Brønsted acid catalyzed aldol reaction : A complementary approach to enamine catalysis.

Guillaume Pousse ${ }^{\text {a }}$, Fabien Le Cavelier ${ }^{\text {a }}$, Luke Humphreys ${ }^{\text {b }}$, Jacques Rouden ${ }^{\text {a }}$, and Jérôme Blanchet ${ }^{\text {a }}$ *

${ }^{\dagger}$ Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, CNRS ; 6 boulevard du Maréchal Juin, 14050 Caen, France
jerome.blanchet@ensicaen.fr

Supporting Information

Contents

General remarks S2
General procedure for the cross aldol reaction S4
Representative HPLC dataS13
NMR data S15

General remarks

Commercially available compounds were used without further purification. Solvents (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}, \mathrm{Et}_{2} \mathrm{O}$, DMF, toluene) were dried and purified from PureSolv ${ }^{\text {TM }} 400$ Solvent Purification System.

Melting points were determined on a Electrothermal digital apparatus IA9100 series and are uncorrected.
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance DPX 500 or Bruker Avance DPX 400 spectrometers. Chemical shifts are reported in parts per million (δ) relative to TMS or to solvent as the internal standard.

Thin layer chromatography was performed on silica gel $60 \mathrm{~F}-254$ plates $(0.1 \mathrm{~mm}$, Merck). Detection was accomplished by irradiation with a UV lamp or staining with KMnO_{4}. Chromatographic separations were achieved on silica gel columns (Kieselgel 60, 40-63 $\mu \mathrm{m}$, Merck).

Analytical high performance liquid chromatography (HPLC) was carried out with a Waters instrument [detector M996 (200-400 nm) and pump 600]. The conditions are described for each compound.

Mass spectra and high resolution mass spectra (HRMS) were obtained on a WatersMicromass Q-Tof micro instrument. IR spectra were recorded on a Perkin-Elmer 16 PC FTIR spectrometer. Optical rotations were measured, at room temperature, on a Perkin-Elmer 241 LC polarimeter in a 10 cm cell. $[\alpha]_{D}$ Values are given in units of 10^{-1} deg. $\mathrm{cm}^{-2} . \mathrm{g}^{-1}$.

Various non protic solvents was assayed in aldol reaction using 3c ($\mathrm{Ar}=2,4,6-i \operatorname{Pr}-$ $\mathrm{C}_{6} \mathrm{H}_{2}$) as catalyst at room temperature during 72 hours (Table 1).

Table 1. Optimization of the solvent

Entry	solvent	yield a	syn $^{2}:$ anti $^{\text {b }}$	ee syn c
1	toluene	78	$80 / 20$	69
2	xylene	78	$70 / 30$	67
3	THF	35	$80 / 20$	43
4	$\mathrm{Et}_{2} \mathrm{O}$	50	$70 / 30$	63
5	$\mathrm{Bu}_{2} \mathrm{O}$	33	$66 / 33$	65
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	90	$70 / 30$	60
7	$\mathrm{CH}_{3} \mathrm{CN}$	55	$70 / 30$	54

${ }^{a}$ isolated yield ${ }^{b}$ Determined from NMR of crude mixture. ${ }^{c}$ determined by chiral HPLC

Table 2. Optimization of the ketone/glyoxylate ratio

Entry	cyclohexanone/glyoxylate	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	yield a	syn : anti ${ }^{b}$	ee syn ${ }^{c}$
1	$10 / 1$	20	90	$60 / 40$	76
2	$10 / 1$	0	55	$70 / 30$	86
3	$1 / 5$	20	75	$55 / 45$	72
4	$1 / 1$	20	80	$55 / 45$	84
5	$1 / 1$	0	50	$55 / 45$	81
6	$2 / 1$	0	50	$55 / 45$	84
7	$2 / 1$	0	53	$60 / 40$	81
${ }^{\text {isolated yield }}{ }^{b}$ Determined from NMR of crude mixture. ${ }^{c}$ determined by chiral HPLC					

${ }^{a}$ isolated yield ${ }^{b}$ Determined from NMR of crude mixture. ${ }^{c}$ determined by chiral HPLC
Scheme 1. Determination of the absolute configuration of the major isomer ${ }^{11}$

[^0]
General procedure for the cross aldolisation reaction (entry 14, table 1)

A test tube was charged with acid catalyst $\mathbf{4 e}(5.9 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ethyl glyoxalate (50% in toluene) ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclohexanone ($196 \mathrm{mg}, 2 \mathrm{mmol}, 10$ equiv) at $0{ }^{\circ} \mathrm{C}$ and stirred for 72 h . The volatiles were evaporated and the crude material purified by flash chromatography (cyclohexane/EtOAc, 70/30) to afford 5a as colourless oil ($22 \mathrm{mg}, 55 \%$, ratio syn:anti : 70:30).

