Supporting information Ion Mobility Mass Spectrometry of Au₂₅(SCH₂CH₂Ph)₁₈ Nanoclusters

Laurence A. Angel, ^{*,†} Lance T. Majors,[‡] Asantha C. Dharmaratne,[‡] Amala Dass^{*,‡} E-mail: laurence_angel@tamu-commerce.edu; amal@olemiss.edu

[†] Department of Chemistry, Texas A&M-Commerce

[‡] Department of Chemistry and Biochemistry, University of Mississippi

Figure S1. Mass spectra of Au25 (a) positive scan (b) negative scan

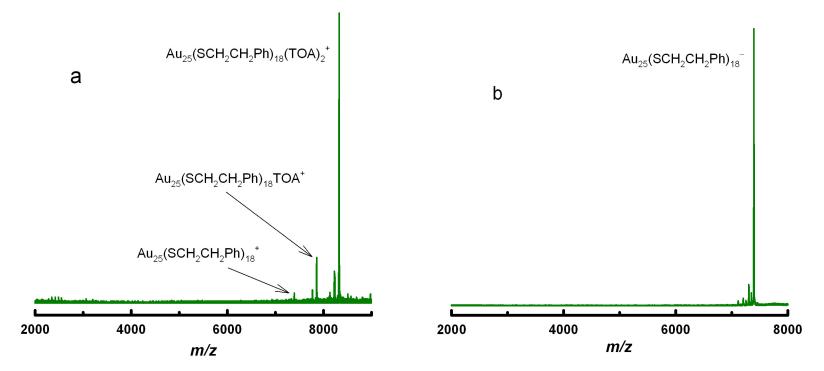


Figure S2: Expanded version of Figure 1. IM-MS/MS of $Au_{25}(SCH_2CH_2Ph)_{18}^{-}$ taken by resolving the $Au_{25}(SCH_2CH_2Ph)_{18}^{-}$ parent ion and applying 100 V lab kinetic energy to the trap T-wave cell.

