577751385,4.0992598064
H,0,-4.7303365564,-2.7784731621,-1.9246252783
H,0,-5.8787321567,-1.5733368479,-2.5160840881
H,0,-3.6630743695,-2.0589954181,-4.0047388742
H,0,-4.1403261941,-0.388331633,-3.7294191187
H,0,-0.8334291339,4.2377715769,-1.7861943773
H,0,-2.3730877436,4.5410205879,-2.5726835649
H,0,-2.0193571032,5.2914403962,0.0351860731
H,0,-3.5552413723,4.5785923148,-0.4610725894
C,0,3.1953064636,3.3393476926,1.0955402498
H,0,2.8540951912,4.2380147552,0.5704292763
H,0,2.7161393415,3.3263929714,2.0761255971
H,0,4.2729254358,3.4344666964,1.2465531056
H,0,3.2664436787,2.2930251196,-0.7502391279
```


Agos-c

Sum of PCM and thermal Free Energies $=\quad-1919,426375$

C, 0, -2.9854846015,1.8853418557,-1.5477198678
C, 0, -4.320748556,2.0981644345,-1.899584016 C, 0, -5.3187983949,1.3068825299,-1.3388418684 C, 0, -4.983249982, 0.3039538649,-0.4300816155 C, 0, -3. $6494825306,0.0806654122,-0.0741787589$ C, 0, -2. $6399264587,0.8741446415,-0.6516430759$ C, 0, -3.2293497915,-1.0072640276,0.923711679 C,0,-2.1937493534,-1.9494157424,0.1879898612 $\mathrm{Pd}, 0,-0.7276623686,0.4042425008,-0.3221316973$ H, 0, -2. $2043466704,2.5131242402,-1.9668711878$ H, 0, -4.5753754976,2.8834427241,-2.6071082272 H, 0, -6.3607370963,1.4668376489,-1.6017960071 H, 0, -5.7666817848, -0.3094557556,0.0075859357 H, 0, -1.2321536347,-1.3460407509,0.0427720382 P, 0,1.6452653373,-0.2143399339,-0.0720100228 C, 0,1.9531448874,-1.1694626546,1.5132368694 C, 0, 3. $2694947813,-1.9619580279,1.6978216226$ C, 0,1.8418699857,-0.3244282023,2.7934903943 C, 0,3.4759578831,-2.0619935475,3.2356154254 C, 0,2.2896352366,-1.3117726352,3.8737737972 C, 0, 2. $8190925709,1.2470801786,-0.0355828787$ C, 0, 4.3317216128,0.9609727051,0.1089421805 C, 0, 2. 6942339604,2.2005942559,-1.2688324437 C, 0,5.0008885666,2.1806405459,-0.5329147899 C, 0, 4.1324109125,2.4294848449,-1.7673318918 C, 0, 2. $2752648471,-1.3751704174,-1.3993087038$

C,0,2.0842271309,-0.8706378488,-2.8422296413
C, 0, 1. $5429481625,-2.7260063695,-1.4235092169$ C, 0, 2. 1229545006,-2.1415650207,-3.7287760869 C, 0,1.9760966599,-3.3404828999,-2.7619737932 H, 0,1.1226424641,-1.890821456,1.5277383397 H, 0, 4.1136763882,-1.4434923607,1.2372723499 H, 0, 3.2125325531,-2.947476492,1.2256732209 H, 0, 0.8473782252,0.100476549,2.946823754 H, 0, 2. $5424131275,0.5187204305,2.7527774068$ H, 0, 3. $5347599164,-3.1004215614,3.5756667007$ H, 0, 4.421198905,-1.5865260938,3.5184294688 H, 0,1.4725264161,-2.0102393723,4.0945656871 H, 0, 2. $5554034699,-0.8217601967,4.8154256671$ H, 0, 2. $474748202,1.7913587165,0.8504604079$ H, 0, 4. 623179048, 0.064377264,-0.4524938302 H, 0, 4.6282877142,0.8050179002,1.1505149944 H, 0, 2. $2497881009,3.1433891053,-0.941781674$ H, 0, 2. $0374800356,1.8144463185,-2.0516381679$ H, 0, 4. $9441250143,3.0400615082,0.1472585022$ H, 0, $6.0573808894,2.013504518,-0.7670346397$ H, 0, 4. $2701213978,3.4246356849,-2.2015164264$ H, 0, 4.3911887178,1.7003341173,-2.5464481455 H, 0, 3.3414478498,-1.5614120005,-1.2131339255 H, 0, 2. $8382236096,-0.1352958917,-3.1351982095$ H, 0,1.1055375251,-0.3810457606,-2.9266083205 H, 0, 0. $4588550987,-2.5503212054,-1.4262628833$ H, 0, 1. $7729221847,-3.3645831021,-0.5655517394$ H, 0, 1.3167856938, -2.1201966118, -4.4684483161 H, 0, 3. $0601130703,-2.2052661037,-4.290262273$ H, 0,1.2682501323,-4.0927848957,-3.123278191 H, 0, 2. $939929881,-3.8466303238,-2.6349977468$ C, 0, -0.0645555801,2.9383484598,0.679716561 $0,0,-0.32839063,2.3992519422,-0.4788634202$ $0,0,0.1369058028,4.2816524996,0.5838305691$ $0,0,0.0364687308,2.3827664909,1.7629154991$ H, 0, -0.0294994421, 4.5196814783,-0.3380221207 C,0,-1.7458551605,-3.1986090675,0.9538271991 H, 0, -1.1197944709,-3.8203462058, 0.307352766 H, 0, -1.1836049031,-2.9814392729,1.8593502619 H, 0, -2. 6225518559,-3.7922473628,1.233391903 C, 0,-2.7023315701,-2.3897489848,-1.1891046165 H, 0, -2. $9775871026,-1.5506888092,-1.8278975748$ H, 0, -1.9379281822,-2.982999284,-1.6996100126 H, 0, -3. 5838127345,-3.0281473,-1.061007604 C, 0, - $2.7220656922,-0.2850713151,2.2387282987$ H, 0, -1. $8597499807,0.3169873093,1.9113839558$ C, 0, -4.3738793081,-1.8567393103,1.2859584795 $\mathrm{N}, 0,-5.2538795948,-2.5503023654,1.5948152694$ C, 0, -2.2809493461,-1.2012004194,3.386502025 H, 0, -2. $189932316,-0.6068505445,4.3007416819$ H, 0,-3.0137098537,-1.9915292088,3.5826214803 H, 0, -1. $3067419425,-1.6630613282,3.2189013258$ C, 0, -3.7864897174, 0.6848710215,2.7674887512 H, 0, $-4.6740269988,0.1452564633,3.1186760069$ H, 0, -3. $3758369579,1.2413286846,3.6148304048$ H, 0, -4. $1007250488,1.4092885463,2.0141686371$

tSCH-a

Sum of $P C M$ and thermal Free Energies=

C,0,2.1642593053,1.198581867,2.0512214965 C, 0, 3. $2462504962,1.3406126853,2.9216015367$ C, 0, 4.4599613132,0.7456691162,2.5899157281 C, 0, 4.585258169,0.0310836762,1.4004236347 C, 0, 3. $5064610131,-0.1251182607,0.5167025048$ C,0,2.2797654951,0.4356725502,0.8869249893 H, 0,1.2199936682,1.6965552065,2.2804491514 H, 0, 3.1413674227,1.9218982035,3.8338338043 H, 0, 5.3186931182,0.8462376704,3.2476170037 H, 0, 5.5414566139,-0.4214894993,1.1515708481 C, 0, 3. $6797498548,-0.8630483217,-0.8164271105$ H, 0, 0. $9704224911,0.3278277979,-1.4085726212$ $\mathrm{Pd}, 0,0.4261000003,0.154399701,0.2725684928$ C, 0,0.5770392515,2.5908107048,-1.3111005494 $0,0,0.1893109731,2.4973925402,-0.115292932$ $0,0,0.6656369453,3.8341988838,-1.8435262225$ $0,0,0.8925926126,1.6514909201,-2.0984777396$ H, 0, 0.4234922376,4.4368284272,-1.1269831089 C, 0, 2. $4594893641,-1.8048651985,-1.0950508438$ H, 0, 2. $7397899374,-2.3864320829,-1.9842939704$ C, 0, 3.91865848,0.1669781345,-1.9871621331 H, 0, 3. $0302860306,0.8074039303,-1.9993359942$ C,0,1.1711990763,-1.0613089514,-1.4453663021 H,0,1.2092976774,-0.721766919,-2.4921841107 H, 0, 0.32259054,-1.74791581,-1.4140238911 C, 0, 2. $2403202857,-2.8138789728,0.0338751823$ H, 0, 1.4799526735,-3.5444728932,-0.262386317 H, 0, 3. 1576024622,-3.3638115376,0.2648332753 H, 0,1.8957984535,-2.3154818385,0.9463851196 C, 0, 4.053603711,-0.509654129,-3.3553195509 H, 0, 3.1596232288,-1.0686310767,-3.6467362853 H, 0, 4. $218965681,0.2525453281,-4.1230439764$ H, 0, 4.9069976153,-1.1968736618,-3.379283532 C, 0, 5.1343282364,1.0622401233,-1.7327709464 H, 0,5.2225982795,1.7958796082,-2.5401595186 H, 0, 5. $0504592207,1.6111687475,-0.7917058396$ H, 0, 6.0626461268, 0.479781865,-1.7092787222 C, 0, 4.8672737169,-1.7349556342,-0.756768927 $\mathrm{N}, 0,5.8009963509,-2.4271616886,-0.7546454997$ P,0,-1.9877756083,-0.1764417255,0.0551263257 C, 0, -2. $6409724382,-0.4174618755,-1.683730668$ C, 0, -2. $8701475996,1.3138912586,0.7629461333$ C, 0, -2. $6444750476,-1.6737217737,0.9635600427$ C, $0,-4.1056832683,-0.8860458558,-1.8763790259$ C, 0, -2.49807301, 0.8055442347,-2.6065019974 H, 0,-1.9782222511,-1.1974245002,-2.0850735817 C, 0, -4.3883603536,1.2697437066,1.0137058573 C, 0, -2.247096742,1.791514215,2.1094100064 H, 0, $-2.6648068934,2.0926514805,0.0191244585$ C, 0, -2.2188945755,-1.7684960196,2.4391452747 C, 0, -2.1183932445,-2.9971967816, 0.3859516957 H, 0, -3.7405987297,-1.6675638181,0.8974982145 C, 0, -4. 5517894237,-0.3013817258,-3.2447432224 H, 0, -4.7552265527,-0.520644139,-1.0763914483 H, 0, -4. $1722919379,-1.9781800107,-1.8551626986$ $C, 0,-3.3048082536,0.3789695408,-3.8360428885$ H, 0, -1.4568688946,1.0601140997,-2.8222959522 H, 0, -2. $9689469669,1.6872732536,-2.1523494968$ C, $0,-4.6069925818,2.4346866328,1.9850565022$ H, 0, -4. 6832291299, 0.3297921315,1.4979340982

H, 0, -4.97351827,1.3660801574,0.0942356831
C, 0, -3.4307076939,2.3092191628,2.9613544772
H, 0, -1. $5065405346,2.5686627521,1.9063216705$
H, 0, -1.7199371026,0.986966325,2.6324953976
C, 0, -2.3922800578,-3.2608267088,2.8121650284
H, 0, -2. $7910853937,-1.1026880404,3.0919008938$
H, 0, -1.1622353621,-1.4822754643,2.5287811985
C, 0, -2.4714662924,-4.0292859402,1.4693928836
H, 0, -1.0290089393,-2.9290926948, 0.2705374407
H, 0, -2. $5418119146,-3.2464216832,-0.5917528289$
H, 0,-4.9628247656,-1.0678479094,-3.9087140149
H, 0, -5.343973651,0.4401510776,-3.0926973643
H, 0, -2. $720277577,-0.3393935908,-4.4245537063$ H, 0, -3. $5501412128,1.2149263138,-4.4982485664$ H, 0, -4. $5457051936,3.3839080094,1.4376478934$ H, 0, -5.5831418925,2.4051188309,2.4800956199 H, 0, -3.1992670866,3.2506117876,3.4686644341 H, 0, -3. $6810594325,1.5809672856,3.7421645279$ H, 0, -1. $5578927309,-3.605772157,3.4300286458$ H, 0, -3.3019588677,-3.4135899856,3.4013618705 H, 0, -1. $8073030565,-4.898232263,1.4409542066$ H, 0, -3.4887559986,-4.4019291842,1.3049965567

TSCH-b

Sum of PCM and thermal Free Energies=

C, 0, 1. $8502113251,-1.5401407147,2.0858160971$
C, 0,2.8343103261,-2.3710683757,2.6235602304
C, 0, 4. $089048483,-2.4026229104,2.0219546998$ C, 0, 4.352855872,-1. $6047617244,0.9102810862$ C, 0, 3. 3731889506,-0.7697667394,0.3523398845 C, 0, 2. $1006164165,-0.7894515991,0.9353994638$ H, 0, 0. $8765763293,-1.4678804596,2.576135057$ H, 0, 2. $6250262555,-2.9663090018,3.5083779033$ H, 0, 4. $8746192717,-3.0358163273,2.424575613$ H, 0, 5.3420326458,-1.6316399144,0.4611615621 C, 0, 3. $6886204114,0.149362499,-0.8416360789$ $\mathrm{H}, 0,0.9837048031,1.3533056764,-0.1953438822$ Pd, 0, 0.3171260227,-0.2162230741,0.3241724393 C, 0, 0.5107138631,2.2475886298,1.861154889 $0,0,0.0508850859,1.1469896049,2.266347072$ $0,0,0.5990607532,3.2579031069,2.7606650188$ $0,0,0.9015025101,2.5421149354,0.6928557709$ H, 0, 0.2928614765,2.8816284612,3.5973275168 C, 0, 2. $5063681055,0.0184507292,-1.8755458084$ C, 0, 3. $9743435562,1.6080609889,-0.3095304201$ H, 0, 3. $0591329663,1.9131511574,0.2079538778$ C, 0,1.2397781613,0.7601153331,-1.4449939738 H, 0, 1. $3754586767,1.8418134195,-1.6065383001$ H, 0, 0.4137161705,0.4937036804,-2.1076340897 C, 0, 4. $2686402953,2.6320853134,-1.4100520211$ H, 0, 3.4015960928, 2.8384863162,-2.041279781 H, 0, 4.5573447178, 3.5823345876,-0.9496627127 H, 0, 5.0961155678,2.3107159003,-2.052592808 C, 0,5.1162004732,1.6269564034,0.7127533932 H, 0, 5.2360173306,2.6422986923,1.1034346316

H, 0, 4.9260484925,0.9649644067,1.560818314
H, 0, $6.0676005464,1.3325813745,0.2546991901$ C, 0, 4.9128043614,-0.3291155849,-1.5052089581 $\mathrm{N}, 0,5.8875176994,-0.6769028949,-2.034524545$ P,0,-2.0493278619,-0.0181366959,-0.2452379186 C, $0,-2.5456632464,1.5030002452,-1.2176646602$ C, 0, -3.0669068503,-0.0088642125,1.3270429455 C, 0, -2. $6988181248,-1.4233863391,-1.2943736408$ C, 0, -3.9589516062,1.5567440446,-1.8517121196 C, 0, -2. $4087915361,2.8321326755,-0.4536434508$ H, 0,-1. $804769321,1.5264415455,-2.0293926597$ C, 0, -4. $5979408085,-0.1634700725,1.2556518762$ C, 0, -2. $5908307151,-1.0828466675,2.3526900669$ H, 0, -2.836597756,0.9727147472,1.7573203826 C, 0,-2. $4340601785,-2.8281703081,-0.7225314389$ C, 0,-2.0362755677,-1.5020579093,-2.6794528232 H, 0, -3. $7793509666,-1.2818701772,-1.4299741116$ C, 0, -4.3401768244,3.0618957742,-1.8884955034 H, 0, -4. $6872799706,0.9934512552,-1.2620941331$ H, 0, -3.9560111755,1.1101916041,-2.8508041533 C, 0, -3.0947828201,3.821312787,-1.399689017 H, 0, -1.3710870146,3.083499534,-0.218685622 H, 0, -2.9656297006,2.7910922966,0.491703948 C, 0, $-4.9679492851,-0.6088874562,2.6749559858$ H, 0, -4. $8850829294,-0.9461207465,0.5417021607$ H, 0, - $5.1022218784,0.759066926,0.9522433766$ C, 0, -3.874853952,-1.625887829,3.0216428226 H, 0, -1. $915935584,-0.6169632283,3.0752154572$ H, 0, -2.0284457054,-1.8941689959,1.8796774836 C, 0, -2. $5252179077,-3.7854212647,-1.9379058251$ H, 0, -3.1292247134,-3.0979673512,0.0778013381 H, 0, -1. $4220518124,-2.8620665139,-0.2974751144$ C, 0,-2.4626036987,-2.8846092953,-3.1950296452 H, 0, -0. $9451126828,-1.4650876679,-2.5621500209$ H, 0, -2. $3270829504,-0.6885740449,-3.351269321$ H, 0, $-4.6623289441,3.3842353485,-2.8832689662$ H, 0, -5.1796611562,3.2501466198,-1. 2098527997 H, 0, - $2.4273119737,4.0447022976,-2.2415638163$ H, 0, -3.3391719143, 4.7739692815,-0.919803709 H, 0, -4. $9160684608,0.2506842343,3.3554141799$ H, 0, -5.9796365452,-1.0215691437, 2.7458395302 H, 0, -3.7545013421,-1.7709099059, 4.099472559 H, 0, -4. $1381060425,-2.6023206169,2.5970713208$ H, 0, -1. $7054676237,-4.5099115225,-1.9199417622$ H, 0, -3. $4541321086,-4.3636849825,-1.9166640189$ H, 0, -1. $7806956501,-3.2709106657,-3.9584621496$ H, 0, -3. $4526994923,-2.8119935233,-3.6594230583$ C, 0, 2. $8441097844,0.3721030677,-3.3335650998$ H, 0, 2. $0031918995,0.0793267543,-3.9716944146$ H, 0, 3. $0145087607,1.4398843126,-3.4863297497$ H, 0, 3. $7289163625,-0.1654530417,-3.6849439851$ H, 0, 2. $2765126353,-1.0538652786,-1.8755399869$