Ethyl 2-hydroxy-2-(2-oxocyclohexyl)acetate 5a :

Major isomer syn-5a

Colourless oil ($\mathbf{R f}=0.2$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 4.61(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 4.19(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH})}$, 2.44-2.38 (m, 1H), 2.34-2.20 (m, 1H), 2.06-1.97 (m, 1H), 1.92-1.78 (m, 3H), 1.65-1.53 (m, $2 \mathrm{H}), 1.23\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 210.4$ (C), $173.6(\mathrm{C}), 69.2(\mathrm{CH}), 61.8\left(\mathrm{CH}_{2}\right), 53.8(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 24.6$ $\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3482,2939,2868,1731,1705,1449,1368,1205,1127$, 1023. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}$: 211.1127 found: 211.1128.

Minor isomer anti-5a

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ anti $\delta(\mathrm{ppm}): 4.18(\mathrm{qd}, J=7.0$ and 2 Hz ,
 $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.95(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 3.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 2.92-2.85 ($\mathrm{m}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}), ~ 2.39-2.31(m, 1 H), ~ 2.28-2.17 ~(m, ~} 1 \mathrm{H}$), 2.10-1.95 (m, 2H), 1.93-1.79 (m, 2H), 1.71-1.52 (m, 2H), $1.21(\mathrm{t}, J=7.0$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) anti $\delta(\mathrm{ppm})$: $211.2(\mathrm{C}), 173.3(\mathrm{C}), 71.1(\mathrm{CH}), 61.6\left(\mathrm{CH}_{2}\right), 53.7(\mathrm{CH}), 50.0\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right)$, $24.8\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

The er was determined after derivatization as benzoate (see end of document)

benzyl 2-hydroxy-2-(2-oxocyclohexyl)acetate 5c:

Major isomer syn-5b

Colourless oil $\left(\mathbf{R f}=0.2\right.$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$

$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \operatorname{syn} \delta(\mathrm{ppm}): 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.24$ and $5.20(\mathrm{~d}$, $\left.\mathrm{AB}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{CH}}_{2} \mathrm{Ph}\right), 4.72(\mathrm{dd}, J=4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}})$, $2.99(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 2.49-2.34$
$(\mathrm{m}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 210.4(\mathrm{C}), 173.5(\mathrm{C}), 135.2(\mathrm{C}), 128.7(2 * \mathrm{CH})$, $128.6(\mathrm{CH}), 128.4(2 * \mathrm{CH}), 69.3(\mathrm{CH}), 67.4\left(\mathrm{CH}_{2}\right), 53.8(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3482,2939,1733,1704,1453,1201,1124,737,697$. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}$: 263.1283 found: 263.1294.

Minor isomer anti-5b

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ anti $\delta: 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.23$ and
 5.17 (d, AB, $\left.J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{CH}}{ }_{2} \mathrm{Ph}\right), 4.07(\mathrm{dd}, J=7.6$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}$, CHOH), $2.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) 2.99-2.91(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH})}$, 2.42-2.35 (m, 1 H$), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}$, 2H), 1.72-1.57 (m, 2H). ${ }^{13}$ C NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) anti $\delta(\mathrm{ppm}):$
211.2 (C), 173.3 (C), $135.4(\mathrm{C}), 128.6(2 * \mathrm{CH}), 128.5(\mathrm{CH}), 128.4(2 * \mathrm{CH}) 71.1(\mathrm{CH}), 67.3$ $\left(\mathrm{CH}_{2}\right), 53.7(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$.
The er was determined by chiral HPLC using Daicel Chiralpak IA column (90% heptane, $10 \% \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 0.5 \mathrm{~mL} / \mathrm{min}, 211 \mathrm{~nm}, \mathrm{t}_{1}=41.4$ (major syn), $\mathrm{t}_{2}=45.3$ (major anti), $\mathrm{t}_{3}=48.9$ (minor anti), $\mathrm{t}_{4}=59.1 \mathrm{~min}($ minor $s y n)$).

