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Figure S1. ESI-MS spectrum of Ru-Re57+(PF6')7 dissolved in MeCN.
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Figure S2. Peaks corresponding to [M + (PF¢)]®" in the ESI-TOEMS spectrum of Ru-Re5” (PFy); (a),

and the calculated isotope distribution pattern (b).
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Figure S3. ESI-MS spectrum of Ru-Re3A” (PF¢)s dissolved in MeCN.
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Figure S4. UV/vis absorption spectra of Ru-Re3A”" (black line), Ru-Re3B’" (red line) and Ru-Re5""

(blue line) in MeCN solutions.
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Figure S5. Emission spectra from degassed MeCN solutions containing the Ru(Il)-Re(I) multinuclear
complexes by excitation using 350- and 480-nm light and the corresponding Re(I) oligomers by
excitation using 350-nm light: (a) Ru-Re3B*" and Re3**; (b) Ru-Re5’" and Re5”". They are

standardized by the number of absorbed photons at the excitation wavelength.

Calculations of the energy transfer rate constants from the terminal Re(l) unit to the interior

Re(1) unit (k,(Re3*")) and the radiative and non-radiative rates from each Re(l) units in Re3*".

The emission decay of Re3%" could be fitted with the following double-exponential functions: with
= 15 ns and 893 ns which can be attributed to the emission from the terminal and the interior Re(l)
units, respectively.

I(t) = Ae’" + Ae’™ (S1)
Therefore, the energy transfer rate constant from the excited terminal Re(l) unit to the interior Re(l)

unit (k,(Re3*") in Scheme 3e) can be calculated using the summed rate constant of the radiative and

non-radiative decay from the terminal Re(l) unit (k (Re3*",terminal)+k  (Re3>,terminal)) and the

following equation:

1 —

E10® |k, (Re 3%, terminal) + k., (Re 3%, terminal ) (S2)

k (Re3*) =
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The emission decay of the dimer Re(l) complex, [(CO)s(dmb)Re-PP-Re(dmb)(C0O)s]** (Re2?"), has a

similar structure as the terminal Re(l) unit in Re3*" and could be fitted to a single-exponential with 537

ns. If [k (Re3*, terminal)+k (Re3* terminal)] is the same to that of Re2”* (1.9x10°s™), the

k,(Re3*") can be calculated as 6.5x10"s™.

Calculation of the energy transfer efficiency in Ru-Re3A>*

The energy transfer efficiencies from the Re(l) units to the Ru(ll) unit in Ru-Re3A>" were calculated
using the following two equations, and all of the estimated energy transfer rate constants are given in
the Results and Discussion section.

From the excited terminal Re(l) unit:

et

k,(Ru—Re3A*) +k,(Ru—Re3A*)

= S3
k, (Ru—Re3A* , terminal) + k, (Ru—Re3A*, terminal) + k, (Ru — Re3A*") +k, (Ru—Re3A*") (53)

B 6.5x10" +5.8x10’

1.1x10° +6.5%10" +5.8x10’
=99 %
From the interior Re(l) unit:
_ 3+

: k,(Ru—Re3A™) (S4)

Ter = k. (Ru—Re3A*interior) +k_ (Ru—Re3A* interior) + k,(Ru — Re3A*")

6.4 x10°
1.1x10°+6.4x10°

=85%
Calculation of the emission decay kinetics in Ru-Re5"*
The Ru-Re5™* is constructed with the following four different types of chromophores: the terminal

Re(l) unit (Re-V), two interior Re(l) units (Re-111 and Re-1V) and the Ru(ll) unit (Ru) (Scheme S1).
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After UV irradiation, all of the chromophores can absorb photons and become the *MLCT excited state.
Each of the excited states is relaxed through the intrinsic decay process (radiative and non-radiative
relaxation) and various energy-transfer processes, and these time profiles should follow the set of rate
equations (egs. S5).  We define Kry, Kre-v, Kre-mi, and Kgre-1v a@s the intrinsic decay rates of Ru, Re-V,
Re-111 and Re-1V excited states, respectively.  The energy-transfer rate between the Re-l111 and

Re-1V chromophores is represented by k.  The following relationships are true:

deut(t) = —kg,RU(t) +k,(Ru -Re5™)Re - 111(t) + ky(Ru - Re5™)Re - IV(t) + k,(Ru - Re 5™ )Re - V()

dRe - V(t . .

dre ® (ke +k (Ru-Re5™) +k, (Ru-Re5™))Re - /(1) (S5)
'dRec_nl—”(t) = ~(Keen + Ky + Ky (Ru-Re5™))Re - 111(t) + k, Re - V(1)

dRe (‘jt'V(t) = —(Kgey + K,y + Ky (RU-Re5))Re - IV(t) + k, Re - 111(t) + k, (Ru - Re5"")Re - V(1)

where Ru(t), Re-V(t), Re-111(t), and Re-1V are the concentration of the *MLCT excited states of the Ru,