TSCH-C

Sum of PCM and thermal Free Energies= -1919,372541
C, 0, - $2.5946852531,-2.2492145582,-1.029586263$
C, 0, -3. $7691867274,-3.0008223206,-0.9361623687$
C, 0,-4.8622619752,-2.4883855595,-0.2389085913

C, 0, -4. $8005449228,-1.2191596008,0.3355051469$
C, 0, -3.6396706869,-0.4447789349,0.2297978941 C, 0, -2. $5272716404,-1.0033499533,-0.4078419378$ C, 0, -3. $5054744206,0.9833193242,0.7376004043$ C, 0, -1.9673951184,1.1824762962,1.1098698475 $\mathrm{Pd}, 0,-0.7124793523,-0.3293159937,-0.1680643479$ H, 0,-1.7364433877,-2.6392118135,-1.5764870184 H, 0, -3. $82522107,-3.9797650446,-1.4052306409$ H, 0, -5. $7723661651,-3.0746058424,-0.1481382015$ H, 0, $-5.6585384033,-0.829283084,0.8772297951$ H, 0, -1.3399678903,1.3302389195,-0.287416844 P, 0,1.7197833059,-0.0543504354,0.2153961001 C, 0, 2. $3386876431,1.6101331148,0.8178581618$ C, 0, 3.7969160346,1.7407330065,1.3269526643 C, 0, 2.1797674389,2.7534397166,-0.1990879027 C, 0, 4.2096004096,3.2089811414,1.0304044023 C, 0,2.9510713299,3.8940830395,0.4690550993 C, 0, 2. $6108765214,-0.3830760001,-1.4016180786$ C, 0, 4. 1471304887,-0.4919778814,-1.4238625841 C, 0, 2. $0954008361,-1.6593450818,-2.1365666764$ C, 0, 4.4229104918,-1.2238739439,-2.7412349571 C, 0, 3. 3454092209,-2.3139820725,-2.768036202 C, 0,2.4687467675,-1.2504996685,1.4478685967 C, 0, 2. $1460821134,-2.7351767765,1.1976452651$ C, 0,1.9875660525,-1.0524174601,2.8929833364 C, 0,2.4114891407,-3.4393574702,2.5524325754 C, 0, 2. $5013904031,-2.3106226446,3.6078994176$ H, 0, 1. $6662347908,1.8292192069,1.6588154486$ H, 0, 4. $4692405477,1.0461374302,0.8165487028$ H, 0, 3. $8603153483,1.5058031795,2.3938963033$ H, 0, 1. 1357216646,2.9853481109,-0.424546117 H, 0, 2. $6701237541,2.4922479758,-1.1460851023$ H, 0, 4.5992163124,3.7173773881,1.9174706153 H, 0, 5.0089737717,3.2276533374,0.281206049 H, 0, 2. $3490974238,4.3159350616,1.2838578785$ H, 0, 3. 1839694587, 4.7136265732,-0. 2178074607 H, 0, 2. 3221158439, 0.4783729363,-2.0147977217 H, 0, 4. $5157923653,-1.0999830404,-0.5878285673$ H, 0, 4. $6405991227,0.4829155524,-1.3653978181$ H, 0, 1. $3561857888,-1.3656506368,-2.8845196684$ H, 0,1.5893501798,-2.3582459697,-1.4634267479 H, 0, 4.2836395181,-0.5326547157,-3.5824348709 H, 0, 5.4413732675,-1.6202666206,-2.8082869287 H, 0, 3.15237743,-2.6984624356,-3.774153306 H, 0, 3. $6760758414,-3.1652164913,-2.1599165803$ H, 0, 3. 5576185217,-1.1105267179,1.4228134301 H, 0, 2. $7329700512,-3.1647700215,0.3809991067$ H, 0,1.0868716358,-2.8365352576,0.9250780213 H, 0, 0. $8914039895,-1.0353554633,2.9123092618$ H, 0, 2. $342971063,-0.1248751357,3.3522959813$ H, 0, 1. $6079487933,-4.144998801,2.7840213913$ H, 0, 3. 3383728977, $-4.0203554392,2.5201164529$ H, 0,1.9315626114,-2.5330193283, 4.5149326993 H, 0, 3. $5427955908,-2.1593582899,3.9144115973$ C, 0, -0.84068755,1.4189100785,-2.4588772581 $0,0,-0.5255913746,0.2039479264,-2.4856137651$ $0,0,-0.911886147,2.0846001291,-3.6342051805$ $0,0,-1.1029379369,2.1302954515,-1.4373711208$ н, 0, -0. $708431481,1.4279490837,-4.3148724907$ C, 0, -1. $5594035922,2.6355458071,1.3724497447$ H, 0, -0. $4954422117,2.6728388636,1.6258720242$
$\mathrm{H}, 0,-1.7180780456,3.3031500496,0.5257776747$
H, 0, -2. $1108416958,3.0206882184,2.2419116952$ C, 0, -1. $6549253371,0.4126180822,2.4125110273$ $H, 0,-1.9481086041,-0.6398853106,2.3793740319$ $\mathrm{H}, 0,-0.5910992736,0.4704972596,2.6507233807$ $\mathrm{H}, 0,-2.1965915827,0.8804196698,3.248273272$ C, 0, - $4.0530477923,2.0337493987,-0.3293064798$ H, 0, -3.1969419916, 2. $2580557543,-0.970548687$ C, 0, -4.3178167493,1.1328661645,1.9586859955 $\mathrm{N}, 0,-4.9678312485,1.2541940463,2.9151995314$ $C, 0,-4.549029527,3.3453257664,0.2969413429$ $\mathrm{H}, 0,-3.839103199,3.7927900216,0.9939105914$ $\mathrm{H}, 0,-4.7337208767,4.0737423249,-0.4995534371$ $\mathrm{H}, 0,-5.4895855779,3.1943846747,0.8364953714$ C, 0, -5.1660261884,1.4801566133,-1.2237110645 $\mathrm{H}, 0,-5.4761997736,2.2610974438,-1.9261063922$ $\mathrm{H}, 0,-4.8463546745,0.6132470224,-1.8057950743$ H, 0, - $6.0505699077,1.1938979939,-0.6431297458$

Сус-а

Sum of PCM and thermal Free Energies= $-1654,556691$

C, 0, 4.4923600389,-1.0530061796,-2.5970448224 C, 0, 4.617266507,-0.3907713203,-1.376157077 C, 0, 3. $4883202248,0.0557749444,-0.6800674759$ C, 0, 2. 2111057283,-0.1513186394,-1.2177809275 C, 0,2.1032074599,-0.824692675,-2.4440967796 C, 0, 3.2290141261,-1.2783359778,-3.1353696577 C, 0, 3. $6089944926,0.7445943635,0.6852429684$ C, 0, 2. $6447554987,1.9771534584,0.7363504367$ C, 0, 1.1768687675,1.589493548,0.7992980158 H, 0, 5.3824909477,-1.3868824404,-3.1232579871 H, 0, 5. 6075078384, -0.2174832441,-0.9621422117 H, 0, 1.1194795148, -0.9894703832,-2.8918170947 н, 0, 3. $117661046,-1.7876115311,-4.0896538372$ H, 0, 2. $8660241556,2.4905765258,1.685310582$ H, 0, 0. $5603445812,2.4882012561,0.6767801531$ H, 0, 0.9209253004,1.1210849258,1.7568485269 $\mathrm{Pd}, 0,0.386625156,0.2859595583,-0.5415231312$ C, 0, 4.9748334992,1.2563797563,0.8902444813 N, 0, 6.044946567,1.6611247338,1.0966447388 C, 0, 3. 3192641332,-0.2902828477,1.8375915064 C, 0,4.2629642999,-1.4943239026,1.7871942536 H, 0, 2. $3039656973,-0.650516898,1.6302254386$ H, 0, 3.9935038361,-2.2098900959,2.5711667349 H, 0, 5.3024293158, -1.191646913,1.9579060237 H, 0, 4. $2121295879,-2.0117419921,0.8262654744$ C, 0, 2.9283829864,2.9798177335,-0.3845547065 H, 0, 2. $6657836457,2.5615692706,-1.3602623089$ H, 0, 2. $3335402245,3.8866942704,-0.2304086466$ H, 0, 3. $9826777333,3.272505536,-0.4046342233$ C, 0, 3. 3563516682,0.3389850862,3.233912039 H, 0, $4.3448918004,0.7593896281,3.4502524604$ н, 0, 2. 6162043029,1.1338292269,3.3640316864 H, 0, 3. $151244673,-0.426007768,3.9903083741$ P, 0, -1. $9584289005,0.5817867836,-0.0479812486$ C, 0, -2. $3904537288,1.1443636414,1.685528019$ C, 0, -2. $90266338,-1.0232893056,-0.3125518783$

```
C,0,-2.7985829288,1.8633402536,-1.1196200233
C,0,-3.8594908738,1.4747078306,2.0129745755
C,0,-1.9881266774,0.1748042113,2.8074251927
H,0,-1.7870369045,2.0553182364,1.8108407332
C,0,-4.4256824604,-1.0041567243,-0.6273652015
C,0,-2.2707125676,-1.8849458784,-1.427859743
H,0,-2.749781522,-1.5641270108,0.6297082942
C,0,-2.6414359206,1.6132363689,-2.6289470272
C,0,-2.2090615578,3.2738553589,-0.957431878
H,0,-3.865185432,1.8948608718,-0.8607620582
C,0,-3.9486646373,1.4304511273,3.561747367
H,0,-4.5224929372,0.7185447073,1.5792322333
H,0,-4.1685062859,2.4405633183,1.6024677353
C,0,-2.6136886223,0.8195547122,4.0513030762
H,0,-0.9066864431,0.0341373014,2.8888621705
H,0,-2.4348653542,-0.8132786857,2.6358975557
C,0,-4.6439238942,-2.0715834972,-1.7286789882
H,0,-4.7761558364,-0.0249772036,-0.9650443777
H,0,-4.9984395527,-1.2437461513,0.2742387779
C,0,-3.3614202599,-2.9125330952,-1.7365554921
H,0,-1.3208432643,-2.3317675054,-1.114940599
H,0,-2.0723345254,-1.2804618003,-2.3227962647
C,0,-2.9252064107,2.9823314202,-3.2915389781
H,0,-3.2968125686,0.8200113124,-3.0017555099
H,0,-1.6069380712,1.3060270089,-2.8328586887
C,0,-2.7714614955,4.0383452674,-2.1679081866
H,0,-1.1149425928,3.2181146904,-1.0199251407
H,0,-2.464358433,3.7465063678,-0.0035489385
H,0,-4.103415747,2.4280854207,3.9836613429
H,0,-4.8022320665,0.8229159589,3.8787584122
H,0,-1.9499911921,1.6097304982,4.4211305029
H,0,-2.7497248704,0.1083706805,4.8716277155
H,0,-5.5450257648,-2.6688816956,-1.5592828399
H,0,-4.7650676897,-1.583247394,-2.7028818398
H,0,-3.3947886549,-3.666208688,-0.939301906
H,0,-3.2011931234,-3.4414348568,-2.6812190174
H,0,-2.2341439244,3.1643729318,-4.1199351231
H,0,-3.9348349255,3.0098693982,-3.7136659524
H,0,-2.1264162557,4.8724163055,-2.4596595608
H,0,-3.7478011015,4.4663934948,-1.9141872493
```


Сус-b

Sum of PCM and thermal Free Energies= -1654,554671

C, 0, -4.4912519905,-2.8240042795,-0.9316560368 C, 0, -4. $6042154961,-1.4751645246,-0.5945709042$ C, 0, -3.4750708374,-0.7221072362,-0.2570774802 C, 0,-2.2072534306,-1.3245368436,-0.2541025263 C, 0, -2.1131837108,-2.6828959834,-0. 5942870381 C, 0,-3.2408127297,-3.4339859906,-0.9354993259 C, 0, -3. $5722388166,0.7691441878,0.1121175991$ C, 0, -2.7333792532,0.9432566416,1.433702389 C, 0, -1.2328531593,0.903591082,1.1924000279 H, 0, -5.3820926224,-3.3927157474,-1.1842531287 H, 0, -5.585204057,-1.0065364674,-0.5922892212 H, 0, -1. $1416887062,-3.1815775878,-0.5807503108$ H, 0, -3.141167029,-4.4875451815,-1.1857937913 H, 0, -0.7185293435,0.7602737597,2.150499235

H, 0, -0. $8766652548,1.8409703176,0.7454140383$ $\mathrm{Pd}, 0,-0.4003696346,-0.518150498,0.0078993008$ C, 0, $-4.9686014815,1.1259382744,0.4026110219$ $\mathrm{N}, 0,-6.0670818278,1.4395279025,0.6191342458$ C, 0, -3.1012626024,1.6384691519,-1.1146513568 C, 0, -3.9280122474,1.3416843114,-2.3697248539 H, 0, -2. $0725803047,1.3023808209,-1.2999178129$ H, 0, -3. $5255326137,1.903586014,-3.2192704697$ H, 0, -4.9728852928,1.6454495564,-2.237309221 H, 0, -3. $9128642169,0.2803818799,-2.6285353575$ C, 0, -3.0930059549,3.1475080793,-0.8553300395 H, 0, -4.0752851444, 3.5021092508, -0. 5235559584 H, 0, -2. $3537966927,3.4440904348,-0.1076650367$ H, 0, -2. $8491588512,3.6782334747,-1.7821845274$ P, 0,1.915712404,0.1630825904,0.0366743871 C, 0, 2. 235011542,2.0075236038, 0.0386144062 C, 0, 2. $7378158108,-0.4996282181,-1.5200074029$ C, 0, 2. $94843407,-0.4367384585,1.4756700659$ C, 0, 3. 6911868409,2.5107478446,0.0940283777 C, 0,1.6356284623,2.7699393064,-1.1527177245 H, 0, 1. $7090853755,2.3502865803,0.9416282229$ C, 0, 4.2803785934,-0.6736104909,-1.5942469989 C, 0, 2. 1579470903,-1.8686225223,-1.9355697083 H, 0, 2. $4305496353,0.2197063607,-2.2895157666$ C, 0, 2. $8987587196,-1.9570186447,1.6994897826$ C, 0,2.4638959519,0.1088729584,2.8287992155 H, 0, 3.9888855865, -0. $1217064669,1.318376138$ C, 0, 3. 6403739887, 3.9681455777,-0.4410580627 H, 0, 4.3293007404,1.8969697027, -0. 5497705445 H, 0, 4. $1090199222,2.4500117843,1.1034614743$ C, 0, 2. $2008598603,4.182710028,-0.9632697044$ H, 0, 0. $5427793326,2.7348435968,-1.1787369497$ H, 0, 2. $0002656649,2.3485695929,-2.098875654$ C, 0, 4.5207497102,-2.010344869,-2.3409142903 H, 0, 4. $7496896622,-0.6950174872,-0.6068137498$ H, 0, 4.7291926252,0.1673566476,-2.1323072465 C, 0, 3.1683719372,-2.3761333988,-2.9667507944 H, 0, 1. $1383101651,-1.7837831969,-2.3283894046$ H, 0, 2. $127225469,-2.5560514201,-1.0804329393$ C, 0, 3.3722437931,-2.1556809468,3.157559594 H, 0, 3. 5053871002, $-2.5173200766,0.9813065897$ H, 0,1.8610353184,-2.2988174863,1.5899957692 C, 0, 3. 1722209114, -0.7882832378, 3. 8596175083 н, 0,1.3765075819,-0.0199183776,2.8987766562 H, 0, 2. 6808819084,1.171925597,2.973112614 н, 0, 3. $893934074,4.6946005376,0.3368374301$ H, 0, 4.3718814494,4.1038506224,-1. 2441548379 H, 0,1.6019041314,4.7145673676,-0.2145455494 H, 0, 2. $1680380976,4.7790184441,-1.8801394643$ H, 0, 5.3248162549,-1.9374606731,-3.0795140977 H, 0, 4.8151603597,-2.7889855986,-1. 6274457521 H, 0, 3. $0289168571,-1.8398028193,-3.9140830426$ H, 0, 3. $0693458656,-3.4453876702,-3.1778639882$ H, 0, 2. $8090542134,-2.955662676,3.6471922845$ H, 0, 4.4258113595,-2.4518978206,3.1848539414 H, 0, 2. $5975448845,-0.8723425519,4.7867759733$ H, 0, 4. 1416698855, -0.3538103424, 4.1275026159 C, 0, -3.084848817,2.15908675,2.3092215183 H, 0, $-2.5658741068,2.0673116848,3.2694648098$ H, 0, - $2.7833199914,3.1099748769,1.8635997756$ H, 0, -4.1580603056,2.2084200043,2.5156558947

Сус-с

Sum of PCM and thermal Free Energies $=\quad-1654,548194$