Isopropyl 2-hydroxy-2-(2-oxocyclohexyl)acetate 5c:

Major isomer syn-5c

Colourless oil ($\mathbf{R f}=0.2$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 5.11$ (sept., $\left.J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.62$ (dd, $J=4.6$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$), $2.94(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.74-$ $2.80(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 2.46-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ 2.03 (m, 2H), 1.96-1.87 (m, 2H), 1.74-1.56 (m, 2H), 1.27 (d, $J=6.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 210.2$ (C), $173.2(\mathrm{C}), 69.6(\mathrm{CH}), 69.2(\mathrm{CH}), 53.9(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 24.6$ $\left(\mathrm{CH}_{2}\right), 21.8\left(2 * \mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3485,2938,2867,1708,1374,1208,1103$. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{4}$: 215.1283 found: 215.1276.

Minor isomer anti-5c

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ anti $\delta(\mathrm{ppm}): 5.10($ sept., $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$,

$\left.\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.98(\mathrm{dd}, J=6.8$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 3.13(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.97-2.92(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.33-$ $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 2 \mathrm{H})$, $1.28\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}$ (100.6 MHz, CDCl_{3}) anti $\delta(\mathrm{ppm}): 210.9(\mathrm{C}), 172.9(\mathrm{C}), 71.1(\mathrm{CH}), 69.3(\mathrm{CH}), 53.7(\mathrm{CH})$, $41.9\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 21.7\left(2 * \mathrm{CH}_{3}\right)$.

The er was determined after derivatization as benzoate (see end of document)

Ethyl 2-hydroxy-4-oxo-3-phenylpentanoate 6 (inseparable mixture of syn/anti isomers)

10:

Major isomer syn-10

 Colourless oil ($\mathbf{R f}=0.2$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 7.41-7.35$ (m, 3H, ArH), 7.32-7.26 (m, 2H, ArH), 4.96 (app.t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$), 4.19 (qd, $J=5.6$ and 3.2 Hz , $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.13(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 3.02(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(100.6 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\operatorname { s y n }} \delta(\mathrm{ppm}): 206.7(\mathrm{C}), 172.6(\mathrm{C}), 133.5(\mathrm{C}), 129.8(2 * \mathrm{CH}), 128.9(2 * \mathrm{CH}), 128.2$ $(\mathrm{CH}), 70.9(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 61.8(\mathrm{CH}), 29.2\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3406,2983$, 1709, 1356, 1232, 1095, 1023, 700. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4}: 237.1127$ found: 237.1116.

Only distinguishable signals are reported for the minor isomer anti-10.

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.55(\mathrm{dd}, J=4.8$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}})$, $4.15(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 4.11(\mathrm{qd}, J=5.6$ and $2.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) anti $\delta(\mathrm{ppm}): 207.6$ (C), $172.8(\mathrm{C}), 134.5(\mathrm{C}), 129.3(2 * \mathrm{CH}), 129.0(2 * \mathrm{CH}), 128.2(\mathrm{CH}), 72.7(\mathrm{CH}), 62.5(\mathrm{CH})$, $61.6\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right)$.

The er was determined by chiral HPLC on Daicel Chiralpak IC column (80% heptane, 20\% $i \operatorname{PrOH}, 20{ }^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, \mathrm{t}_{1}=11.7$ (major anti), $\mathrm{t}_{2}=14.2$ (major syn), $\mathrm{t}_{3}=18.3$ (minor syn), $\mathrm{t}_{4}=46.0 \min ($ minor $\left.a n t i)\right)$.

Ethyl 2-hydroxy-4-oxo-4-phenylbutanoate 11:

Colourless oil ($\mathbf{R f}=0.2$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{tt}, J=7.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.52-7.46 (m, 2H, ArH), 4.67 (m, 1H, $\underline{\mathrm{CHOH}), ~} 4.28$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.55\left(\mathrm{dd}, \mathrm{AB}, J=17.5\right.$ and $\left.4.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CH}}_{2} \mathrm{CHOH}\right), 3.46$ (dd, $\mathrm{AB}, J=17.5$ and $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 1.29\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 197.6(\mathrm{C}), 173.8(\mathrm{C}), 136.5(\mathrm{C}), 133.7(2 * \mathrm{CH}), 128.7(\mathrm{CH})$, $128.2(2 * \mathrm{CH}), 67.3(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3481,2982$, 1733, 1683, 1597, 1449, 1367, 1205, 1096, 1039, 756, 689. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+}$ $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}$: 223.0970 found: 223.0964.

