Iron-Mediated Photochemical Decomposition of Methylmercury in an Arctic
Alaskan Lake
(es-2010-006934R1)
By Chad R. Hammerschmidt and William F. Fitzgerald

Three pages, including one table and one figure

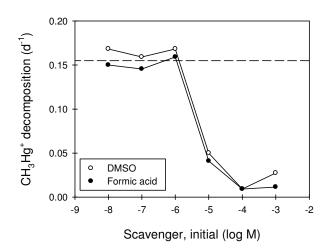

.

Table S1. Physicochemical characteristics and rate constants of monomethylmercury (CH₃Hg⁺) photodecomposition (± 1 standard deviation) in four arctic Alaskan surface waters.^a

			CH₃Hg ⁺
Water source	рН	DOC (µM)	photodecomposition (d ⁻¹)
Toolik Lake	7.6	380	0.158 ± 0.037
Green Cabin Lake	7.6	340	0.167 ± 0.012
Island Lake	7.5	340	0.170 ± 0.026
Tundra pore water	5.3	830	0.135 ± 0.031

^aRate constants determined from a 2-d incubation (initial $CH_3Hg^+ = 11 \text{ pM}$) at the surface of Toolik Lake (photosynthetically active radiation = 57 E m⁻² d⁻¹; temperature = 13.2 \pm 0.4 °C). DOC = dissolved organic carbon.

Figure S1. Photochemical decomposition of CH_3Hg^+ (initial, 11 pM or 1.1×10^{-11} M) in 0.2-µm filtered surface water of Toolik Lake incubated for 2 d at the surface (PAR = 43 ± 14 E m⁻² d⁻¹; T = 17.1 ± 0.3 °C) across a concentration gradient (initial) of added organic molecules, formic acid and dimethylsulfoxide (DMSO), that scavenge •OH. Dashed line represents mean rate constant for CH_3Hg^+ decomposition in Toolik Lake water exposed to sunlight without added organic molecules ($k = 0.16 \pm 0.01$ d⁻¹).