C, 0, 2. $1494651957,-2.6470420206,1.4435792619$ C, 0, 3. 3708239972,-3.2284707085,1.8003453163 C, 0, 4.5651463603,-2.7190742185,1.2928503108 C, 0, 4. 5481138834, -1. $6139032234,0.4395127741$ C, 0, 3. 3289841153,-1.0266251702,0.1056720148 C, 0, 2. $1142704223,-1.5401855937,0.5876449321$ C, 0, 3. 1332706892,0.2019498927,-0.7654316778 C, 0, 1. $7645489798,-0.0792316155,-1.5140463855$ Pd, 0, 0.4258899848,-0.6913870405,-0.0503290678 $\mathrm{H}, 0,1.2257073947,-3.0767660041,1.829697906$ $H, 0,3.386653611,-4.090666639,2.4632913146$ H, 0, 5. 5115092846,-3.1839538419,1.5563184306 H, 0, 5.4782311136,-1.2216835779, 0. 0347263998 $\mathrm{P}, 0,-1.8636699671,0.0870813844,-0.3876823991$ C, 0, -2. $2088457076,1.8728958196,-0.8399364183$ C, 0, -3. $6716114297,2.3315364894,-1.0393380346$ C, 0, -1. $6179401334,2.9075777113,0.1306789745$ C, 0, -3. $6727343909,3.8571901981,-0.7426017584$ C, 0, -2. $2185335573,4.2200927117,-0.3822235217$ C, 0, -2. $6752214877,-0.1894748769,1.2896454539$ C, 0, -4.1905337917,-0.4264707328,1.410458762 C, 0, -2.0320163523,-1.394015973,2.0355044309 C, 0, -4. $328669601,-1.0114180337,2.8201895518$ C, 0, -3. $1480339536,-1.9887563198,2.9335097295$ $C, 0,-2.9154448471,-0.8659171082,-1.6056216765$ $C, 0,-2.8000834161,-2.3945866148,-1.4682404117$ $C, 0,-2.5133286983,-0.6406580676,-3.0712420657$ $C, 0,-3.3005071927,-2.9550301499,-2.8206066499$ $C, 0,-3.2334358933,-1.7738574512,-3.8211479409$ $\mathrm{H}, 0,-1.6762704662,1.990426277,-1.7937219573$ $\mathrm{H}, 0,-4.3449853804,1.813557015,-0.3506294837$ H, 0, -4.0250879668,2.1046741657, -2. 0497474894 H, 0, - 0. $5243401662,2.9004268328,0.1486477296$ $\mathrm{H}, 0,-1.9631274017,2.7185127319,1.1555229205$ H, 0, -4. $0410808847,4.4423522367,-1.5904534406$ $\mathrm{H}, 0,-4.3374044571,4.0747352916,0.1002254756$ H, 0, -1. $6736116723,4.5412943676,-1.2784042059$ $H, 0,-2.1521489765,5.035163103,0.3449630462$ $H, 0,-2.4333936532,0.7204351206,1.8537315104$ $\mathrm{H}, 0,-4.5345677186,-1.1599278402,0.6712675415$ $\mathrm{H}, \mathrm{O},-4.7812906753,0.4832522689,1.2702876654$ H, 0, -1. $1640843699,-1.0654949768,2.6170678214$ $\mathrm{H}, 0,-1.6685650622,-2.152402767,1.3310956675$ $\mathrm{H}, 0,-4.2282117172,-0.2076714551,3.5605181665$ H, 0, -5. $2975814563,-1.4913127227,2.9918563634$ $\mathrm{H}, 0,-2.8198489876,-2.127419613,3.9676405507$ H, 0, -3.4438586588,-2.9753339756,2.5601757016 $H, 0,-3.9615530878,-0.5589002535,-1.4716753523$ $\mathrm{H}, 0,-3.357822813,-2.7935681668,-0.6152173215$ $\mathrm{H}, \mathrm{O},-1.7448471465,-2.6576913965,-1.3170562239$ H, O, -1. $4263187556,-0.7565185418,-3.1683691748$ H, 0, -2. $7757253149,0.3524728762,-3.449367624$ $H, 0,-2.6842419996,-3.7993003819,-3.1438717509$

H, 0, -4. $3248627085,-3.3309789143,-2.733059278$
H, 0, -2. $7224126535,-2.0380971594,-4.7517388334$
H, 0, -4. $2439163747,-1.4508583321,-4.0955428396$
C, 0, 1. $1746927069,1.1247591999,-2.2310563522$
H, 0, 0. $2736075226,0.8311507584,-2.7775700427$
H, 0, 0. $9144689333,1.9459341315,-1.5599309325$ H, 0,1.8884354994,1.5065066179,-2.9779638092 C, 0,1.9042086387,-1.2326634149,-2.5095233434 H, 0, 2. $3753205623,-2.1111550615,-2.0654743082$ H, 0, 0.9229141235,-1.5305966028,-2.8914221213 H, 0,2.510975596,-0.9161054054,-3.3715401784 C, 0, 3.0963522476,1.5178022244,0.1199648388 H, 0, 2. $055964485,1.5642258554,0.4721891786$ C, 0, 4.2194341117,0.3293040082,-1.750102901 $\mathrm{N}, 0,5.0736581212,0.4362657114,-2.5320765848$ C, 0, 3.4383303027,2.804560448,-0.6441540612 H, 0, 2. $8707665191,2.935405305,-1.5663800212$ H, 0, 3. $2395343439,3.6715501527,-0.0045632126$ H, 0, 4. $5004429086,2.8266315773,-0.9090909076$ C, 0, 4.001184226,1.4413113349,1.3532585379 H, 0, 3.9389128752,2.3838820688,1.9083251177 H, 0, 3.7197616178,0.6299621627,2.0269328542 H, 0, 5.0498955709,1.2972389126,1.0688025084

TSCC-a

Sum of PCM and thermal Free Energies= -1654,540145

C, 0,-4.4533898206,-3.3733919841,-0.5509656607
C, 0, -4.4769457346,-1.9793570902,-0.604654451
C, 0, -3.3987176768,-1.2364116952,-0.1231395018
C, 0, -2. $2709339949,-1.8919424222,0.3981341693$
C, 0, -2.281436218,-3.292476643,0.5062822454
C, 0, -3.3599293635,-4.0285633674,0.011107097
C, 0, -3.3641136778, 0.2862322365,-0.0509828781
C, 0, -2.7776899773,0.6140669478,1.3795211233
C, 0, -1. $7852762492,-0.4697513324,1.8201041834$
H, 0, -5. $3012550466,-3.941819834,-0.922788251$
H, 0, -5. $3479806459,-1.4657211286,-1.0037174544$
H, 0, -1.4485766936,-3.8096696031,0.9751207893
H, 0, -3. $349720481,-5.1134270473,0.0828100008$
H, 0, -2. $2332434675,1.5597909676,1.2937485753$
H, 0, -2.222091055,-1.1446749518,2.5577143867
H, 0, -0. $8911550145,-0.0226382396,2.2818051921$
$\mathrm{Pd}, 0,-0.3821999844,-1.2040017288,0.3757957528$
C, 0, -4.7140370475,0.8409080297,-0.212150996
$\mathrm{N}, 0,-5.7706574109,1.2942349557,-0.3840360953$
C, 0, -2.4708770312, 0.8992861171,-1.1919373656
C, 0, -2. $845031372,0.3613317345,-2.5734457558$
H, 0, -1. $4528301728,0.5460204875,-0.9470113661$
H, 0, -2. $1835235063,0.7904922488,-3.3336001085$
H, 0, -3.8730411484,0.6345777787,-2.8396607654
H, 0, -2. $7588556915,-0.7269858019,-2.623962196$
C, 0, -3.8629527447,0.781997336,2.4473089438
H, 0, -4.4783849017,-0.1218790479, 2.521243461
H, 0, -3. $4002911415,0.9542319563,3.4247926432$
H, 0, -4.5259716911,1.624868072,2.2323423216
C, 0, -2.4834054172,2.4298800758,-1.2077967576
H, 0,-3.4762799314,2.814324244,-1.4660901214

H, 0, -2.1938909745,2.8716776503,-0.2495849608 H, 0,-1.7791494438,2.7970157948,-1.9615651711 P,0,1.9230729599,-1.0167198114,-0.19651117 C, 0,2.6275696217,0.7190820712,-0.1160952496 C,0,2.2837971839,-1.6084240974,-1.9464133481 C, 0, 3.077254001,-1.959102928,0.9352980992 C, 0, 4.0828540617,0.9666187806,-0.5404269887 C, 0,1.8189493155,1.7588935666,-0.9236963496 H, 0, 2. $5407612042,0.9746224483,0.9491138094$ C,0,3.7255829099,-2.0453016386,-2.3424748995 C, 0,1.3742438222,-2.7860174214,-2.3627367098 H, 0, 2. $0008918922,-0.7454018352,-2.5631824712$ C, 0, 2. $7843616795,-3.4642790566,1.0303450242$ C, 0, 2. $9875014909,-1.4581693881,2.4006390068$ H, 0, 4. $1046487499,-1.8232171837,0.5752562945$ C, 0, 4.1540813705,2.4971737168,-0.5947700744 H, 0, 4. $2689088001,0.5502489635,-1.5376648161$ H, 0, 4. $8150123372,0.5256663032,0.1436346002$ C, 0,2.8083539673,2.9187521222,-1.2197485663 H, 0, 0.9343358457,2.083774578,-0.3697692661 H, 0,1.4526298575,1.3272856018,-1. 8623039761 C, 0, 3.5639800969,-3.3538138321,-3.1515987757 H, 0, 4.3800617875,-2.1963086082,-1.4797456015 H, 0, 4.1963120887,-1.2676342491,-2.9526081481 C, 0, 2. $0918719508,-3.3770897134,-3.5769806133$ H, 0, 0.3483674123,-2.4623877858,-2.5615620584 H, 0, 1. $3220784477,-3.5359788794,-1.5634016695$ C, 0, 3.483561959,-3.8694807539,2.3314528397 H, 0, 3. 1329964102,-4.0256360726,0.1575461735 H, 0,1.7010648103,-3.6235448105,1.1206551986 C, 0, 3.1576365899,-2.7162975402,3.293889754 H, 0, 2. $0130758978,-0.9908164648,2.5883811089$ H, 0, 3. $7519234301,-0.7016329965,2.6036609915$ H, 0, 4. $2385689605,2.892962852,0.4248328437$ H, 0, 5.0183476058, 2.8669580789,-1.1557775954 H, 0,2.4553331814,3.8730822385,-0.8176098458 H, 0,2.9173670558,3.0562002322,-2.3007475396
H, 0, 4. $2582109251,-3.4118636011,-3.9958283958$ H, 0, 3. $7701844202,-4.2190430085,-2.5098824518$ H, 0,1.9388905656,-2.7317852853,-4.4520842318 H, 0,1.7371844953,-4.3780723677,-3.8423982944 H, 0, 3.1572516667,-4.8443066614,2.7078301386 H, 0, 4.5662451486,-3.9318982107,2.1624953426 H, 0,2.2210387815,-2.9261171344,3.8216572057 H, 0, 3.9289619393,-2.581413553,4.0582227572

TSCC-b

Sum of PCM and thermal Free Energies $=\quad-1654,534648$

C,0,3.8921408332,-2.9756668507,1.0815938526 C,0,4.1305453969,-1.6024334262,1.0061609123 C, 0,3.2379578228,-0.7693258171,0.3330785208 C, 0, 2. $0746175552,-1.3047080391,-0.243115091$ C,0,1.8773556673,-2.6946413389,-0.2232933361 C, 0, 2. $7750776008,-3.5230730266,0.4554933406$ C, 0, 3.4803215314,0.7135971305,0.0550587824 C, 0, 3.1878456651,0.7725807222,-1.4957744649 C, 0,1.8630205026,0.0718302332,-1. 8300632275

H, 0, 4.5986218327,-3.6173262046,1.6007246826 H, 0, 5.0303367069,-1.1824844181,1.4487755437 H, 0, 1. $021559384,-3.132028357,-0.7306024523$ H, 0, 2. $6051869861,-4.5966796604,0.4796055516$ H, 0,1.9806203233,-0.6891848182,-2.6017808818 H, 0,1.1182612121,0.8026099377,-2.1849805596 $\mathrm{Pd}, 0,0.3122897426,-0.3618421365,-0.4120331532$ C, 0, 4. $8927928139,1.0529382499,0.269973405$ $\mathrm{N}, 0,6.0052530969,1.3454124748,0.4383927186$ C, 0, 2. $6046933137,1.6325308103,0.9820269565$ C, 0, 2. $6542531263,1.1592581097,2.4384869776$ H, 0, 1. $5734701304,1.4915722069,0.6147327318$ H, 0, 2.0316965567,1.8097225921,3.062210095 H, 0, 3.6762427917,1.2058233955,2.8336381793 H, 0, 2. $2945452857,0.1336986205,2.5498279342$ C, 0,2.9666667906,3.1209028497,0.9349595346 н, 0, 3. $9874176561,3.288617836,1.2958287351$ H, 0, 2. $8899613666,3.5578053587,-0.0608265168$ H, 0, 2. $290416958,3.6783037441,1.592031892$ P, 0, -1.9808617696, 0.1783933877,-0.0486147472 C, 0, -2.4699281577,1.918637256,-0.547358483 C, 0,-2.4938941436,0.0243471781,1.7548600727 C, 0, -3.1789988751,-0.8633408004,-1.0389800265 C, 0, -3. $909517348,2.4000056687,-0.3144703752$ C, 0, -1. $600339308,3.0211662857,0.095640533$ H, 0, -2. $2832931109,1.9277570625,-1.6303568915$ C, 0, -3. $9950695509,-0.1504596746,2.1309825135$ C, 0, -1. $7584491725,-1.1293257787,2.4729738654$ H, 0, -2.131953958,0.9623648218,2.1955419939 C, 0, -3. $0684842893,-2.3746999358,-0.785520618$ C, $0,-2.9467711663,-0.7150597626,-2.5650855142$ H, 0, -4. $2003276173,-0.541364798,-0.8007895378$ C, 0, -3. $8038281603,3.9038232891,-0.5952631822$ H, 0, $-4.2053918572,2.2357312044,0.7286078114$ H, 0, -4. $6442172398,1.8951812315,-0.9498076486$ C, 0, -2.4533768132, 4.3170326462,0.0270109174 H, 0, -0.6391119582, 3.1147075503,-0.4166262984 H, 0, -1.3711700376,2.777540714,1.1394793414 C, 0, - $4.0349544003,-1.2599636327,3.2082953278$ H, 0, -4. $6233146407,-0.4116216674,1.2750785061$ н, 0, -4.3918213641,0.78965672,2.5277626009 C, 0, -2. $5974032279,-1.3557827786,3.7314088908$ H, 0, -0. $7100211253,-0.887607595,2.6704520313$ H, 0, -1. $7653134062,-2.0372274962,1.8568511002$ C, 0, -3. $7458136413,-2.9806480234,-2.0184822277$ H, 0, -3. $5273964165,-2.68731612,0.1578983105$ H, 0, -2. $0099638359,-2.6675286718,-0.7560877105$ C, 0, -3. $2376469232,-2.1107221959,-3.1796793441$ H, 0, -1. $908934635,-0.4228086764,-2.7668895704$ H, 0, -3. $5893884443,0.0641070501,-2.9867188961$ H, 0, -3. $787735535,4.0702591328,-1.6793288188$ H, 0, -4. $6484221812,4.4743205947,-0.1957916039$ H, 0, -1.9621852541,5.1006360267,-0.5576161638 H, 0, -2. 603819617,4.7250410694,1.0319742932 H, 0, -4. $7674765774,-1.0533461802,3.9948939565$ H, 0, -4. 3193974623,-2.2156947333, 2. 751557645 H, 0, -2. $4034433151,-0.5562330808,4.4585296655$ H, 0, -2. $3830722036,-2.308059523,4.2268057906$ H, 0, -3. $5207812646,-4.0436749425,-2.1517443565$ H, 0, -4.8351282742,-2.8890755703,-1.9207114206 H, 0, -2. $314806122,-2.5362870119,-3.5882869079$

H, 0,-3.9547434987,-2.0594618617,-4.0046154773
C, 0, 3. 2834395037,2.1410437694,-2.1713616531
H, 0, 4. $2053404379,2.6658876471,-1.9001827899$
H, 0, 3.286276407,2.0081881923,-3.2584621773
H, 0,2.4300425855,2.7808134066,-1.9264536719
H, 0, 3. $9913257755,0.1547652381,-1.9170637779$

TSCC-c

Sum of PCM and thermal Free Energies= -1654,508816

C, 0,-2.4275942006,-2.8228184439,-0.0477846625
C, 0,-3.4213427488,-3.3990057136,-0.8473653394
C, 0, -4.3968326882,-2.6171623727,-1.4719684672
C, 0,-4.4227207281,-1.2309268552,-1.2858566305
C, 0,-3.4074987141,-0.6603417647,-0.5316372395
C, 0, -2. $3814032453,-1.420819651,0.0437938393$
C, 0, -3. $2147283248,0.6907516956,0.1229449443$
C, 0, -2. $3260700778,0.0597621493,1.2861508096$
$\mathrm{Pd}, 0,-0.4295955576,-0.8728233355,0.1553348126$
H, 0, -1. $7126408203,-3.4524250091,0.4731291672$
H, 0, -3. $4456463831,-4.4795401046,-0.9675623722$
H, 0, -5.1718575709,-3.0964550679,-2.0636809128
H, 0, -5. $2394427326,-0.6322011634,-1.680030528$