The er was determined by chiral HPLC on Daicel Chiralpak IA column (95\% heptane, 5\% $i \operatorname{PrOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 240 \mathrm{~nm}, \mathrm{t}_{1}=94.9$ (major), $\mathrm{t}_{2}=109.8 \mathrm{~min}($ minor $)$).

Ethyl 2-hydroxy-2-(4-oxochroman-3-yl)acetate 7 (inseparable mixture of syn/anti isomers) 12:

Major isomer syn-12

Colourless oil ($\mathbf{R f}=0.3$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ syn $\delta(\mathrm{ppm}): 7.95(\mathrm{dd}, J=6.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{dt}, J=6.0$ and $0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.00(\mathrm{~d}, J=6.4$ and $0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.97(\mathrm{dd}, J=4.0$ and 2.4 Hz , $1 \mathrm{H}, \underline{\mathrm{CHOH}}), 4.65$ (app.t, $\mathrm{AB}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}$), 4.49 (dd, AB, J $=9.2$ and $\left.4.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{OCH}_{2}}\right), 4.33\left(\mathrm{qd}, J=6.0\right.$ and $\left.1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.30(\mathrm{ddd}, J=$ 9.6, 4.0 and $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}$), $3.07(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.32(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 191.1(\mathrm{C}), 173.3(\mathrm{C}), 161.7(\mathrm{C})$, $136.3(\mathrm{C}), 127.5(\mathrm{CH}), 121.6(\mathrm{CH}), 121.0(\mathrm{C}), 117.9(\mathrm{CH}), 67.5(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 62.4$ $\left(\mathrm{CH}_{2}\right), 49.4(\mathrm{CH}), 14.2\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3481,2983,1732,1687,1604,1478,1298$, 1213, 1107, 1013, 758. HRMS. calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{5}$: 251.0919 found: 251.0926.

Only distinguishable signals are reported for the minor isomer anti-12.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.90(\mathrm{dd}, J=6.4$ and 1.2 Hz ,

$1 \mathrm{H}, \mathrm{ArH}$), 4.65 (dd, $J=7.2$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}), 3.49(\mathrm{ddd}, J=}$ $9.2,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 3.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$,
$1.23\left(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 191.0(\mathrm{C}), 173.1$ (C), $161.9(\mathrm{C}), 136.2(\mathrm{CH}), 127.3(\mathrm{CH}), 121.6(\mathrm{CH}), 121.2(\mathrm{C}), 117.9(\mathrm{CH}), 68.8\left(\mathrm{CH}_{2}\right), 67.8$ $(\mathrm{CH}), 62.4\left(\mathrm{CH}_{2}\right), 49.3(\mathrm{CH}), 13.9\left(\mathrm{CH}_{3}\right)$.
The er was determined by chiral HPLC on Daicel Chiralpak IA column (98% heptane, 2% $i \operatorname{PrOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 248 \mathrm{~nm}, \mathrm{t}_{1}=60.3$ (major anti), $\mathrm{t}_{2}=65.2$ (major syn), $\mathrm{t}_{3}=72.0$ (minor syn), $\mathrm{t}_{4}=79.2 \mathrm{~min}($ minor $\left.a n t i)\right)$.

Ethyl 2-hydroxy-2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate 13:

Major isomer syn-13

Colourless oil ($\mathbf{R f}=0.3$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \operatorname{syn} \delta(\mathrm{ppm}): 8.06(\mathrm{dd}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.48(\mathrm{dt}, J=7.5 \mathrm{and} 1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.27-7.23 (m, 1H, ArH), $5.04(\mathrm{dd}, J=4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH})} 4.34-4.28(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.05-2.98 (m, 4H), 2.35-2.23 (m, 1H), 2.01-1.95 (m, 1H), $1.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 197.0(\mathrm{C}), 174.1$ (C), $144.0(\mathrm{C}), 133.7(\mathrm{CH}), 132.4(\mathrm{C}), 128.7(\mathrm{CH}), 127.6(\mathrm{CH}), 126.7(\mathrm{CH}), 70.1(\mathrm{CH}), 61.9$ $\left(\mathrm{CH}_{2}\right), 51.4(\mathrm{CH}), 28.8\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3517,2936,1725$, 1682, 1599, 1456, 1365, 1203, 1099, 1020, 749. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}$: 249.1127 found: 249.1122 .