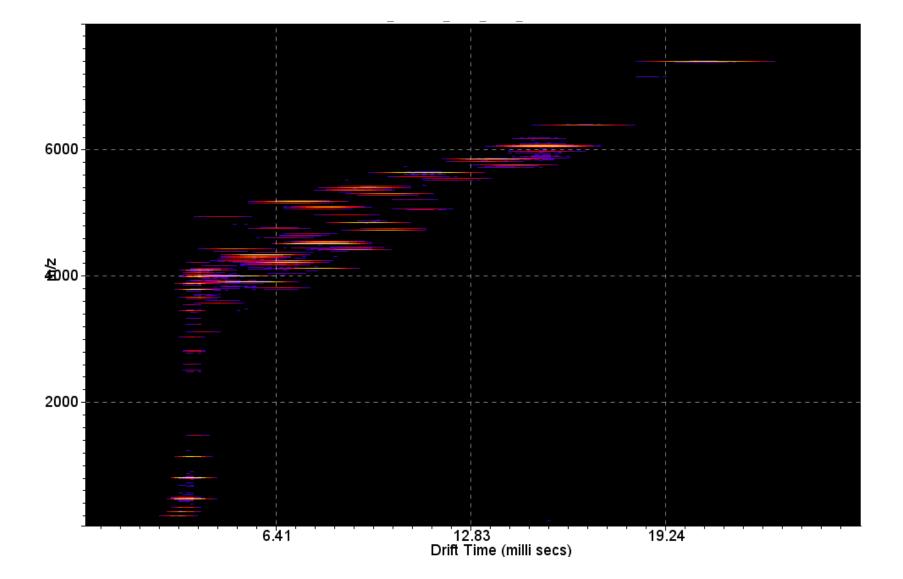
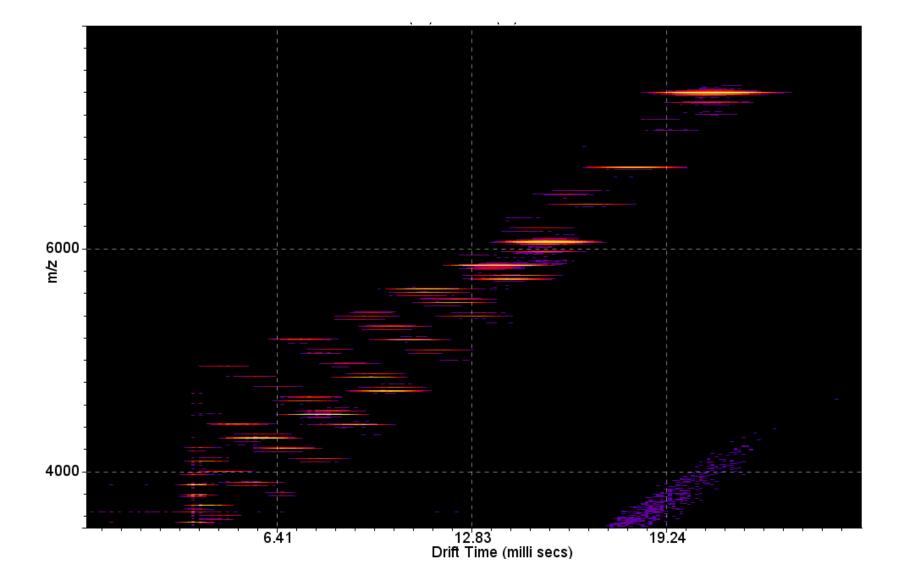
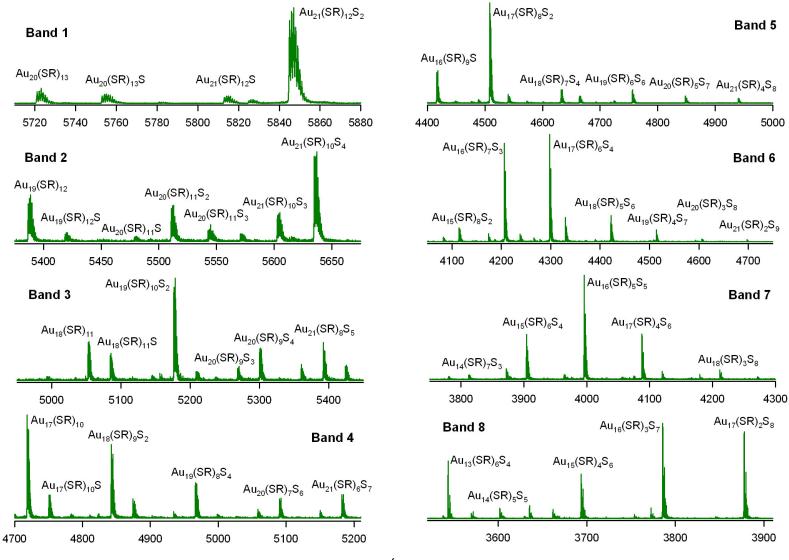
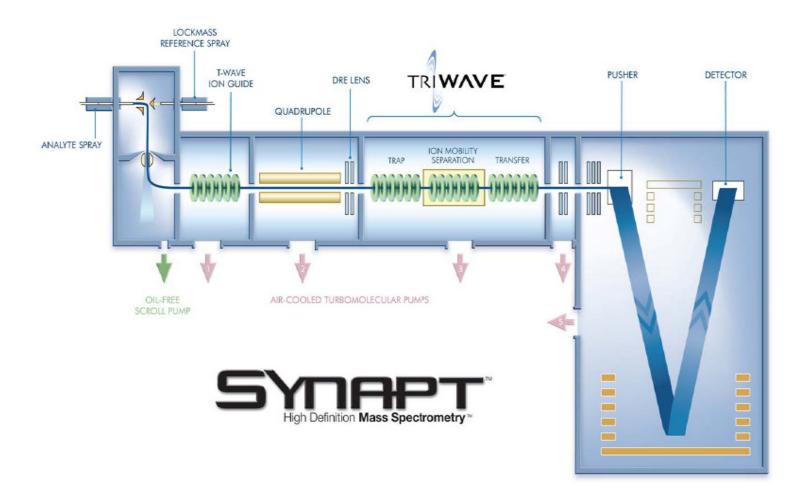




Figure S3: Expanded and full mass range version of Figure 2. IM-MS/MS of $Au_{25}(SCH_2CH_2Ph)_{18}^-$ taken without resolving the $Au_{25}(SCH_2CH_2Ph)_{18}^-$ parent ion and applying 200 V lab kinetic energy to the trap T-wave cell.