P, 0, 1. $8490699346,-0.9933097427,-0.3334786656$ C, 0, 2. 6302686423, 0.6549693454,-0.7900059681 C, 0, 4.1687837438, 0.7387226942,-1.0163341755 C, 0,1.992996522,1.3206058615,-2.0279506179 C, 0, 4.3598414704,1.5842609747,-2.2951654046 C, 0, 3. $0418865005,2.3495832777,-2.4573523052$ C, 0, 2. $1944876963,-2.1395795978,-1.7848496879$ C, 0, 3.6267065211,-2.6152821124,-2.0894201063 C, 0, 1.3501859692,-3.4436401445,-1.7237245099 C, 0, 3.3958164583,-3.7958580372,-3.0392510785 C, 0, 2. $2044096513,-4.536621601,-2.4145153211$ C, 0, 2. $9679452794,-1.5790726426,1.0513733103$ C, 0,2.5824236548,-2.9317906628,1.6661823167 C, 0, 2. $944656474,-0.6178594487,2.2604240453$ C, 0, 3. 3543327539,-2.9424447543,2.9909040295 C, 0, 3. $2641264909,-1.4906946264,3.5039632788$ H, 0, 2. $3737191276,1.2751700922,0.0780214077$ H, 0, 4. 6395890296,-0.2421920513,-1.1152794635 H, 0, 4. $6424627398,1.2216052626,-0.155019358$ H, 0,1.0125011528,1.7501903394,-1. 8046033812 H, 0, 1. $84857762,0.5941381347,-2.83822318$ H, 0, 5. $2363348699,2.2377269798,-2.24260302$ H, 0, 4. $5035355012,0.925565159,-3.1608893787$ H, 0, 3. $0184659222,3.2121581107,-1.7784052629$ H, 0, 2. $885297881,2.7275395698,-3.4728913402$ H, 0,1.8466052089,-1.5614042481,-2.6505002045 H, 0, 4. $1275173288,-2.9686555275,-1.1787805635$ H, 0, 4.253108554,-1.8333018013,-2.5288854578 H, 0, 0. 385571018, -3.2911123522,-2.2152809336 H, 0, 1. $1197270718,-3.7249407118,-0.6920552426$ H, 0, 3. $1275040675,-3.4162543787,-4.0335653816$ H, 0, 4. $2802953884,-4.4297837017,-3.161667814$ H, 0, 1.6339191434,-5.1078320452,-3.1531759042 H, 0, 2. $5670822528,-5.2561148852,-1.6710955507$ H, 0, 3. $9924534685,-1.6456771854,0.6628440592$

H, 0, 2. $8247711643,-3.7856192791,1.0254278412$
H, 0,1.499925298,-2.9489314224,1.8528922553
H, 0, 1. $9446774785,-0.1770281254,2.3576316033$
H, 0, 3. 6508617096,0.2086185091,2.1363401308
H, 0, 2. $9600200322,-3.671203731,3.70624065$
H, 0, 4. $4003924212,-3.2128949732,2.8009932411$ H, 0, 2. $467358315,-1.3934355539,4.2485724998$
H, 0, 4.1911355711,-1.1786959367,3.9947402479
C, 0, -1.3236799025,0.9960248226,1.9751214734 H, 0, - $0.7241188746,0.4456359133,2.7054089093$ H, 0, -0. $6430818706,1.5157521099,1.2989635669$ H, 0, -1. $8994916387,1.7524279892,2.5361242753$ C,0,-3.1678174711,-0.5737028313,2.3963256675 H, 0, -4.0141221167,-1.1491694833,2.0159726104 H, 0, -2. $5412741918,-1.244231571,2.9921524955$
H, 0, -3. $5557048594,0.2065205274,3.0647366939$
C, 0, -2.4986225478,1.7395549823,-0.7915976226
H, 0, -1.4700535029,1.3537163773,-0.8824655706
C, 0, -4.4712789516,1.2562345762,0.6245337417
$\mathrm{N}, 0,-5.466593996,1.7182776835,1.0091392399$
C, 0, -2. $4700601554,3.1563291643,-0.2078386477$
H, 0, -2. $0502670196,3.2004726306,0.7987024526$
H, 0, -1. $8657191605,3.8064150976,-0.8494591388$
H, 0, -3.4793411301,3.5791041018,-0.1647947021 C, 0, -3.1186037944,1.7800201215,-2.1903393733 H, 0, -2.5939926239,2.5145368678,-2.8102275622 H, 0, -3. $0592924079,0.8105804436,-2.6912001956$ H, 0, -4. $1721140211,2.081270493,-2.1463019438$

H2CO3

Sum of PCM and thermal Free Energies $=$-264,907371

C, 0, 0.1197986569,0.0000006218,-0.0717787744
$0,0,1.3121499717,-0.0000022174,0.0710108047$ $0,0,-0.7862749961,0.0000035612,0.936146101$
H, 0, -0. $2764305766,0.0000026812,1.7578846571$
$0,0,-0.498095189,0.0000013652,-1.2568035788$
H, 0,-1.4538208669,0.0000035959,-1.1121232097

Agos-a'

Sum of PCM and thermal Free Energies $=-1840,900224$
C, 0, 2. $9160853975,2.581977251,0.0248874944$ C, 0, 4.2436128628,3.0009793373,-0.0463625183 C, 0,5.2711584781,2.0610383625,-0.0964540834 C, 0, 4.9602166523, 0.7071860798,-0.0541477912 C, 0, 3. 6295318311,0.277975818,0.0370464891 C, 0, 2. $5836860626,1.2235359119,0.0580387181$ C, 0, 3.3385641554,-1.2193463229,0.1587926493 C, 0, 1. $8273674591,-1.4542780598,-0.0055873247$ $\mathrm{Pd}, 0,0.6632525447,0.5803579625,0.1012027233$ H, 0, 2. $1183473489,3.3167929674,0.0496357651$ H, 0, 4.4725896886, $4.0634535484,-0.0748717502$ H, 0, 6. $3074846937,2.3779173798,-0.1724548317$ H, 0, 5.7587333244,-0.0302556951,-0.1073445149

H, 0, 1. $501863777,-1.1515570458,-1.0116762033$ P, 0, -1. $6393256838,-0.3003695566,0.1156565547$ C, $0,-1.7517406724,-1.6595231136,-1.1729679981$ C, 0, -2.9890470722,-2.603772062,-1.2000490549 C, 0, -1. $5895058221,-1.156901701,-2.6221732833$ C, 0, -3.2931504781,-2.847041489,-2.6989161553 C, 0, -2.0450942697,-2.361914986,-3.447533062 C, 0, -2. $9947391023,0.9283326267,-0.2908513417$ C, 0, -4.4455920449,0.402403569,-0.3784944182 C, 0, -3.0582322313,2.1620844613, 0.6684235933 C, 0, -5.2999616864,1.6404510489,-0.0885637601 C, 0, -4. $5407686282,2.3116038318,1.0575503129$ C, 0, -2.1738722151,-1.1565716107,1.6943004822 C, 0, - $2.0712508312,-0.2902861506,2.9675466307$ C, 0, -1.3507894057,-2.4021098997,2.0579699552 C, 0, -1.9478920109,-1.2936880247,4.1456137494 C, 0, -1. $7815719403,-2.6873984126,3.5020380572$ H, 0, -0. $8705919943,-2.2744800179,-0.9445577433$ H, 0, -3. $8570174586,-2.1817059221,-0.6893952414$ H, 0, -2. $7542631089,-3.5419219141,-0.6867120857$ H, 0, -0. $5755441448,-0.8143130025,-2.8425630206$ H, 0, -2. $2507106269,-0.3055057068,-2.8173259803$ H, 0, -3. $5426723656,-3.8914592717,-2.9100003558$ H, 0, -4.1572073755,-2.2454711014,-3.0055045889 H, 0,-1. $2684264134,-3.1379264211,-3.4369392046$ H, 0, -2. $2434395459,-2.1126131303,-4.494420449$ H, 0, -2. $6877854831,1.2849723429,-1.2794006918$ H, 0, -4. $6491507048,-0.3508913476,0.392975751$ H, 0, -4. $6631346206,-0.0547738523,-1.3482609511$ H, 0, -2. $7168508445,3.0482494155,0.1283047514$ H, 0, -2. $4085953011,2.069138644,1.5413981496$ H, 0, -5.3161119907,2.2982102941,-0.966818811 H, 0, - $6.3375604003,1.3938059878,0.1593415996$ H, 0, $-4.8275226559,3.3559373559,1.2148418347$ H, 0, -4.7484814723,1.7759583546,1.9933627788 H, 0, -3. $2160893192,-1.4726654438,1.5551082717$ H, 0, -2.92872475,0.3785689969,3.0796323228 H, 0, -1. $1773168406,0.3427735599,2.9133906726$ H, 0, - 0. $2793337837,-2.1630317128,2.034052387$ H, 0, -1. $5186077626,-3.2483552545,1.3851700698$ H, 0, -1. $0837986225,-1.0435907925,4.7692369923$ H, 0, - $2.8245276656,-1.2599781765,4.799315122$ H, 0, -1. $0679240445,-3.3210737954,4.0375521291$ H, 0, - $2.7397904653,-3.2202278767,3.4948482442$ C, 0, - $0.4000247259,2.7842466082,-1.2760445052$ $0,0,0.0330747662,2.4987974,-0.0773084591$ $0,0,-0.7432195684,4.0975598508,-1.3943065386$ $0,0,-0.536913259,2.0303099991,-2.2257978407$ H, 0, -0. $5424742698,4.5116608749,-0.544349783$ H, 0, 1. 5219359139,-2.4945205976, 0.1247632534 H, 0,1.3030054562,-0.9431651943,0.8697517292 C, 0, 4.0077958002,-1.9362262183,-0.9418537202 $\mathrm{N}, 0,4.5317908363,-2.5173213869,-1.8009609037$ C, 0, 3. $8914368492,-1.7937006863,1.5168688305$ C, 0, 3. $748997329,-3.3137884522,1.6298839313$ C, 0, 3. $2853526902,-1.0946020565,2.7346249914$ H, 0, 4.9633532582,-1.5601908275,1.5019952888 H, 0, 4.1843914548,-3.8323434616,0.7708243818 H, 0, 4. $2627551482,-3.6671980021,2.5294128664$ H, 0, 2. $7004649725,-3.6204371943,1.7202364877$ H, 0, 3.3613594146,-0.0067430197,2.663134731

H, 0, 2. $2295876576,-1.3559431791,2.8741523536$
H, 0, 3. $8126452954,-1.4142212141,3.6390464087$

Agos-b'

Sum of PCM and thermal Free Energies $=-1840,896355$
C,0,2.1354182682,-2.0929554267,-1.8780311255
C, 0, 3. $2836567986,-2.605338259,-2.4812856732$ C, 0, 4. 5178843001,-2.0326819139,-2.1953939387 C,0,4.5918056335,-0.9562736249,-1.3164571495 C, 0, 3.4457027914,-0.4232066251,-0.7070269739 C,0,2.1988479146,-1.0064883257,-0.9986651157 H, 0, 1.1734565376,-2.5526508545,-2.0857327691 H, 0, 3.2087580087,-3.4485496087,-3.1635104474 H, 0,5.4265539109,-2.4203844356,-2.6474792382 H, 0, 5. 5633183401, -0. 5236798987,-1.0946636401 C, 0, 3. 5697418719, 0.776186604,0.2536251915 H, 0,1.1018269991,1.1170232316,-1.2943201209 $\mathrm{Pd}, 0,0.3955122567,-0.3169069637,-0.4144080309$ C, 0, 0.2154533165,-2.6210429924,1.1927186973 $0,0,-0.1298086104,-2.245856623,-0.0118750864$ $0,0,0.0036580455,-3.9479376002,1.3978546248$ $0,0,0.6591843745,-1.9279097121,2.0939557559$ H, 0, -0. $2873521485,-4.314087021,0.5525380045$ C, 0,2.8748360354,2.046704867,-0.3617809221 C, 0, 3. $0522185016,0.4052391879,1.6636025067$ H, 0, 2. $0371857793,0.0011444634,1.6245396614$ C, 0, 1. $3636684498,1.8936289482,-0.4993452896$ н, 0, 0. $8851454956,1.7560128799,0.4782925969$ H, 0, 0. $9166925481,2.7897275458,-0.9383929888$ C, 0, 4.9900696185,1.1384828919,0.417025482 $\mathrm{N}, 0,6.0960655235,1.4558398085,0.5783712957$ P, 0, -1.9697437265,0.326713759,-0.056490575 C, 0, -2.4716874799,0.6726638717,1.7175785735 C, 0,-3.0078822612,-1.1237598118,-0.6219052695 C, 0, -2. $621510038,1.811966452,-0.9998270692$ C, 0, -3. $8956733329,1.2330518233,2.0094584836$ C, 0, -2. $3142833086,-0.538249396,2.6600516592$ H, 0, -1. $7367147872,1.4241372664,2.0371550618$ C, 0, -4. $5433658978,-1.021926078,-0.5959957905$ C, 0, -2. $6517559966,-1.6153246753,-2.0573918639$ H, 0, -2. $7021650672,-1.9130078572,0.0737377946$ C, 0, -2.1634868248,1.8771759225,-2.4819074129 C, 0, -2. $2175039326,3.175565827,-0.4083939467$ H, 0, -3.716445088,1.7531022541,-0.9682341481 C, $0,-4.3587628364,0.5361470954,3.3128654079$ H, 0, $-4.5986421934,1.0463136432,1.1937503531$ н, 0, -3. $8529489858,2.3188660557,2.13931774$ C, 0, -3.0920883648, -0.0975856052,3.9009304125 H, 0, -1. $2696911303,-0.8008303683,2.8433954945$ H, 0, -2. $8030875026,-1.4248385733,2.234535422$ C, 0, -4.9773460038,-2.1617825503,-1.5232663437 H, 0, -4.8885462865,-0.0668929244,-1.0132226266 H, 0, -4.9567212755,-1.1100515794,0.413015731 C, 0, -3.9907929649,-2.0594732606,-2.6927730072 H, 0, -1.9348982762,-2.4368108169,-1.9882729311 H, 0, -2.1725772238, -0.8406865624,-2.6617674029 C,0,-1.9360282341,3.3790643756,-2.7968984071 H, 0, -2.9163920594,1.4327886144,-3.1397316576

```
H,0,-1.240079285,1.3068267565,-2.6345794722
C,0,-2.4650231909,4.1396560192,-1.572553668
H,0,-1.1549638551,3.1851416984,-0.1365370718
H,0,-2.7851544789,3.4334390392,0.4894601085
H,0,-4.85444587,1.2275341281,4.0013906087
H,0,-5.0840842446,-0.2521275601,3.0776393827
H,0,-2.5121151739,0.6499335589,4.4576723911
H,0,-3.3045378245,-0.922685257,4.5877201002
H,0,-4.856060077,-3.1222811369,-1.0063695363
H,0,-6.0245407555,-2.0876399987,-1.8340307504
H,0,-3.8977710372,-2.9949780859,-3.2526448754
H,0,-4.3428940997,-1.2993060459,-3.4005202873
H,0,-0.8655999875,3.5776621742,-2.9241053873
H,0,-2.423640318,3.6885943052,-3.7258845049
H,0,-1.9856417436,5.113721826,-1.4324345031
H,0,-3.5428528018,4.3193241392,-1.6727135634
C,0,3.1550773713,3.3372433874,0.4194944281
H,0,2.7381449233,4.1971440918,-0.114981199
H,0,2.6991821779,3.3150777341,1.4151179027
H,0,4.2273664941,3.5080393108,0.5402643871
H,0,3.3033235607,2.1593468452,-1.3660254012
H,0,3.0863368794,1.2647589892,2.3392894769
H,0,3.6802596746,-0.3830609928,2.0850794857
```


Agos-c'

Sum of PCM and thermal Free Energies $=\mathbf{- 1 8 4 0 , 8 9 4 0 3 7}$

C, 0, -2. $563490196,-2.7435223028,0.7544132222$
C, 0, -3. $8564531552,-3.2206755727,0.9812040519$ C, 0, -4.9418865211,-2.3558509702,0.8808344907 C, 0, -4. $7331453734,-1.0144109621,0.5652269408$ C,0,-3.4413396919,-0.5248872254,0.3473786089 C, 0, -2.3426910018,-1.4014278493,0.4447686082 C, 0, -3.1778146759, 0.938823233,-0.0179449877 C, 0, -2.1055177441,1.5532378634,0.9493615727 $\mathrm{Pd}, 0,-0.4902266723,-0.6719306373,0.2632102845$ H, 0, -1. $7166180534,-3.4215208353,0.8045138133$ H, 0, -4.0106086144,-4.2684033288,1.2274113539 H, 0, -5.9525337124,-2.7184495918,1.0463426386 H, 0, -5. $5835907415,-0.3412790853,0.4917201964$ H, 0, -1.13296678, 0.971854019,0.7999138642 P,0,1.8075831755,0.2113533611,0.1435554525 C, 0,1.8789065111,1.8240748577,-0.8163474904 C, 0, 3.1384037363,2.7275792715,-0.7071778851 C, 0,1.6277410371,1.6752356575,-2.3286634134 C, 0, 3. $2842638391,3.4087823997,-2.0938681502$ C, 0,2.000233964,3.0600556803,-2.8621010272 C, 0, 3. $0524468787,-0.9293827933,-0.6687739148$ C, 0, 4. $5154413903,-0.4431313874,-0.7837061382$ C, 0, 3.1378434758, -2.3510831898,-0.0232875899 C, 0, 5. 3289213304,-1.7394941364,-0.8539761685 C, 0, 4.6381331083,-2.6259980776,0.1839476831 C, 0, 2. 5174925162,0.680449972,1.8122727241 C, 0, 2. 5168942201,-0.456731617,2.852854978 C,0,1.7175707581,1.7833027226,2.5225753764 C, 0, 2. $5509847107,0.2475188457,4.2340503209$ C, 0,2.25688465,1.7406947536,3.95877413

H, 0,1.0303112881,2.3862246499,-0.4032426991