Minor isomer syn-13

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ anti $\delta: 8.01(\mathrm{dd}, J=8.0$ and 0.8 Hz , $1 \mathrm{H}, \mathrm{ArH}$), 7.49 (dt, $J=7.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.33-7.25 (m, 2H,
 $\mathrm{ArH}), 4.34-4.28\left(\mathrm{~m}, 3 \mathrm{H}, \underline{\mathrm{CHOH}}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 3.20(\mathrm{ddd}, J=12.8,5.2$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}), 3.13-}$ $3.01\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{CH}}_{2}\right), 2.36-2.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) anti $\delta: 197.0(\mathrm{C}), 173.8$ (C), 144.2 (C), 133.7 $(\mathrm{CH}), 132.4(\mathrm{C}), 128.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.7(\mathrm{CH}), 71.4(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 51.5(\mathrm{CH})$, $29.1\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

The er was determined by chiral HPLC on Daicel Chiralpak IA column (95\% heptane, 5\% $\mathrm{EtOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 241 \mathrm{~nm}, \mathrm{t}_{1}=42.8$ (major syn), $\mathrm{t}_{2}=45.7$ (minor anti), $\mathrm{t}_{3}=48.9$ (major anti), $\mathrm{t}_{4}=65.5 \mathrm{~min}($ major $s y n)$).

Ethyl 2-hydroxy-2-(2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate 10 (inseparable of syn/anti isomers) 14:

Major isomer syn-14

Colourless oil $\left(\mathbf{R f}=0.2\right.$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.02(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.47$ (td, $J=7.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.35-7.29 (m, 1H, ArH), 7.257.20 (m, 1H, ArH), 4.55-4.44 (dd, $J=24.0$ and $4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$), 4.20-4.00 (m, 2H), 3.29 (dd, $J=30.4$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 2.93 (app.t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (quint., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (app.dt, $J=13.6$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.22-1.16 (m, 6H). ${ }^{13} \mathbf{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 200.4(\mathrm{C}), 173.3(\mathrm{C}), 142.8(\mathrm{C}), 133.4(\mathrm{CH}), 132.0(\mathrm{C}), 128.7$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 126.8(\mathrm{CH}), 74.0(\mathrm{CH}), 61.8\left(\mathrm{CH}_{2}\right), 49.1(\mathrm{C}), 30.3\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 18.1$ $\left(\mathrm{CH}_{3}\right), 14.1(\mathrm{CH})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3482,2936,1727,1676,1600,1455,1223,1078,738$. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}$: 263.1283 found: 263.1295 .

Only distinguishable signals are reported for the minor isomer anti-14. $\left(\mathbf{R f}=0.23\right.$ in Cyclohexane/EtOAc, 70/30) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta: 2.01(\mathrm{td}, J=10.8$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=13.6$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 200.0$ (C), 173.4 (C), 142.9 (C), $133.4(\mathrm{CH}), 131.8(\mathrm{C}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH}), 126.8(\mathrm{CH}), 74.8(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 49.1$ (C), $29.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 19.0\left(\mathrm{CH}_{3}\right), 13.9(\mathrm{CH})$.

The er was determined by chiral HPLC on Daicel Chiralpak IA column (99% heptane, 1% $\mathrm{EtOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 211 \mathrm{~nm}, \mathrm{t}_{1}=62.1$ (major anti), $\mathrm{t}_{2}=67.0$ (minor anti), $\mathrm{t}_{3}=70.6$ (major syn), $\mathrm{t}_{4}=102.9 \mathrm{~min}($ minor $s y n)$).

Ethyl 2-hydroxy-2-(1-oxo-2,3-dihydro-1H-inden-2-yl)acetate 8 (inseparable of syn/anti isomers) 15:

Major isomer syn-15

Colourless oil ($\mathbf{R f}=0.25$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.58$ (dt, $J=7.6$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.45(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.36(\mathrm{dt}, J$ $=7.6$ and $0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.93(\mathrm{dd}, J=4.4 \mathrm{and} 2 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}})$, $4.30\left(\mathrm{qd}, J=7.2\right.$ and $\left.3.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}$,
$\underline{\mathrm{CHCHOH}}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 205.1(\mathrm{C}), 174.1(\mathrm{C}), 154.0(\mathrm{C})$, $136.6(\mathrm{C}), 135.1(\mathrm{CH}), 127.5(\mathrm{CH}), 126.5(\mathrm{CH}), 124.1(\mathrm{CH}), 69.5(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right), 50.0$ $(\mathrm{CH}), 26.5\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3473,2927,1705,1607,1465,1280 ; 1204$, 1116, 1033, 753. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}: 235.0970$ found: 235.0979.