Band	High mass species	Low mass species	Δ –Au, –S, +R	Δ mass across band, amu
1	$Au_{21}(SR)_{12}S_2^-$	$Au_{20}(SR)_{13}$	Δ –1Au, –1S, +1R	$\Delta - 124$
2	$Au_{21}(SR)_{10}S_4^-$	$Au_{19}(SR)_{12}$	Δ –2Au, –2S, +2R	$\Delta -248$
3	$Au_{21}(SR)_8S_6^-$	$Au_{18}(SR)_{11}$	Δ –3Au, –3S, +3R	$\Delta -372$
4	$Au_{21}(SR)_6S_7^-$	$Au_{17}(SR)_{10}$	Δ –4Au, –3S, +4R	Δ -464
5	$Au_{21}(SR)_4S_8^-$	$Au_{16}(SR)_9S^-$	Δ –5Au, –2S, +5R	$\Delta -524$
6	$Au_{21}(SR)_2S_9^-$	$Au_{15}(SR)_8S^-$	Δ –6Au, –2S, +6R	Δ -616
7	$Au_{18}(SR)_{3}S_{8}^{-}$	$Au_{14}(SR)_7S^-$	Δ –4Au, –3S, +4R	Δ -464
8	$Au_{17}(SR)_2S_8^-$	$Au_{13}(SR)_6S_4^-$	Δ –4Au, –0S, +4R	$\Delta -368$

Table S1. Assignments of the high and low mass species contained in the individual bands 1 to 8 and the changes in mass that accompanies them, where $R = CH_2CH_2Ph$.

Consecutive bands display an increased incremental loss of Au atoms and increased incremental gain of $-CH_2CH_2Ph$. For example in band 2, the high and low mass species are $Au_{21}(SR)_{10}S_4^-$ and $Au_{19}(SR)_{12}^-$, respectively, showing a loss of 2 Au atoms and gain of 2 $-CH_2CH_2Ph$ ligands. The Δm across band 2 is two times greater than that of band 1; $\Delta m = -2Au$ (396) -2S (64) +2R (210) = -250 amu. Band 3 has high and low mass species of $Au_{21}(SR)_8S_7^-$ and $Au_{18}(SR)_{11}^-$ giving Δm that is three times greater than that of band 1 $\Delta m = -3Au$ (591) -3S (96) +3R (315) = -372 amu. Band 4 has high and low mass species of $Au_{21}(SR)_6S_7^-$ and $Au_{17}(SR)_{10}^-$ exhibiting $\Delta m = -4Au$ (788) -3S (96) +4R (420) = -464 amu. Band 5 has high and low mass species of $Au_{21}(SR)_4S_8^-$ and $Au_{16}(SR)_9S^-$ exhibiting $\Delta m = -5Au$ (985) -2S (64) +5R (525) = -524 amu. Band 6 contains high and low mass species of $Au_{21}(SR)_4S_8^-$ and $Au_{16}(SR)_2S_9^-$ and $Au_{15}(SR)_8S^-$ exhibiting $\Delta m = -6Au$ (1182) -2S (64) +6R (630) = -616 amu. Bands 7 and 8 do not contain a $Au_{21}(SR)_nS_m^-$ species, but band 7 contains a low mass species $Au_{14}(SR)_mS_n^-$, representing the loss of 7 Au, and band 8 contains the low mass species $Au_{13}(SR)_mS_m^-$, representing the loss of 8 Au. The $Au_{13}(SR)_mS_n^-$ species has now lost all the Au atoms from the outer protecting "staple" shell and contains only Au atoms that are in the Au_{13} core with a combination of stabilizing S and SR units.

Figure S5: Schematic of the Synapt HDMS design accessible at www.waters.com