H, 0, 4.0377280131, $2.1578808818,-0.4641125619$ H, 0, 3.0121626274,3.4636741343,0.0930493824 H, 0, 0. $6092512171,1.3593867058,-2.5654215418$ H, 0, 2. $2976425943,0.922541437,-2.7611593846$ H, 0, 3. $4493973281,4.4875105674,-2.0130276375$ H, 0,4.1510835137,2.9949629137,-2.6216615367 H, 0,1. $2047138328,3.7770654577,-2.6201707809$ H, 0, 2. 1348756447,3.0793608139,-3.9480015198 H, 0, 2. $6365675674,-1.0397813514,-1.6762020997$ H, 0, 4.8224243458,0.1139399299,0.1101444965 H, 0, 4.6691915371,0.212364845,-1.6461354743 H, 0, 2. $7092880342,-3.0795302638,-0.7155967103$ H, 0, 2. $564170428,-2.4406450477,0.9016387475$ H, 0, 5. $2378411213,-2.1862876952,-1.8522757525$ H, 0, 6.3949077313,-1. $5846925693,-0.6573355503$ H, 0, 4.8857882896, -3.6871315175,0.0819029189 H, 0, 4.950563926,-2.3183390134,1.1906453034 H, 0, 3. $5442280456,1.0403086527,1.6635244649$ H, 0, 3. 3528334331,-1.1479596218,2.7164076817 H, 0, 1. $5945938625,-1.0425325704,2.7507928499$ H, 0, 0.6507676611,1.5211974761,2.5154223527 H, 0, 1. $8219007907,2.7675035955,2.0558924598$ H, 0, 1. $805469614,-0.1892283541,4.9056571338$ H, 0, 3.5223400518, 0.1223427629,4.7220766981 H, 0,1.5590601993,2.1757653985,4.6808414033 H, 0, 3. 1813453193,2.3268160482,4.0168822626 C, 0, 0.2125070109,-2.4432392022,-1.7867932613 $0,0,0.0364987435,-2.4881052229,-0.494247195$ $0,0,0.4988004686,-3.6689142211,-2.3062152045$ $0,0,0.1727328529,-1.4654662254,-2.5171857365$ H, 0, 0.4418654358, -4.2983132881,-1.5749775291 C, 0, -1. $7349880834,2.997154371,0.6136960346$ H, 0, -0. $9828077379,3.3690018511,1.3153425253$ H, 0, -1.3408071131,3.1060873394,-0.3989443031 H, 0, -2. $6203125074,3.6357041713,0.7058795762$ C, 0, -2.4997078984,1.4176390836,2.4184680508 H, 0, $-2.7179189075,0.3822364565,2.6867069504$ H, 0, -1. $7001989313,1.7876401144,3.0668549462$ H, 0, -3.3933406071,2.0199746435,2.6151122806 C, 0,-2.760210114,1.0199141237,-1.5061148046 $\mathrm{H}, 0,-1.8331865921,0.4539465798,-1.658418215$ C, 0, -4.3961488981,1.7517115306,0.1424281364 $\mathrm{N}, 0,-5.3365932589,2.424092504,0.2573834399$ H, 0, -2. $6212099829,2.0512303694,-1.83953996$ H, 0, -3. $5332731858,0.5599742507,-2.126089853$

Agos-d'

Sum of PCM and thermal Free Energies $=-1840,901098$

C, 0, 2. $9160853975,2.581977251,0.0248874944$ C, 0, 4. $2436128628,3.0009793373,-0.0463625183$
C, 0, 5. $2711584781,2.0610383625,-0.0964540834$

C, 0, 4.9602166523,0.7071860798,-0.0541477912
C, 0, 3. 6295318311,0.277975818,0.0370464891
C, 0, 2. 5836860626,1.2235359119,0.0580387181 C, 0, 3. 3385641554,-1.2193463229,0.1587926493 C, 0, 1. $8273674591,-1.4542780598,-0.0055873247$ $\mathrm{Pd}, 0,0.6632525447,0.5803579625,0.1012027233$ H, 0, 2. 1183473489,3.3167929674,0.0496357651 H, 0, 4.4725896886, 4.0634535484,-0.0748717502 H, 0, 6.3074846937,2.3779173798,-0.1724548317 H, 0, 5. $7587333244,-0.0302556951,-0.1073445149$ H, 0,1.501863777,-1.1515570458,-1.0116762033 P, 0, -1. $6393256838,-0.3003695566,0.1156565547$ C, $0,-1.7517406724,-1.6595231136,-1.1729679981$ C, 0, -2.9890470722,-2.603772062,-1.2000490549 C, 0,-1.5895058221,-1.156901701,-2.6221732833 C, 0, -3.2931504781,-2.847041489,-2.6989161553 C, 0, -2. $0450942697,-2.361914986,-3.447533062$ C, 0, -2.9947391023,0.9283326267,-0.2908513417 C, 0, -4.4455920449,0.402403569,-0.3784944182 C, 0, -3.0582322313,2.1620844613,0.6684235933 C, 0, -5.2999616864,1.6404510489,-0.0885637601 C, 0, -4. $5407686282,2.3116038318,1.0575503129$ C, 0, -2.1738722151,-1.1565716107,1.6943004822 C, 0, -2.0712508312,-0.2902861506,2.9675466307 C,0,-1.3507894057,-2.4021098997,2.0579699552 C, 0, -1.9478920109,-1.2936880247,4.1456137494 C, 0, -1. $7815719403,-2.6873984126,3.5020380572$ H, 0, -0. $8705919943,-2.2744800179,-0.9445577433$ H, 0, -3. $8570174586,-2.1817059221,-0.6893952414$ H, 0, -2. $7542631089,-3.5419219141,-0.6867120857$ $\mathrm{H}, 0,-0.5755441448,-0.8143130025,-2.8425630206$ H, 0, -2. $2507106269,-0.3055057068,-2.8173259803$ H, 0, -3. $5426723656,-3.8914592717,-2.9100003558$ H, 0, -4.1572073755,-2.2454711014,-3.0055045889 H, 0, -1. $2684264134,-3.1379264211,-3.4369392046$ H, 0, -2. $2434395459,-2.1126131303,-4.494420449$ H, 0, -2. $6877854831,1.2849723429,-1.2794006918$ H, 0, $-4.6491507048,-0.3508913476,0.392975751$ H, 0, -4. 6631346206,-0.0547738523,-1.3482609511 H, 0, -2. $7168508445,3.0482494155,0.1283047514$ H, 0, -2.4085953011,2.069138644,1.5413981496 H, 0, -5.3161119907,2.2982102941,-0.966818811 H, 0, - $6.3375604003,1.3938059878,0.1593415996$ H, 0, -4. $8275226559,3.3559373559,1.2148418347$ H, 0, -4. $7484814723,1.7759583546,1.9933627788$ H, 0, -3.2160893192,-1.4726654438,1.5551082717 H, 0, -2.92872475,0.3785689969,3.0796323228 H, 0, -1.1773168406,0.3427735599,2.9133906726 H, 0, -0. $2793337837,-2.1630317128,2.034052387$ H, 0, -1. $5186077626,-3.2483552545,1.3851700698$ H, 0, -1. $0837986225,-1.0435907925,4.7692369923$ H, 0, -2. $8245276656,-1.2599781765,4.799315122$ H, 0, -1. $0679240445,-3.3210737954,4.0375521291$ H, 0, -2. $7397904653,-3.2202278767,3.4948482442$ C, 0, - $0.4000247259,2.7842466082,-1.2760445052$ $0,0,0.0330747662,2.4987974,-0.0773084591$ $0,0,-0.7432195684,4.0975598508,-1.3943065386$ $0,0,-0.536913259,2.0303099991,-2.2257978407$ H, 0, -0. $5424742698,4.5116608749,-0.544349783$ H, 0, 1. $5219359139,-2.4945205976,0.1247632534$ H, 0,1.3030054562,-0.9431651943,0.8697517292

C,0,4.0077958002,-1.9362262183,-0.9418537202 N, 0, 4.5317908363,-2.5173213869,-1. 8009609037 C, 0, 3. $8914368492,-1.7937006863,1.5168688305$ C, 0, 3.748997329,-3.3137884522,1.6298839313 C, 0, 3. $2853526902,-1.0946020565,2.7346249914$ H, 0, 4.9633532582,-1.5601908275,1.5019952888 H, 0, 4.1843914548,-3.8323434616,0.7708243818 H, 0, 4. $2627551482,-3.6671980021,2.5294128664$ H, 0, 2. $7004649725,-3.6204371943,1.7202364877$ H, 0, 3.3613594146,-0.0067430197,2.663134731 H, 0, 2. $2295876576,-1.3559431791,2.8741523536$ H, 0, 3. $8126452954,-1.4142212141,3.6390464087$

TSCH-a'

Sum of PCM and thermal Free Energies $=\mathbf{- 1 8 4 0 , 8 5 7 1 3 7}$
C,0,-2.317949572,-2.2180878624,-1.6209477786
C, 0, -3. $5595402612,-2.812384781,-1.8542608955$
C, 0, -4. 6889202745,-2.3454920258,-1.1813448613
C, 0,-4.5786868142,-1.296498413,-0.271475132
C, 0, -3. $3357225762,-0.7109956312,-0.0067265367$
C, 0, -2. $2051139864,-1.1899675288,-0.6846149324$
C, 0, -3. $146913704,0.4363030665,0.9789081463$
C, 0, -1.6352454979,0.7861605467,1.014517508
$\mathrm{Pd}, 0,-0.3934977194,-0.5325729446,-0.2874324536$
H, 0,-1.4431430457,-2.5467884807,-2.1802098046
H, 0,-3.6468817321,-3.6197788553,-2.576859115
H, 0, -5. 6612519996, -2.7884568402,-1.3779751788
H, 0, -5.4699610899,-0.9196715976,0.2253134393
H, 0,-1.2917288471,1.2246498492,-0.2694642738
P,0,1.9129616923,0.0119632138,0.2701683389
C, 0, 2. $2165851388,1.749755841,0.8979418686$
C, 0, 3.5957944788,2.1090533469,1.4830772136
C,0,1.9636209,2.8662621385,-0.1271124383
C,0,3.6395246672,3.6605411101,1.4736403749
C, 0, 2. 426221514, 4.1190930246,0.6275533802
C, 0, 3.0129177045,-0.2398363728,-1.2246629056
C, 0, 4.5388014163,-0.3586894493,-1.0662821847
C,0,2.5953769962,-1.4955669629,-2.0453717023
C, 0, 4.9699057376,-0.9811404502,-2.3986780836
C, 0, 3.9029209563,-2.0535223162,-2.6605852969
C, 0, 2.618559292,-1.0594034168,1.6305393468
C,0,2.451714179,-2.5712684459,1.4005892916 C, 0,1.9223799898,-0.8578111965,2.9861052618 C, 0,2.614575351,-3.2086828666,2.8009379057 C, 0, 2. $3995703486,-2.0595002482,3.8180249556$ H, 0,1.4642509774,1.8583669471,1.6934794709 H, 0, 4.3911383887,1.7077714142,0.8476302313 H, 0, 3. $7479567437,1.6904515295,2.4825755254$ H, 0, 0.9254279132, 2. $9177218097,-0.4661675292$ H, 0, 2. $5960707376,2.7135836569,-1.0117941549$ H, 0, 3. $5902904319,4.0680648641,2.488082452$ H, 0, 4.5815440777,4.0136268444,1.0421427557 H, 0, 1. 6179615148,4.4663241933,1.2814339376 H, 0, 2. 6682379057,4.9476810356,-0.0444574797 H, 0, 2. $7997968465,0.6414849544,-1.84194655$ H, 0, 4.7986879526,-1.0364458286,-0.2431712405 H, 0, 5.0255926988, 0. $6008658756,-0.8693941018$ H, 0,1.8588449908,-1.2116834385,-2. 800600867 H, 0, 2. $1164140451,-2.2532782508,-1.4155003657$ H, 0, 4.9416720357,-0.2165089162,-3.1854369328

H, 0,5.9874264011,-1.3847356911,-2.374494079 H, 0, 3.795837253,-2.2873155232,-3.7240098695 H, 0, 4.1882937895,-2.9857130319,-2.1591133809 H, 0, 3. $6843282042,-0.8188510622,1.7401751817$ H, 0, 3. 1576503705,-2.9747542148,0.6685061982 H, 0, 1. $4406605924,-2.7647980688,1.0164918082$ H, 0, 0.834760795,-0.9056185112,2.8427043385 H, 0, 2. 1512343909, 0.1028244579,3.4571216329 H, 0, 1. $8965439603,-4.02152204,2.9450195858$ н, 0, 3. 6108203929,-3.6471226646,2.9164877354 H, 0,1.68743883,-2.3217572958,4.6061419873 H, 0, 3. $3440946562,-1.8110790414,4.3146408872$ C, 0, -0. $827706811,1.4110321615,-2.3954565894$ $0,0,-0.2799483718,0.2770161657,-2.4702928683$ $0,0,-0.9819009214,2.1060072016,-3.5421333696$ $0,0,-1.2475437338,2.0058183716,-1.3571462575$ H, 0, -0. $6448024045,1.5291538235,-4.2417481624$ H, 0,-1.4305117774,1.8032736582,1.3675179031 H, 0, -1. $1546706204,0.1390398517,1.7648461646$ C, 0, -3. $9148479654,1.5964483031,0.4893099221$ $\mathrm{N}, 0,-4.5658598947,2.4978319609,0.1517711071$ C, 0, -3. $7248582318,0.0875331196,2.4033961659$ C, 0, -3. $574204395,1.2470039845,3.390172551$ C, 0, -3.1352989293,-1.2017583314,2.9786864138 H, 0, -4. $7996121352,-0.081049225,2.2528382768$ H, 0, - $4.013077698,2.1701889821,3.0008101892$ H, 0, $-4.0776309992,1.0063438871,4.3321348981$ H, 0, -2. $5207236954,1.4402627327,3.6212566637$ H, 0, -3.2348536589,-2.0422004134,2.2866306971 H, 0, -2.0747228961,-1.0894385736,3.2306801137 H, 0, -3. $6573623991,-1.4623115046,3.9052424466$

TSCH-b'

Sum of PCM and thermal Free Energies $=\mathbf{- 1 8 4 0 , 8 5 6 1 3 3}$
C, 0, 3. 1087902355,-3.5067767592,0.4143918528 C, 0, 3. $5831694865,-2.2196174978,0.6668443375$ C, 0, 2. 9697891901,-1.1144257472,0.0768618287 C, 0,1.8387147801,-1.2852882992,-0.7386254314 C, 0,1.4159566501,-2.5868579184,-1.0489282034 C, 0, 2. $0393289276,-3.6891100724,-0.459724423$ C, 0, 3. 51134397,0.3071373237,0.1603598675 C, 0, 3.4703210934,0.809829184,-1.3297904051 C, 0,2.1722392521,0.3586782019,-2.0127837217 H, 0, 3. $5978353925,-4.3628848931,0.870376572$ H, 0, 4.4573479996,-2.0755513397,1. 2972289561 H, 0, 0.5933696253,-2.7423422795,-1.7406392633 H, 0, 1. $6893445475,-4.6917000132,-0.6935563956$ H, 0, 2. 351326133,-0.2893198557,-2. 8705414778 H, 0, 1. $5882989652,1.2319181217,-2.373024396$ $\mathrm{Pd}, 0,0.3606074173,0.0851591045,-0.9626631043$ C, 0, 4.9081768897, 0.322014217,0.6172833474 $\mathrm{N}, 0,6.0110423528,0.3640117889,0.9812495449$ C, 0, 2. $6935044923,1.1773034085,1.136601984$ H, 0, 1. $6541567847,1.2233764334,0.7826986819$ P, 0, -1.8722908201,0.3014020904,-0.1972636239 C,0,-2.5927166445,1.9518348322,-0.7254782138

```
C,0,-2.1139827135,0.2324074799,1.6651047192
C,0,-3.0873434322,-0.9076275775,-0.9476885573
C,0,-4.013369099,2.3437390596,-0.2896981493
C,0,-1.7197769777,3.1639310345,-0.3172826184
H,0,-2.58677689,1.8861604929,-1.8223209112
C,0,-3.5313372427,-0.0295479819,2.2556534856
C,0,-1.1954301774,-0.8123963134,2.3358885023
H,0,-1.7782424874,1.2241745371,1.9961892288
C,0,-2.8394494568,-2.3808767888,-0.5838800739
C,0,-3.0449636669,-0.8737136206,-2.4995216028
H,0,-4.095177179,-0.6310455479,-0.6140937841
C,0,-4.0701681371,3.831029933,-0.6540268324
H,0,-4.1323037096,2.2228319648,0.793438228
H,0,-4.7937916011,1.7501581965,-0.776482671
C,0,-2.6919714398,4.3714527217,-0.2294445755
H,0,-0.91389477,3.3221602505,-1.0400118269
H,0,-1.2335850692,2.9950379558,0.6503760251
C,0,-3.3316695893,-1.055547862,3.3961854858
H,0,-4.2418405095,-0.4013748823,1.5123839397
H,0,-3.9529362023,0.9037727601,2.6427979246
C,0,-1.8324311688,-1.009411555,3.7122985131
H,0,-0.1530108588,-0.48514079,2.3669023582
H,0,-1.2134676322,-1.7583778185,1.7812533573
C,0,-3.5683302903,-3.1381145114,-1.6980524153
H,0,-3.1962273138,-2.6385473823,0.4183916062
H,0,-1.7649262211,-2.6015284686,-0.6210657455
C,0,-3.2135867613,-2.3440795692,-2.9636119465
H,0,-2.0879733119,-0.4699069661,-2.8535784464
H,0,-3.8335474648,-0.2259956192,-2.8954143151
H,0,-4.201573069,3.9352723744,-1.7384331398
H,0,-4.9009911232,4.3598759649,-0.1758288617
H,0,-2.368887978,5.2096995241,-0.8539456448
H,0,-2.7359627639,4.7452497915,0.7992520822
H,0,-3.9627859074,-0.8426395879,4.2647313498
H,0,-3.5986191386,-2.0604953843,3.0476363305
H,0,-1.6065314559,-0.1486293013,4.3556449983
H,0,-1.4746646004,-1.9062092384,4.2279641058
H,0,-3.2799442447,-4.1924433863,-1.7596945461
H,0,-4.6507438223,-3.1063805799,-1.5183770462
H,0,-2.2688325892,-2.7128813857,-3.3781038644
H,0,-3.9670295067,-2.4488012398,-3.7502267915
C,0,3.7186712057,2.3113353707,-1.4714918685
H,0,4.6357223379,2.6154648564,-0.9551835068
H,0,3.8282921333,2.5774026314,-2.5274802396
H,0,2.8850377181,2.8957088464,-1.0676971182
H,0,4.299302975,0.2845412174,-1.8202735876