Only distinguishable signals are reported for the minor isomer anti-15. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$,
 4.57 (app.t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$), $1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 204.9(\mathrm{C})$, 173.2 (C), 153.8 (C), 136.9 (C), $135.0(\mathrm{CH}), 127.5(\mathrm{CH}), 126.5(\mathrm{CH})$, $123.9(\mathrm{CH}), 70.6(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 50.2(\mathrm{CH}), 29.5\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.
The er was determined by chiral HPLC on Daicel Chiralpak IA column (90% heptane, 10% $i \operatorname{PrOH}, 20{ }^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 241 \mathrm{~nm}, \mathrm{t}_{1}=14.6$ (major anti), $\mathrm{t}_{2}=16.7$ (major syn), $\mathrm{t}_{3}=20.0$ (minor syn), $\mathrm{t}_{4}=21.8 \mathrm{~min}($ minor $a n t i)$).

Ethyl 2-hydroxy-2-(2-oxocyclohex-3-enyl)acetate 16:

Major isomer syn-16

Colourless oil ($\mathbf{R f}=0.15$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ syn $\delta(\mathrm{ppm}): 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCHCO}), 6.01$ (ddd, J $=10.0,2.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHCO}}$), 4.92 (dd, $J=4.4$ and 2.4 Hz , $1 \mathrm{H}, \underline{\mathrm{CHOH}}), 4.28\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}$), 2.83 (ddd, $J=13.6,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}$), 2.52-2.42 $(\mathrm{m}, 2 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.31\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) syn $\delta(\mathrm{ppm}): 198.0(\mathrm{C}), 174.2(\mathrm{C}), 150.7(\mathrm{CH}), 129.8(\mathrm{CH}), 69.4(\mathrm{CH})$, $61.9\left(\mathrm{CH}_{2}\right), 50.2(\mathrm{CH}), 25.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3473,2938$, 1731, 1672, 1389, 1215, 1118, 1022, 717. HRMS calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4}: 199.0970$ found: 199.0973.

Minor isomer anti-16

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) anti $\delta: 7.01-6.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCHCO}), 6.01$
 (dt, $J=10.0$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHCO}}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.17(\mathrm{dd}, J=5.2$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 3.18(\mathrm{~d}, J=5.2$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.01$ (ddd, $J=13.2,5.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCHOH}}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.25-$ $2.08(\mathrm{~m}, 2 \mathrm{H}), 1.29\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) anti δ : $198.2(\mathrm{C}), 173.6(\mathrm{C}), 150.9(\mathrm{CH}), 129.8(\mathrm{CH}), 71.0(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 50.3(\mathrm{CH}), 25.8\left(\mathrm{CH}_{2}\right)$, $25.7\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.
The er was determined by chiral HPLC on Daicel Chiralpak AD-H column (90% heptane, 5\% EtOH, $5 \% \mathrm{MeOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 228 \mathrm{~nm}, \mathrm{t}_{1}=21.0$ (minor anti), $\mathrm{t}_{2}=23.1$ (major syn), $\mathrm{t}_{3}=$ 24.9 (minor $s y n$), $\mathrm{t}_{4}=38.1 \mathrm{~min}($ minor $s y n)$).
(E)-Ethyl 2-hydroxy-4-oxohept-5-enoate 17:

Colourless oil ($\mathbf{R f}=0.15$ in Cyclohexane/EtOAc, 70/30). ${ }^{\mathbf{1}} \mathbf{H}$ NMR
 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.90(\mathrm{dq}, J=16.0$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}$, CHCHCO), 6.14 (dq, $J=16.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCO}$), 4.52 (dd, $J=6.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 4.26\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.10\left(\mathrm{dd}, \mathrm{AB}, J=17.2\right.$ and $\left.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 3.02(\mathrm{dd}, \mathrm{AB}, J=$ 17.2 and $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 1.93\left(\mathrm{dd}, J=6.8\right.$ and $\left.1.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 197.5(\mathrm{C}), 173.7(\mathrm{C}), 144.4(\mathrm{CH})$, $131.8(\mathrm{CH}), 67.2(\mathrm{CH}), 61.8\left(\mathrm{CH}_{2}\right), 43.0\left(\mathrm{CH}_{2}\right), 18.4\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: 3474, 2980, 1733, 1668, 1631, 1443, 1369, 1194, 1098, 1034, 970. HRMS calcd for (M+H) ${ }^{+}$ $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}$: 187.0978 found: 187.0970 .
The er was determined by chiral HPLC on Daicel Chiralpak IA column (90% heptane, 10% $\mathrm{EtOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{1}=30.0$ (major), $\mathrm{t}_{2}=36.4 \mathrm{~min}$ (minor)).

Er's of 5a, 5b and $\mathbf{1 1}$ and $\mathbf{1 2}$ were determined by chiral HPLC after derivatization to a benzoate ester according to the following procedure.

General procedure for the derivatization of aldol products:

To a solution of $\mathbf{5 a}(31 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{mg}, 0.16$ $\mathrm{mmol}, 1.1$ equiv) followed by benzoyl chloride ($32 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.5$ equiv) and DMAP (catalytic amount) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$ and quenched with water (10 mL), followed by a aqueous solution of $\mathrm{HCl}(1 \mathrm{~N})(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 * 10 \mathrm{~mL})$ and the organic layers were combined, dried over MgSO_{4} and concentrated. The crude product was purified by flash chromatography (cyclohexane/AcOEt, 80:20) to afford $\mathbf{1 4}$ as a colourless liquid (40 mg , $88 \%)$.

2-ethoxy-2-oxo-1-(2-oxocyclohexyl)ethyl benzoate 14:

The er was determined by chiral HPLC on Daicel Chiralpak IC column (90% heptane, $10 \% \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 228 \mathrm{~nm}, \mathrm{t}_{1}=15.5$ (major anti), $\mathrm{t}_{2}=18.5$ (minor anti), $\mathrm{t}_{3}=27.4$ (major syn), $\mathrm{t}_{4}=108.8 \mathrm{~min}($ minor syn)).

2-isopropoxy-2-oxo-1-(2-oxocyclohexyl)ethyl benzoate 15:

 The er was determined by chiral HPLC on Daicel Chiralpak IA column (90% heptane, $10 \% \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 228 \mathrm{~nm}, \mathrm{t}_{1}=10.6$ (minor anti), $\mathrm{t}_{2}=11.5$ (major anti), $\mathrm{t}_{3}=22.7$ (major syn), $\mathrm{t}_{4}=25.7 \mathrm{~min}$ (minor syn)).

2-ethoxy-2-oxo-1-(2-oxocyclohex-3-enyl)ethyl benzoate 16:

The er was determined by chiral HPLC on Daicel Chiralpak IA column (95\% heptane, $5 \% \mathrm{iPrOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 225 \mathrm{~nm}, \mathrm{t}_{1}=20.2$ (major syn), $\mathrm{t}_{2}=21.6$ (minor anti), $\mathrm{t}_{3}=27.0$ (major anti), $\mathrm{t}_{4}=39.0 \mathrm{~min}($ minor syn)).

HPLC data of rac-2-ethoxy-2-oxo-1-(2-oxocyclohexyl)ethyl benzoate 5a (Table 1, entry 14)

14

Instrument Method: IM1 mL90\%nhept10\%EtOH_20dC
Stored: 10/09/2009 09:34:55 CEST

	Peak Name	RT	Area	$\%$ Area
1	Peak1	15,766	23966222	26,22
2	Peak2	18,784	24034298	26,30
3	Peak3	27,860	21719007	23,76
4	Peak4	109,114	21682580	23,72

PDA 228,0 nm

HPLC data of 2-ethoxy-2-oxo-1-(2-oxocyclohexyl)ethyl benzoate 5a (Table 1, entry 14)

14

	Peak Name	RT	Area	\% Area
1	a	15,521	6190739	26,15
2	a^{\prime}	18,477	990534	4,18
3	b	27,349	15369402	64,92
4	b $^{\prime}$	108,820	1123558	4,75

PDA 228,0 nm
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR (100.6 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR (100.6 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{1}$ Aggarwal, V. K.; Thomas, A.; Schade, S. Tetrahedron, 1997, 53, 16213-16228.