H,0,3.0999425773,2.1896758302,1.2095182111
H,0,2.7006420551,0.7267220337,2.1328830716
```


TSCH-C'

Sum of PCM and thermal Free Energies $=\mathbf{- 1 8 4 0 , 8 3 8 9 3 6}$
C, 0,-3.7402475009,-3.1504441259,-0.7399266182
C, $0,-4.8231100153,-2.6743294598,-0.0014345194$
C, 0, -4.7385413027,-1.4502643878, 0.6601137782
C, 0,-3.5637059178,-0.6939791131,0.603156902
C, 0,-2.4694715996,-1.1994656754,-0.1071002728
C, 0, -3.4248982342,0.6937160826,1.206483282
C, 0, -1. $8848917943,0.9963811207,1.4053526438$
Pd, 0, -0.6698672127,-0.4342975836,0.005570033
H, 0, -1. $7222314289,-2.757808546,-1.4022331504$

H, 0, -3.811969866,-4.0953587437,-1.2723839585 H, 0, -5. $7405618702,-3.2535478867,0.0533711084$ H, 0, -5.5867308217,-1.0828645746,1.233631026 H, 0, -1.4756569852,1.1815717128,-0.0451206305 P, 0,1.7545900981,0.033883813,0.0972929341 C, 0, 2. 3137202296,1.7884091195,0.4482549395 C,0,3.8274915506,2.0753584059,0.6594548296 C, 0,1.8519272203,2.8181184877,-0.6002885533 C, 0, 4.0814208239,3.4662762837,0.0240906404 C, 0, 2. 6885427217, 4.0503059224,-0.2492325214 C, 0, 2.438034617,-0.4037138193,-1. 5953712973 C, 0, 3.961574692,-0.4316991602,-1.8281627979 C, 0,1.9117983336,-1.7747973252,-2.1265113869 C, 0, 4.1117956548,-1.3154951955,-3.071319454 C, 0, 3.1197204145,-2.4526123519,-2.8089713768 C, 0, 2. $7565943015,-0.9857645232,1.3083534903$ C, 0, 2. $4354671663,-2.4950725436,1.2919231411$ C, 0, 2. $5656422963,-0.6113011966,2.7861114679$ C, 0, 2. $8660110292,-3.0281515774,2.684797013$ C, 0, 3.230181443,-1.7819935471,3.5207312113 H, 0, 1. $7882200049,2.0238155074,1.3837258611$ H, 0, 4.465353172,1.3172223083,0.1981666124 H, 0, 4.0676126439,2.0729256055,1.7272157055 H, 0, 0. $7723034851,2.9859178801,-0.5849796624$ H, 0, 2. $1155688929,2.4838455328,-1.6121751131$ H, 0, 4.696778639,4.1099394187,0.6600707526 H, 0, 4. $6196448525,3.349705971,-0.9240511512$ H, 0, 2. $2878507798,4.5246975054,0.6559653905$ H, 0, 2. $6900469194,4.8073948241,-1.0396086325$ H, 0,2.0060659593,0.3733286968,-2.2359952126 H, 0, 4.4861102591,-0.9042556938, -0.9879783708 H, 0, 4.3853452326,0.5685715995,-1.9590464253 H, 0,1.0945973433,-1.5934452537,-2.828351262 H, 0, 1. $5025130768,-2.4107173085,-1.3348460425$ H, 0, 3. $8148924489,-0.7518433882,-3.965200745$ H, 0, 5.1379465161,-1.6635181881,-3.2289361687 H, 0, 2. $8374743665,-2.9940874823,-3.7170742248$ H, 0, 3. $5784634723,-3.1833705316,-2.1310038325$ H, 0, 3.8159676804,-0.8405508878,1.0590919956 H, 0, 2. $9371579973,-3.0164699386,0.471623502$ H, 0,1.3563072816,-2.6405995573,1.1521514118 H, 0,1.4971002698,-0.5801491765,3.0292995848 н, 0, 2. $9963844693,0.359093278,3.0502346222$ H, 0, 2. $0458265605,-3.585281193,3.1481917472$ H, 0, 3.7107945779,-3.7194104733,2.609683755 H, 0, 2. $9079767942,-1.8614628652,4.5633793998$ H, 0, 4.3169131204,-1.6353073054,3.530406598 C, 0, -1.2339525222,1.2667316689,-2.2539090553 $0,0,-0.7519733271,0.1076928373,-2.3035756998$ $0,0,-1.508715094,1.891349804,-3.4212617613$ $0,0,-1.4993011226,1.9538247691,-1.2178631818$ H, 0, -1. $2807512759,1.2556931979,-4.114002805$ C, 0, -1. $6035148265,2.4844098711,1.6430292105$ H, 0, -0. $536753156,2.6356017406,1.8351594892$ H, 0, -1. $8862905369,3.1240016339,0.8060814377$ H, 0, -2. $1460566521,2.8182304458,2.5399470681$ C, 0, -1. $3734021857,0.2464266619,2.6561632751$ H, 0, -1. $5900876976,-0.8253610253,2.6394012982$ H, 0, -0. $2972783429,0.380698119,2.7787269531$
H, 0, -1. $8534866152,0.6668710376,3.5526074173$ C, 0, -4.1632438816,1.7128914807,0.3000367476

H, 0, -5.2020207729,1.3970887607,0.1735169814
H, 0, -4.163073454,2.710113271,0.7471653306
H, 0, -3. $6826240727,1.7657733381,-0.676827749$ C, 0, -4.1081692334,0.7594768364,2.5143500843 $\mathrm{N}, 0,-4.6642650021,0.8411048605,3.5319521924$

TSCH-d'

Sum of PCM and thermal Free Energies $=\mathbf{- 1 8 4 0 , 8 6 0 3 1 2}$
C, 0, -2.317949572,-2.2180878624,-1.6209477786 C, 0, -3.5595402612,-2.812384781,-1.8542608955
C, 0, -4. $6889202745,-2.3454920258,-1.1813448613$
C, 0, -4.5786868142,-1.296498413,-0.271475132
C, 0, -3. $3357225762,-0.7109956312,-0.0067265367$
C, 0,-2.2051139864,-1.1899675288,-0.6846149324
C, 0, -3.146913704,0.4363030665,0.9789081463
C, 0, -1. $6352454979,0.7861605467,1.014517508$
Pd, 0, -0.3934977194,-0.5325729446,-0.2874324536
H, 0, -1. $4431430457,-2.5467884807,-2.1802098046$
H, 0, -3. $6468817321,-3.6197788553,-2.576859115$
H, 0, $-5.6612519996,-2.7884568402,-1.3779751788$
H, 0, -5.4699610899, -0.9196715976,0.2253134393
H, 0,-1.2917288471,1.2246498492,-0.2694642738
P, 0,1.9129616923,0.0119632138,0.2701683389 C, 0, 2. $2165851388,1.749755841,0.8979418686$ C, 0, 3. $5957944788,2.1090533469,1.4830772136$ C, 0,1.9636209,2.8662621385,-0.1271124383 C, 0, 3.6395246672,3.6605411101,1.4736403749 C, 0, 2. 426221514, 4.1190930246,0.6275533802 C, 0, 3. $0129177045,-0.2398363728,-1.2246629056$ C, 0, 4. 5388014163,-0.3586894493,-1.0662821847 C, 0, 2. $5953769962,-1.4955669629,-2.0453717023$ C, 0, 4.9699057376,-0.9811404502,-2.3986780836 C, 0, 3. $9029209563,-2.0535223162,-2.6605852969$ C, 0, 2. 618559292,-1.0594034168,1.6305393468 C, 0, 2.451714179,-2.5712684459,1.4005892916 C, 0,1.9223799898,-0.8578111965,2.9861052618 C, 0,2.614575351,-3.2086828666,2.8009379057 C, 0, 2. $3995703486,-2.0595002482,3.8180249556$ H, 0,1.4642509774,1.8583669471,1.6934794709 H, 0, 4.3911383887,1.7077714142,0.8476302313 H, 0, 3.7479567437,1.6904515295,2.4825755254 H, 0, 0.9254279132,2.9177218097,-0.4661675292 н, 0, 2. $5960707376,2.7135836569,-1.0117941549$ н, 0, 3. $5902904319,4.0680648641,2.488082452$ H, 0, 4. $5815440777,4.0136268444,1.0421427557$ H, 0, 1. 6179615148, 4.4663241933,1.2814339376 H, 0, 2. 6682379057, 4.9476810356,-0.0444574797 H, 0, 2. $7997968465,0.6414849544,-1.84194655$ H, 0, 4.7986879526,-1.0364458286,-0.2431712405 H, 0,5.0255926988,0.6008658756,-0.8693941018 H, 0,1.8588449908,-1.2116834385,-2. 800600867 H, 0, 2. $1164140451,-2.2532782508,-1.4155003657$ H, 0, 4.9416720357,-0.2165089162,-3.1854369328 H, 0, 5.9874264011,-1.3847356911,-2.374494079 H, 0, 3.795837253,-2.2873155232,-3.7240098695 H, 0, 4.1882937895,-2.9857130319,-2.1591133809 H, 0, 3. $6843282042,-0.8188510622,1.7401751817$ H, 0, 3. $1576503705,-2.9747542148,0.6685061982$ H, 0,1.4406605924,-2.7647980688,1.0164918082

H, 0, 0.834760795,-0.9056185112,2.8427043385 H, 0, 2. 1512343909, 0.1028244579,3.4571216329 H, 0, 1. $8965439603,-4.02152204,2.9450195858$ H, 0, 3. 6108203929,-3.6471226646,2.9164877354 H, 0, 1. 68743883,-2.3217572958,4.6061419873 H, 0, 3. $3440946562,-1.8110790414,4.3146408872$ C, 0,-0.827706811,1.4110321615,-2.3954565894 $0,0,-0.2799483718,0.2770161657,-2.4702928683$ $0,0,-0.9819009214,2.1060072016,-3.5421333696$ $0,0,-1.2475437338,2.0058183716,-1.3571462575$ H, 0, -0. $6448024045,1.5291538235,-4.2417481624$ H, 0, -1.4305117774,1.8032736582,1.3675179031 H, 0, -1. $1546706204,0.1390398517,1.7648461646$ C, 0, -3. $9148479654,1.5964483031,0.4893099221$ $\mathrm{N}, 0,-4.5658598947,2.4978319609,0.1517711071$ C, 0, -3.7248582318, 0.0875331196,2.4033961659 C, 0, -3. $574204395,1.2470039845,3.390172551$ C, 0, -3.1352989293,-1.2017583314,2.9786864138 H, 0, -4. $7996121352,-0.081049225,2.2528382768$ H, 0, -4.013077698,2.1701889821,3.0008101892 H, 0, $-4.0776309992,1.0063438871,4.3321348981$ H, 0, -2. $5207236954,1.4402627327,3.6212566637$ H, 0, -3.2348536589,-2.0422004134,2.2866306971 H, 0, -2.0747228961,-1.0894385736,3.2306801137 H, 0, -3.6573623991,-1.4623115046,3.9052424466

Cyc-a'

Sum of PCM and thermal Free Energies $=-1576,020736$

C, 0, -4.4134581617,-2.8647635021,-0.928643321 C, 0, -4.5734776453,-1.5659348919,-0.4477452525 C, 0, -3.4633916472,-0.7766255694,-0.1286527079 C, 0, -2.1700165236,-1.2867876317,-0.2947459405 C, 0, -2.0277120926,-2.5958770174,-0.7798052929 C, 0,-3.1342132015,-3.3867201533,-1.0976232784 C, 0, -3. 6339232915, 0.674466617,0.3359464357 C, 0, -2. $5876519668,1.0471173976,1.4321757692$ C, 0, -1.1641883925,1.1112216366,0.9050573858 H, 0, -5. $2880672832,-3.4648189643,-1.1645611132$ H, 0, -5. $5757978899,-1.1656983964,-0.3139441914$ H, 0, -1. $030360602,-3.0263793712,-0.9060332244$ H, 0, -2. $9954702139,-4.4012219903,-1.4635803539$ H, 0, -2. $844936122,2.0771324725,1.7344969589$ H, 0, -0. $479556606,1.2778210069,1.745054937$ H, 0, -1.0322566336,1.9256179876,0.1833634348 $\mathrm{Pd}, 0,-0.3605553648,-0.4802627755,-0.0665204295$ C, 0, $-4.9717314008,0.8840578237,0.9182373759$ N, 0, - $6.0226584287,1.0903764811,1.3693941286$ C, 0, -3.5261448986,1.61642658,-0.8875834185 H, 0, -2. $5777781451,1.4359517424,-1.3991710157$ C, 0, $-2.7058876868,0.1618438179,2.6734793709$ H, 0, -2. $4254773736,-0.8697594689,2.4411228498$ H, 0, -2.0372878615,0.5280525801,3.4599790873 H, 0, -3. $7246197618,0.163853428,3.0730077811$ P, 0, 1. $9633709228,0.1605866455,-0.0007385326$ C, 0, 2. $3204962753,1.9980582725,0.0525087576$ C, 0,2.8658203447,-0.4871614418,-1.518437947 C, $0,2.9048440534,-0.4807958741,1.4822680676$ C, 0, 3.783108064,2.4593360648, 0.2483116978

C, 0,1.835081639,2.7969110391,-1.1679648223
H, 0,1.7283413145,2.3391378654,0.9133687137 C, 0, 4. $4077150278,-0.6811857256,-1.5031357095$ C, 0,2.2967559366,-1.837348323,-2.0025547591 H, 0, 2. 6173463296,0.2529679378,-2.2895896213 C, 0, 2. $8342324873,-2.0095095963,1.6546687224$ C, 0, 2. 3532293863, 0.0350789937,2.8212889916 H, 0, 3. $9534995913,-0.1674042169,1.392277582$ C, 0, 3. $8607257062,3.8778208312,-0.3812808894$ H, 0, 4.4781662015,1.7838743882,-0.2594727689 H, 0, 4.062159918,2.4589898119,1.3061990491 C, 0, 2. $4486246754,4.1789514853,-0.9210216286$ H, 0, 0. $745789064,2.8111859471,-1.2643883937$ H, 0, 2. $2425259014,2.373705884,-2.0957188795$ C, 0, 4. 6775578845,-1.9909814578,-2.287493984 H, 0, 4.8128673312, -0.7521856011,-0.4896936996 H, 0, 4.901134852,0.1747053189,-1.9745201508 C, 0, 3.3563527083,-2.3235836432,-2.9937237847 H, 0,1.299834161,-1.7313305855,-2.4440843452 H, 0, 2. $2169564923,-2.5486316729,-1.1702451226$ C, 0, 3.1112882006,-2.2669163455,3.1589165172 H, 0, 3. $5348077869,-2.5392388354,1.0019083084$ H, 0,1.8247635062,-2.3553233836,1.3966590944 C, 0, 3. $0235945612,-0.8862657237,3.8503115473$ H, 0, 1. $2644678947,-0.1013857898,2.844075472$ H, 0, 2. $5614127489,1.0949341579,2.9998714736$ H, 0, 4. 1911102633, 4.6318198328, 0.3393250813 H, 0, 4.5891540975,3.8860514015,-1.1990606158 H, 0,1.8568332743,4.7070761918,-0.1633072844 H, 0, 2. $4613581568,4.8083089797,-1.8162132946$ H, 0, 5.5179612236,-1.8964138907,-2.9818287927 H, 0, 4.9315226643,-2.7979706493,-1.590294972 H, 0, 3. $2712067094,-1.757916276,-3.9304327096$ H, 0, 3. $2597795481,-3.3849487114,-3.2425666568$ H, 0, 2. $3756852579,-2.9656146875,3.5687681464$ H, 0, 4.0947336299,-2.7220807592,3.3115364785 H, 0, 2. $4755226288,-0.9211767471,4.7966350677$ H, 0, 4.0285774069,-0.5111860558,4.0768421884 H, 0, -4.3372364162,1.4155844424,-1.5921437359 H, 0, -3. $5822917366,2.6668249425,-0.5819436815$

Cyc-b'

Sum of PCM and Gibbs free energy $=-1576,019842$

C, 0,-4.3098804655,-3.1999170415,-0.3856075755 C, 0, -4. $5083104915,-1.8453793886,-0.1227800203$ C, 0, -3.4241503698,-0.9888376148, 0.0996360895 C, 0, -2.117065642,-1.489922041,0.0432298194 C, 0,-1.9356640411,-2.8576415781,-0.2155924151 C, 0, -3.0172186194,-3.7140206244,-0.4310427596 C, 0, -3. $6375933109,0.5102557706,0.3547227344$ C, 0, -2. $6466914896,1.0027149385,1.4602071961$ C, 0, -1.1939545432,1.0109468937,1.008828959 H, 0, -5.1662277914,-3.8492645566, -0. 5460451966 H, 0, -5. $5219716507,-1.4540733769,-0.0811796965$ H, 0, -0. $9270280549,-3.2780551214,-0.242580129$ H, 0, -2. $8494140685,-4.7712613356,-0.6221646598$ H, 0, -0. $5531170293,1.1666328151,1.8848966496$ H, 0, -1.0098096267,1.8281723498,0.2987095818

Pd, 0,-0.3461402117,-0.5857253394,0.0964826259
C, 0, -5.0102525433,0.7401383781,0.838476251
N, 0, - $6.0933258215,0.9446676044,1.2070041126$
C, 0, -3.4801847523,1.2846929743,-0.9751871143
H, 0, -2.4890205799,1.082217638,-1.3885401234 P, 0, 1. $9496225373,0.1593979482,-0.039528884$ C, 0,2.2190385234,2.0047477711,-0.1929825612 C, 0, 2. $7846904005,-0.6037290968,-1.5435143181$ C, 0,3.0123229298,-0.2943688077,1.4311037212 C, 0, 3. $6604559588,2.5466976984,-0.2139369048$ C, 0,1.5790835525,2.654752886,-1.4294809044 H, 0, 1. $7031445971,2.4067416673,0.6911537832$ C, 0, 4.3307039448, -0.7612821554,-1.5955149841 C, 0, 2. $2263818521,-2.0068604159,-1.863655821$ H, 0, 2. $4746479509,0.0554855686,-2.3641074493$ C, 0, 3. $0032026874,-1.7978471026,1.7619008983$ C, 0, 2. $5374922844,0.3427243665,2.7468990404$ H, 0, 4.0414841572,0.0346351904,1.2349453351 C, 0, 3. 5478336655, 3.9718504531,-0.8188458252 H, 0, 4.2896181303,1.9176969793,-0.8523511891 H, 0, 4. 1184357823, 2. 5485919736,0.7797272437 C, 0, 2. $1033618474,4.0947972914,-1.360766176$ H, 0, 0.4877502517,2.5854228965,-1.434614982 H, 0, 1. $9417780181,2.170314623,-2.345736262$ C, 0, 4.5941664147,-2.1470778751,-2.236695669 H, 0, 4.7936133181,-0.6998797632,-0.6066418302 H, 0, 4.7717477158,0.0425106433,-2.1935755572 C, 0, 3. $2527487279,-2.5742217052,-2.8466040588$ H, 0, 1. $2085297844,-1.9643407791,-2.2665724857$ H, 0, 2. $1989370086,-2.6312127379,-0.9608720923$ C, 0, 3. $4026015236,-1.8910277402,3.2571431878$ H, 0, 3. 6666107358, -2.3765745174,1.1118609648 H, 0,1.9870454092,-2.1889136271,1.6210910913 C, 0, 3. $3040942801,-0.4512095054,3.8147479821$ H, 0,1.4575008166,0.1837163252,2.8602706461 H, 0, 2. $7241005211,1.4200341773,2.8021965459$ H, 0, 3. $7558573651,4.7433886674,-0.0713663508$ H, 0, 4. $2829772027,4.1069563337,-1.6185082679$ H, 0,1.4855650556, 4.6718519843,-0.6628387865 H, 0, 2. $0559778814,4.6075382818,-2.3262478038$ H, 0, 5. $4059386527,-2.1204277987,-2.969996217$ H, 0, 4.8885790532,-2.8666669716,-1.4636315004 H, 0, 3.1161084545,-2.1097022952,-3.8316319959 H, 0, 3.1688109577,-3.6571284141,-2.9808469882 H, 0, 2. $7336833257,-2.5732294162,3.7904062841$ H, 0, 4.4151075104,-2.2892925466,3.3750863573 H, 0, 2. $8161357528,-0.4091634848,4.7931401417$ H, 0, 4. $3058904107,-0.023786464,3.9395031719$ C, 0, -2.9986593758,2.3977552037,2.0025510236 H, 0, $-2.3046753958,2.6713747378,2.8040796649$ H, 0, -2.9201119776,3.1662080401,1.2252691383 H, 0, $-4.0127279432,2.4307489162,2.4115844836$ H, 0, $-2.7486340485,0.2864261079,2.2852586826$ H, 0, -4. $2279398601,0.9462474874,-1.6969458082$ H, 0, -3. $6031636357,2.3625067666,-0.8325227738$

Cyc-c'

Sum of PCM and Gibbs free energy $=-1576,016849$

C, 0,-2.4097969061,-2.7081409487,-0.9018619157
C, 0,-3.6851078939,-3.2484879816,-1.0991464722 C, 0, -4.820979676,-2.5023642205,-0.7881128522 C, 0, -4.6899219503,-1.206648963,-0.2839625591
C, 0,-3.4159354247,-0.6749713322,-0.0971166329
C, $0,-2.2588282246,-1.4107275026,-0.3988523464$ C, 0, -3.0989025861,0.7314405376,0.3705098962 C, 0, -1. $7110152514,0.6431036891,1.1118993922$ $\mathrm{Pd}, 0,-0.4882715772,-0.5472278979,-0.0572379298$ H, 0,-1.5357777054,-3.3147173773,-1.1371185662 H, 0, -3. $7899392349,-4.2584496495,-1.489188803$ H, 0, -5. $8098822538,-2.9292414778,-0.9328836006$ H, 0, -5. $5740692299,-0.6255769689,-0.0304426072$ P,0,1.8557192821,0.1161833333,0.0303294994 C, 0, 2. $3551596811,1.888346475,-0.3084566716$ C, 0, 3. 8520031023, 2.2291490006,-0.4478142509 C, 0,1.7282165097,2.4931904412,-1.5739682742 C, 0, 3. $8959489894,3.5662740476,-1.2369828231$ C, 0, 2. $4439476978,3.8444194892,-1.689291321$ C, 0, 2. 6271407395,-0.8847931831,-1.3685056539 C, 0, 4. $0588413214,-1.4306739124,-1.2639393265$ C, 0, 1.7892199783,-2.1440668875,-1.6900155844 C, 0, 4.1261376985,-2.4164924255,-2.43827678 C, 0, 2. $7366374749,-3.0910242479,-2.4735225314$ C, 0, 2. $8450265774,-0.3317286834,1.5558838367$ C, 0, 2. $5236293271,-1.736629264,2.1021359385$ C, 0, 2. 5716140854,0.5710429495,2.7686656498 C, 0,2.9330113293,-1.7021061766,3.5977571784 C, 0, 3. $1940565295,-0.2144680013,3.9311661377$ H, 0,1.9457852618,2.4363669597,0.5515755834 H, 0, 4.3673379291,1.4467127763,-1.0138670218 H, 0, 4.3511512954,2.2969066036,0.523553412 H, 0, 0. $6395204781,2.5774729413,-1.5133446867$ H, 0, 1.9571079217,1.8722386553,-2.450282113 H, 0, 4. $2863796785,4.3853304346,-0.6255163099$ H, 0, 4. $5635046489,3.4758169197,-2.0999115074$ H, 0,1.9682475638, 4. $5632703359,-1.0117020464$ H, 0, 2. $3885388178,4.269386078,-2.6960459575$ H, 0, 2. $5827124204,-0.2154617414,-2.2385302962$ H, 0, 4. $1954650617,-1.9694055179,-0.3187583048$ H, 0, 4.8302534483,-0.6568055782,-1.314752222 H, 0, 0. $8837076347,-1.8893428663,-2.2530902132$ H, 0, 1. $4623042181,-2.6272963329,-0.7601098123$ H, 0, 4. $2994022268,-1.8608808166,-3.3676891764$ H, 0, 4.9443232238,-3.1367017054,-2.339024671 H, 0, 2. $3948849246,-3.2495949688,-3.5003783732$ H, 0, 2. $7690690119,-4.0762588894,-1.9979691372$ H, 0, 3. $9118075456,-0.2641780057,1.3034519501$ H, 0, 3. $0293362202,-2.5329342086,1.5472212294$ H, 0,1.4452174443,-1.9179853218,2.0079048613 H, 0, 1.489085941,0.6707998766,2.9200378393 н, 0, 2. $9866602011,1.5785930155,2.6657659795$ H, 0, 2. $135607032,-2.1169341773,4.221822641$ H, 0, 3. $8239112564,-2.3094552614,3.7844515651$ H, 0, 2. $7847089991,0.0814400818,4.9017595215$ H, 0, 4. $2721234761,-0.0178779693,3.9661926709$ C, 0, -1.0729416066,2.0104461189,1.3039041434 H, 0, -0.1695048585,1.9348341949,1.915610769 H, 0, -0. $8093330335,2.4966114269,0.3619015784$ H, 0, -1. $7703138496,2.6746846891,1.8393267761$ C, 0, -1. $8436150628,-0.0694094499,2.4582522023$

H, 0, -2.3753663363,-1.0189830041,2.3685676935 H, 0, -0. $8583518531,-0.2715549632,2.889415156$ H, 0, -2. $3926950302,0.5651836507,3.1705433393$ C, 0, -3.062073325,1.6672347895,-0.8608861554 H, 0, -2.2638327571,1.3284558617,-1.5283223121 C,0,-4.1195019237,1.2624651582,1.292102864 $\mathrm{N}, 0,-4.9148132067,1.7043262883,2.0160173504$ H, 0, -2.8860343073, 2. $7088204151,-0.5785209915$ H, 0, -4. $0130166004,1.6119540548,-1.3973541944$

Cyc-d'

Sum of PCM and Gibbs free energy $=-1840,926071$
C, 0, -2. $6609555251,-2.8438221187,-0.627034798$
C, 0, -3.9820248015,-3.2466537943,-0.8405245305 C, 0, -5.0288200993,-2.3474084235,-0.6396387196 C, 0, -4. $7599540299,-1.0448197103,-0.217533093$ C, 0, -3.4406018513,-0.6500804797,0.006012431 C, 0, -2. $3717154033,-1.5371923817,-0.2142950102$ C, 0, -2.9945129061,0.7365525933,0.4560593018 C, 0,-1. $5635726387,0.5547051491,1.0242616179$ $\mathrm{Pd}, 0,-0.5121321429,-0.8266713529,-0.0148134541$ H, 0, -1. $856292691,-3.5605255936,-0.7905285534$ H, 0, -4.1943027609,-4.262811484,-1.1651849752 H, 0, - $6.0557208051,-2.6593079656,-0.8108231245$ H, 0, -5.5826534411,-0.3491515956, -0.0675061947 P, 0,1.7349334668,0.0178660605,0.0808067678 C, 0,1.8909638221,1.8544674978,-0.2224641497 C, 0, 3.2851069631,2.4926889719,-0.294992032 C, 0, 1. $2134002081,2.3341465155,-1.52082117$ C, 0,2.9829402553,3.9128396817,-0.7973360752 C, 0,1.7753746588,3.7589319002,-1.7555466092 C, 0, 2. $8077612028,-0.7961068492,-1.2323520688$ C, 0, 4.3127574809,-0.9889785377,-0.99306945 C, 0, 2. $3147468306,-2.2164750104,-1.5982920682$ C, 0, 4.7110469146,-1.9392487778,-2.1286088356 C, 0, 3. $533498693,-2.9316653399,-2.2408882636$ C, 0,2.6319135111,-0.2473076466,1.7014785285 C, 0,2.5318078731,-1.6948772447,2.2200053599 C, 0, 2. $0457476532,0.568330266,2.864950484$ C, 0, 2. $7583447208,-1.6022610771,3.7506598717$ C, 0,2.6568186968,-0.1000184337,4.1052300805 H, 0, 1.3530835198,2.3002453476,0.6269097647 H, 0, 3. $9008816875,1.9600841625,-1.0300606019$ H, 0, 3. $8239797449,2.4806696269,0.6578253538$ H, 0, 0. $1226863043,2.3069165091,-1.4592770515$ H, 0,1.4950687952,1.6819922721,-2.3568435964 н, 0, 2. $7119808512,4.549142728,0.0532344923$ H, 0, 3. $8491965699,4.3789021569,-1.2772892921$ H, 0,1.0150971867,4.5188033079,-1.5525628322 H, 0, 2. $073925336,3.8895293871,-2.8001507422$ H, 0, 2. $6842254705,-0.1550361293,-2.1158977767$ H, 0, 4.4876539883,-1.4745977492,-0.0251360731 H, 0, 4. $8793936029,-0.0534392799,-0.9974665957$ H, 0, 1.4480678214,-2.1775204837,-2.2667091531 H, 0,1.996300065,-2. $7538875445,-0.6965695692$ H, 0, 4.814192727,-1.3685821998,-3.0594480425 H, 0, 5. $6694214192,-2.4368277612,-1.9495976274$ H, 0, 3.341285,-3.2110937276,-3.2808384169

H, 0, 3.7564026091,-3.8588058931,-1.7031377622
H, 0, 3. 6860209082,0.0307089427,1.56891751
H, 0, 3. $2400929627,-2.3703693057,1.7302457918$
H, 0,1.5240469647,-2.07728513,2.0110441636
H, 0, 0.9532335888,0.4605624301,2.8750619855
H, 0, 2. $2738641778,1.6371298146,2.8045719528$
H, 0,2.0069194487,-2.1913164091,4.2853103821
H, 0,3.7342133804,-2.0075119377,4.0357001454
H, 0, 2. $0673601811,0.0829151035,5.0088106295$
H, 0, 3. $6554503308,0.3139118794,4.2873390398$
H, 0, -1. $000463875,1.4916907277,1.0307712363$
H, 0,-1.6168551897,0.1456686596,2.0383625126
C, 0, -2. $8982049284,1.583275661,-0.7480204175$ $\mathrm{N}, 0,-2.8180109923,2.2668811149,-1.6856265938$ C, 0, -3.9704688501,1.4426486355,1.4619440559
C, 0, -3. $5033606931,2.8511008926,1.8389291322$ C, 0, $-4.2277582146,0.6029470841,2.715590806$ H, 0,-4.9244501795,1.5475832986,0.9268692844 H, 0, -3.3356000219, 3.4740950484,0.9552678363 H, 0, -4. $2586202977,3.3446377356,2.459208634$ H, 0, -2. $5735965787,2.8205909919,2.418005275$ H, 0, -4.5352100647,-0.4167211286,2.4701758423 H, 0, -3.338741298,0.545714015,3.3526925033
H, 0, -5.0225749933,1.063562607,3.3116914073

TSCC-a'

Sum of PCM and Gibbs free energy $=-1575,999501$

C, 0,3.2092719061,-3.1880933141,1.0199051042 C, 0, 3.6101805246,-1.8543615902,1.089282461 C, 0,2.9614035523,-0.881420932,0.3276043751 C, 0,1.8689793731,-1.231829746,-0. 4830708504 C, 0, 1. $5216954794,-2.5869445708,-0.6054473806$ C, 0,2.1773625384,-3.5543607738,0.1580874035 C, 0, 3.4122660621,0.5706284239,0.2353563847 C, 0, 3. $358454063,0.933901773,-1.2993787273$ C, 0, 2. $2048263957,0.1786026153,-1.9745695737$ H, 0, 3. $7249991708,-3.9398225472,1.6105947742$ H, 0, 4.4533954775,-1.5718401258,1.7148615884 H, 0, 0.7337458129,-2.8883993371,-1.2893884561 H, 0,1.8835389923,-4.5974791982,0.0689361874 H, 0, 3. $1591899807,2.0111676109,-1.3574779608$ H, 0, 2. $5653305225,-0.6252602,-2.6179724814$ H, 0,1.5990128271,0.8545227292,-2.6121795386 $\mathrm{Pd}, 0,0.3447373303,0.007154818,-0.9909694653$ C, 0, 4.7694002334,0.741757578,0.7716072119 $\mathrm{N}, 0,5.8260499874,0.9043654216,1.227233016$ C,0,2.4948406619,1.5071299258,1.0536935217 H, 0,1.4735798079,1.4340257973,0.6547403525 C, 0, 4. 6713719018, 0.6413141404, -2.0304423008 H, 0, 4.9401549042,-0.4167270504,-1.9328821351 H, 0, 4.5610857784,0.862873778,-3.0970158684 H, 0,5.5017245042,1.2385132151,-1. 6434466622

```
P,0,-1.8970707574,0.2704342551,-0.268608861
C,0,-2.588159624,1.9405487331,-0.7717725056
C,0,-2.1490470368,0.1762060517,1.5922260896
C,0,-3.1254312721,-0.9103602417,-1.040045541
C,0,-3.9997820765,2.3504931177,-0.3269774571
C,0,-1.6990235878,3.1300473503,-0.3413811926
H,0,-2.5827719441,1.8934770334,-1.8698700469
C,0,-3.57060178,-0.0902500827,2.1711756057
C,0,-1.2362551541,-0.8784909641,2.2550854989
H,0,-1.8128487061,1.1622623605,1.9392506844
C,0,-2.874704473,-2.3919678812,-0.7203921898
C,0,-3.0945367839,-0.8475169959,-2.5869848839
H,0,-4.130506591,-0.6414199701,-0.6912831716
C,0,-4.0395483094,3.8402145025,-0.6866203085
H,0,-4.1116219591,2.2263947568,0.7567762753
H,0,-4.7923237941,1.7697513825,-0.809555959
C,0,-2.6416382286,4.3634583484,-0.2990558181
H,0,-0.8574083734,3.2594345963,-1.0281682756
H,0,-1.2622093332,2.9542487112,0.6484189772
C,0,-3.379902825,-1.135755394,3.2953510634
H,0,-4.2793478462,-0.4474826908,1.4191345347
H,0,-3.9906468494,0.8378514586,2.5722011067
C,0,-1.8833862064,-1.0939851854,3.6238982882
H,0,-0.1938741206,-0.5528847001,2.296554649
H,0,-1.2499687946,-1.816822105,1.6875908573
C,0,-3.6712175944,-3.1165165972,-1.8102275336
H,0,-3.1787255942,-2.6698069681,0.293734543
H,0,-1.8043229835,-2.6153483526,-0.8192258819
C,0,-3.4080732764,-2.2867089713,-3.0791442885
H,0,-2.0998134247,-0.5384877643,-2.9330688218
H,0,-3.810390795,-0.1130174267,-2.968944116
H,0,-4.1990886594,3.9492116393,-1.7665083318
H,0,-4.8495739858,4.3803860291,-0.186079669
H,0,-2.306274115,5.1609595567,-0.9688141358
H,0,-2.6610130646,4.7895123007,0.7095992022
H,0,-4.0185470486,-0.9384830548,4.1621259869
H,0,-3.643063689,-2.1346874583,2.9269149279
H,0,-1.6627010478,-0.2419067462,4.2804619907
H,0,-1.5291737993,-1.9976296862,4.1299417667
H,0,-3.3855492213,-4.1673437767,-1.9217451855
H,0,-4.7387623935,-3.0965338145,-1.556904676
H,0,-2.5469753343,-2.6909761735,-3.6218405088
H,0,-4.2559051351,-2.3112543279,-3.7704562564
H,0,2.838239683,2.5440947067,0.981939477
H,0,2.4821595478,1.2108967278,2.106281131
```


TSCC-b'

Sum of PCM and Gibbs free energy $=-1575,999616$

C, 0,3.1087902355,-3.5067767592,0.4143918528
C, 0, 3. 5831694865,-2.2196174978,0.6668443375 C, 0,2.9697891901,-1.1144257472,0.0768618287 C,0,1.8387147801,-1.2852882992,-0.7386254314 C,0,1.4159566501,-2.5868579184,-1.0489282034 C, 0, 2. $0393289276,-3.6891100724,-0.459724423$ C, 0,3.51134397,0.3071373237,0.1603598675 C, 0, 3.4703210934,0.809829184,-1.3297904051 C, 0, 2.1722392521,0.3586782019,-2.0127837217 H, 0, 3. $5978353925,-4.3628848931,0.870376572$

H, 0, 4.4573479996,-2.0755513397,1.2972289561 H, 0, 0. $5933696253,-2.7423422795,-1.7406392633$ H, 0, 1. $6893445475,-4.6917000132,-0.6935563956$ H, 0, 2. 351326133,-0.2893198557,-2.8705414778 H,0,1.5882989652,1.2319181217,-2.373024396 $\mathrm{Pd}, 0,0.3606074173,0.0851591045,-0.9626631043$ C, 0, 4.9081768897,0.322014217,0.6172833474 $\mathrm{N}, 0,6.0110423528,0.3640117889,0.9812495449$ C, 0, 2. 6935044923,1.1773034085,1.136601984 H, 0,1.6541567847,1.2233764334,0.7826986819 P, 0, -1. $8722908201,0.3014020904,-0.1972636239$ C, 0, -2. $5927166445,1.9518348322,-0.7254782138$ C, 0, -2.1139827135,0.2324074799,1.6651047192 C, 0, -3.0873434322,-0.9076275775,-0.9476885573 C, 0, -4.013369099,2.3437390596,-0.2896981493 C, 0, -1. $7197769777,3.1639310345,-0.3172826184$ H, 0, -2. $58677689,1.8861604929,-1.8223209112$ C, 0, -3. $5313372427,-0.0295479819,2.2556534856$ C, 0, -1.1954301774,-0.8123963134,2.3358885023 H, 0, -1. $7782424874,1.2241745371,1.9961892288$ C, 0, -2. $8394494568,-2.3808767888,-0.5838800739$ C, 0, -3. $0449636669,-0.8737136206,-2.4995216028$ H, 0, -4.095177179,-0.6310455479,-0.6140937841 C, 0, $-4.0701681371,3.831029933,-0.6540268324$ H, 0, -4.1323037096,2.2228319648,0.793438228 H, 0, -4.7937916011,1.7501581965,-0.776482671 C, 0, -2. $6919714398,4.3714527217,-0.2294445755$ H, 0, -0.91389477,3.3221602505,-1.0400118269 H, 0,-1. $2335850692,2.9950379558,0.6503760251$ C, 0, -3.3316695893,-1.055547862,3.3961854858 H, 0, -4. $2418405095,-0.4013748823,1.5123839397$ H, 0, -3.9529362023, 0.9037727601,2.6427979246 C, 0,-1.8324311688,-1.009411555,3.7122985131 H, 0, -0. $1530108588,-0.48514079,2.3669023582$ H, 0, -1. $2134676322,-1.7583778185,1.7812533573$ C, 0,-3.5683302903,-3.1381145114,-1.6980524153 H, 0, -3.1962273138, -2.6385473823, 0.4183916062
H, 0, -1. $7649262211,-2.6015284686,-0.6210657455$ C, 0, -3.2135867613,-2.3440795692,-2.9636119465 H, 0,-2.0879733119,-0.4699069661,-2. 8535784464 H, 0, -3. $8335474648,-0.2259956192,-2.8954143151$ H, 0, -4. $201573069,3.9352723744,-1.7384331398$ H, 0, -4. $9009911232,4.3598759649,-0.1758288617$ H, 0, -2. $368887978,5.2096995241,-0.8539456448$ H, 0, -2.7359627639, 4.7452497915,0.7992520822 H, 0, -3. $9627859074,-0.8426395879,4.2647313498$ H, 0, -3. $5986191386,-2.0604953843,3.0476363305$ H, 0,-1. $6065314559,-0.1486293013,4.3556449983$ H, 0, -1. $4746646004,-1.9062092384,4.2279641058$ H, 0, -3. $2799442447,-4.1924433863,-1.7596945461$ H, 0, -4. $6507438223,-3.1063805799,-1.5183770462$ H, 0, -2. $2688325892,-2.7128813857,-3.3781038644$ H, 0, -3. $9670295067,-2.4488012398,-3.7502267915$ C, 0, 3.7186712057,2.3113353707,-1.4714918685 H, 0, 4.6357223379, 2. $6154648564,-0.9551835068$ H, 0, 3. 8282921333, 2. $5774026314,-2.5274802396$ H, 0,2.8850377181,2.8957088464,-1.0676971182 H, 0, 4.299302975,0.2845412174,-1.8202735876 H, 0, 3.0999425773,2.1896758302,1.2095182111 H, 0, 2. $7006420551,0.7267220337,2.1328830716$

TSCC-c'

Sum of PCM and Gibbs free energy $=-1575,969692$
C, 0, -1. $8315984977,-2.668616433,-0.0510883408$ C, 0, -2. $5422887711,-3.4714826276,-0.9528259256$ C, 0, -3. $6124459678,-2.9659614987,-1.6951793309$ C, 0, -4. $0311444044,-1.6401844407,-1.5287524321$ C, 0, -3.2974966801,-0.842283849,-0.6665266687 C, 0, -2.1714684138,-1.3071376729,0.0267676335 C, 0,-3.5185597368,0.5012810996,-0.0135072696 C,0,-2.5994374002,0.1310669763,1.2238117582 $\mathrm{Pd}, 0,-0.4236718399,-0.2921176122,0.2896270332$ H, 0,-1.0392983393,-3.097766355,0.5547417448 H, 0,-2.2643973996,-4.5169960622,-1.0632834999 H, 0, -4.1565311749,-3.6231516181,-2.3678830298 H, 0, -4.9267543321,-1.2710518645,-2.0216983048 P,0,1.8414041143,0.2080985069,0.0889048946 C, 0,2.2385693969,2.0473052802,0.0622137941 C, 0, 3. $7260427771,2.4940434564,-0.0640705163$ C, 0,1.4767214934,2.8031262335,-1.057456928 C, 0, 3. $7947311256,3.3474316723,-1.3405431393$ C, 0,2.3990192823,3.9676468597,-1.4353694726 C,0,2.6085055476,-0.4919974932,-1.4823943484 C,0,4.1325797007,-0.6768437459,-1.5976134273 C,0,2.0183500713,-1.8817810889,-1.8532084832 C, 0, 4.270078317,-1.6161031781,-2. 8007335975 C, 0, 3.1480482555,-2.6441130915,-2.5908142601 C, 0,2.9285748959,-0.4020625886,1.4867001793 C, 0,2.8288514616,-1.9090864757,1.7669420852 C, 0, 2. $5567964359,0.2403596594,2.8422405469$ C, 0, 3.4494358501,-2.040503879,3.16173119 C, 0, 2.9359769667,-0.8046655226,3.9268732329 H, 0,1.8481051342,2.3805606377,1.0305354391 H, 0, 4.4334880711,1.6614865218,-0.0841975446 H, 0, 3. $9935502139,3.1055931806,0.8055044173$ H, 0, 0.4834919884,3.1236993562,-0.7310966398 H, 0,1.3250190534,2.1614441921,-1.9350032624 H, 0,4.6018561994, 4.0865772145,-1.3138971766 H, 0, 3.969963316,2.7070306271,-2.2151149493 H, 0, 2. $3021985815,4.778975507,-0.7020185498$ H, 0, 2. $1742765214,4.3880181936,-2.4209373784$ H, 0, 2. $3015740945,0.2213990348,-2.2585230549$ H, 0, 4.5378072412,-1.1657575357,-0.7027937284 H, 0, 4. 6720815709, 0.2648611525,-1.7327033557 H, 0,1.121588041,-1.7616847259,-2.4673709625 H,0,1.697103991,-2.4273345429,-0.9608030592 H, 0, 4.0989264508,-1.0507542081,-3.7258685733 H, 0, 5.2625255329,-2.0723967951,-2.8787612594 H, 0, 2. $8078704182,-3.087712539,-3.5314459883$ H, 0, 3.5143329993,-3.4684313618,-1.9680552164 H, 0, 3. $9717078288,-0.1582221278,1.246487392$ H, 0, 3. 3303082716,-2.5258944057,1.0140656601 H,0,1.7710383691,-2.20476185,1.7906549832 H, 0,1.4779783399,0.4387622907,2.8705175971 H, 0, 3.0653562296,1.1980628364,2.9893472455 H, 0, 3. 1923134485,-2.9831485752,3.6553842981 H, 0, 4.542982603,-2.008623138,3.0788705525 H, 0, 2. $0560111726,-1.0627379709,4.5252514909$ H, 0, 3.6867199791, $-0.4188984736,4.623360863$

C, 0,-1.9622537118,1.3440689976,1.9180452716 H, 0, -1. $3224869111,1.0345516792,2.7484277738$ H, 0, -1. $3784560302,1.9911887498,1.261068417$ H, 0, -2. $7856775853,1.9441186283,2.3443432829$ C, 0,-3.3291548665,-0.6762258059,2.297529837 H, 0, -3. $9648022644,-1.4604147544,1.8805306673$ H, 0, -2. $5985821611,-1.1489433635,2.9606185699$ H, 0, -3.9566823825,-0.011635052,2.906089226 C,0,-3.0070453543,1.6774259695,-0.8607691821 H, 0, -1.9481667657,1.5052711184,-1.087623773 C, 0, -4.9087684289, 0.7586079694,0.3765126401 $\mathrm{N}, 0,-6.0079447296,0.9813501788,0.6820300701$ H, 0, -3. $1168171332,2.6304788449,-0.3353686566$ H, 0, -3. $5644678902,1.7325055879,-1.7999766617$

TSCC-d'

Sum of PCM and Gibbs free Energy $=-1840,886792$
C, 0, 2. 3110135843,-2.3401374368,0.2483853788 C, 0, 3.2185060299,-2.7171229801,1.2454129863 C, 0, 4.1973615515,-1.8378511597,1.7179106753 C, 0,4.3304777604,-0.5599972042,1.1638503617 C, 0, 3.4202954813,-0.1893811368,0.1857543544 C, 0, 2. $3654991738,-1.0190393255,-0.2255498692$ C, 0, 3. 3505075935,0.9164043576,-0.8509450674 C, 0, 2. $3331242431,0.114060526,-1.720096426$ $\mathrm{Pd}, 0,0.4739723131,-0.3441129356,-0.7059753123$ H, 0,1.5772002334,-3.048942659,-0.1212935247 H, 0, 3.160979355,-3.7208697396,1.6599406366 H, 0, 4.887929214,-2.1672286573,2.4893118299 H, 0, 5.1428340218,0.0966226214,1.4650982749 P, 0, -1.7391958624,-0.2740328789,0.0590515653 C, 0, -2. $0782691273,-1.4632656015,1.4676579344$ C, 0, -3. $4889337649,-1.517426824,2.0765771693$ C, 0,-1.735735224,-2.9390380438,1.1366336399 C, 0, -3.4465209819,-2.8088644957,2.8998430058 C, 0, -2.7135469089,-3.7990805591,1.9800565304 C, 0,-3.0613650476,-0.6598124758,-1.2262644358 C,0,-4.5159761677,-0.1392128069,-1.028427337 C, $0,-2.6488812635,-0.1848925327,-2.6366827592$ C, 0, - $4.9485562657,0.4426765997,-2.3941587534$ C, 0, -3.9695362509,-0.1590634588,-3.4088484124 C, 0, -2.1876249253,1.3751657018,0.8155552209 C, 0, -2.0921653445,2.56595846,-0.150756103 C, 0, -1.2380733229,1.7542085788,1.9818561709 C, 0, -2.018880671,3.7682071722,0.7957492649 C, 0, -1.0712455404,3.2962633362,1.9105470719 H, 0, -1. $3863705666,-1.1216137691,2.2486057159$ H, 0, -4.2488915782,-1.6078662348,1.2909706139 H, 0, -3. $7330785883,-0.6320656244,2.672089292$ H, 0, -0. $6886141697,-3.1460656452,1.3721480409$ H, 0, -1. $8573203002,-3.1531815287,0.068802254$ H, 0, -2. $8655672894,-2.6394922847,3.8153740455$ H, 0, -4. $4377468655,-3.1608875495,3.2042939014$ H, 0, -2.2002269779,-4.5869101419,2.5397635931 H, 0, -3.4362805324,-4.2977700341,1.3241642326 H, 0, -3. $0836648287,-1.7573067201,-1.2422043998$ H, 0, -4. $596687512,0.613155761,-0.2393642966$ H, 0, -5.1711574801,-0.965821358,-0.7342082902

H, 0,-1.883512888,-0.8305314338,-3.0774749513 H, 0, -2. $2259758593,0.8265949969,-2.5920620484$ H, 0, -5.9968664648, 0.2302832894, -2.6269610237 H, 0, -4. $8382056841,1.5338703474,-2.3881682156$ H, 0, -4. $2720208705,-1.1826321366,-3.6673926654$ H, 0, -3. $913360913,0.4114644192,-4.3415637274$ H, 0, -3.2146043009,1.312724708,1.1968879381 H, 0, -2.9300246622, 2.6171468737,-0.8541900855 H, 0, -1.1641626028, 2. $4949749056,-0.7337340422$ H, 0, -0. $2632558544,1.2670932048,1.8575498107$ H, 0, -1. $6462859088,1.422381133,2.9421210191$ H, 0, -1. $6684174998,4.6787855468,0.2997227282$ H, 0, -3.0179559179,3.9788184399,1.1996773878 H, 0, -0.0386569132,3.5404508008,1.6447097061 H, 0, -1. $2859843954,3.780098072,2.8685811627$ H, 0,1.5701501533,0.7222838704,-2.2487509825 H, 0, 2. $8342820735,-0.5227065674,-2.447583678$ C, 0, 4.6870846772,1.309110822,-1.5517724137 C, 0, 4.4487001073,2.3233744182,-2.6735826969 C, 0,5.4681622531,0.0990433306,-2.0697655872 H, 0,5.2971526147,1.7946178294,-0.7771237455 H, 0, 3. $9499462864,3.2255415197,-2.3077019271$ H, 0,5.4000748521,2.6230308483,-3.1244761933 H, 0, 3. $8284501619,1.8900643485,-3.4667097246$ H, 0, 5.6178739483,-0.6589446264,-1.2967584881 H, 0, 4.9661043562,-0.3747725058,-2.9200387939 H, 0, 6.453253971,0.4234286101,-2.4203382004 C, 0, 2.7288035897,2.1275241767,-0.296242701 $\mathrm{N}, 0,2.2718254332,3.0982974961,0.1514986257$

[^0]: ${ }^{1}$ Shriver, D. F.; Drezdzon, M. A. The manipulation of air-sensitive compounds; 2nd Edition ed.; Wiley: New York, 1986.
 ${ }^{2}$ Armarego W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, Butterworth-Heinemann, 1996.
 ${ }^{3}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

[^1]: ${ }^{4}$ Chaumontet, M.; Piccardi, R.; Audic, N.; Hitce, J.; Peglion, J.-L.; Clot, E.; Baudoin, O. J. Am. Chem. Soc. 2008, 130, 15157-15166.

[^2]: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~s}$, 2H) ppm.

[^3]: ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 177.6,158.7$, 134.4, 134.0, 127.2, 116.1, 112.4, 55.4, 52.3, 45.9, 26.2 ppm .

[^4]: ${ }^{5}$ Hitce, J.; Retailleau, P.; Baudoin, O. Chem. Eur. J. 2007, 13, 792-799.

[^5]: ${ }^{6}$ McKinstry, L.; Livinghouse, T. Tetrahedron, 1995, 51, 3237.

[^6]: ${ }^{7}$ Boren, L.; Leijondahl, K.; Baeckvall, J.-E. Tetrahedron. Lett. 2009, 50, 3237.

[^7]: ${ }^{8}$ See part "Synthesis of cyclobutarenes by alkane arylation".

[^8]: ${ }^{9}$ Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 14570.

[^9]: ${ }^{10}$ Bernstein, S. ; Heller, M. ; Stolar, S. M. J. Am. Chem. Soc. 1954, 76, 5674.

[^10]: ${ }^{11}$ Ogilvie, K. K.; Thompson, E. A.; Quilliam, M. A.; Westmore, J. B. Tetrahedron Lett. 1974, 15, 2865.

[^11]: 12 Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649.

[^12]: ${ }^{13}$ Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 1759-1762.

[^13]: ${ }^{14}$ Morris, J.; Wishka, D. J. Org. Chem. 1995, 60, 2642-2644.

[^14]: ${ }^{15}$ Cahiez, G.; Luart, D.; Lecomte, F. Org. Lett. 2004, 6, 4395.
 ${ }^{16}$ Murphy, J. A.; Zhou, S.-z.; Thomson, D. W.; Schoenebeck, F.; Mahesh, M.; Park, S. R.; Tuttle, T.; Berlouis, L. E. A. Angew. Chem. Int. Ed. 2007, 46, 5178.

[^15]: ${ }^{17}$ Yoshida, H.; Mimura, Y.;Ohshita, J.; Kunai, A. Chem. Commun. 2007, 2405.

[^16]: ${ }^{18}$ Takeuchi, Y.; Suzuki, T.; Satoh, A.; Shiragami, T.; Shibata, N. J. Org. Chem. 1999, 64, 5708.