Re-V, Re-111, and Re-1V chromophores at time t.
The rate equations (egs. S5) may be rewritten:
dRu(t) _ —kq,Ru(t) + k,(Ru-Re5")Re- 1(t) + k,(Ru-Re5") Re- IV(t) + k, (Ru - Re5"") Re- V(t)
dt - Ru 2 3 4

dRe-V(t)
dat
w — —(B—5)Re-11I(t)+k_ Re- IV(t)

d Re(—thV(t) =—(B+5)Re-1V(t) +k_Re-1l1(t)+k (Ru-Re5")Re-V(t)

—a Re-V(t)
(S5)

where the parameters a., B, 6, and p are defined as follows:

a =Kg, +k (Ru-Re5™)+k,(Ru-Re5"™)
B= %{(kRe.m +Ky +K; (RU-Re5™)) + (Kgey +Kp +K;(Ru-Re5™))} (S6)
_ ky(Ru-Re5™)—k,(Ru-Re5™)

2

)

=5 4,7+ (k (Ru-ReS™) —k, (Ru - Res ™)’ &7
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Scheme S1. Relaxation processes in Ru-Re5™".

The decay functions of the excited states at time t are calculated as the solution of egs. S5 or S5' rate
equations.
The initial concentrations of the excited states are assumed to be follows:

Ru(0) =Ru,

Re-V(0) =2(Re-V,)
Re-111(0) =Re-1ll,
Re-I1V(0) = 2(Re- 1V,)

(S8)

The set of rate equations (egs. S5) can be solved analytically.  The solutions are the sums of the one
to four exponential functions that have the common decay rate constants (o, B + w, B - 1, and kgy) for
each chromophores.  The solutions of egs. S5 for the Re-V, Re-Il1l, Re-1V, and Ru, are calculated as
follows:
(1) the decay function of Re-V is

Re-V(t) = 2(Re- V,)e ™ (S9)
(2) the decay function of Re-111 is

Re- ()= Ao ™™ +Agre SRR Asren s (S10)
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where Aire-ini, Azre-in @and Ag ge-1 are the pre-exponential factors that were defined as follows:

2k k (Ru-Re5™)

Ao = i) °
k_k (Ru-Re5™ S+2k_ —
A2Re-||| =——T l( )To - m /. Bo (S11)
(a—B-wu 2u
k, .k (Ru-Re5™ S+2k, +
A3Re-||| = l( )To + ~ Bo
(a-pB+u)u 2p
(3) the decay function of Re-1V is
Re - IV(t) = AlRe—IVeﬂzt + AZRe—IVei(ﬂﬂl)t + 'ABRe—IVei(ﬂiﬂ)t (812)

where Azre-1v, Az re-tv aNd Az ge-v are the pre-exponential factors that were calculated as follows:

_ 2(a—pB+6)k(Ru- Re57*)T

Agev =
VT (a-pru)a-p-p)
(0 + )k (Ru-Re5™) . 2u+25-k
- T "B 513
Aorev 2a—B— 1) ot 2 0 ( )
A = (6 — 1)k, (Ru - Re57*)T N 2u—25+k, B
Re-1ll (Ot—,B+,U),U 0 2,U 0]
(4) the decay function of Ru is
Ru(t) = fq,, (t)e =" (514)
Rul
where
t
fRul(t) = fRuZ(t) +L fRu3(S)ds (515)

The first and the second term in egs. S15 should be substituted with the following:
fRuZ(t) = Ruo

1
fRuS = 2 fRu4 S16
O s ™ (519

—(ak, Bk, —
frua(S) = Age (@l + Apr€ (Brake)t + Ay, (fpke)t

where Airu, Azry and Asgry are the pre-exponential factors that were calculated as follows:
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_ ky(Ru-Re5™ }{k,(Ru-Re5" )k, —(a— B+ 5)k;(Ru - Re57+)}]_|_

=2[k,(Ru-Re5™
A =2 (RUZREST) (@—pa—p—u)

_ ky(Ru-Re5™ ){(5+ p)ky(Ru-Re5™) —k,(Ru-Re5™ )k, -

0

Aoy

(a=B—-wu
_ 7+ _ _ 7+ _ _
2k, (Ru-Re5™)(2k,, — £+ 3) + ks (Ru-Re5™)(k,, =21 —25) B, (S17)
2
k,(Ru-Re5™){(u—5)k,(Ru-Re5™) +k,(Ru-Re5 )k
A3Ru = TO
(a—B+mu
. k,(Ru-Re5™)(2k  + u+6)+Kk,(Ru-Re5™) (K +2u+25) B
2u 0
Using the following equation for the exponential functions,
—kt —(m—k)t 1 —kt —mt
e 're dt=——(>e" —e™) (S18)
0 m—k
Ru(t) is represented by the sum of the four exponential functions:
Ru(t)=C,pe " +C,p e @ +Cpr @ V' +Cp e V™" (S19)
where Ciry, Coru, Caru, and Cygry are the pre-exponential factors that were calculated as follws:
ClRu — RUO + AiRu + A2Ru + AsRu
a_kRu ﬂ+/u_kRu ﬂ_;u_kRu
Copy = 2280 (520)
o —Kg,
Cary = Por
/B +HU— kRu
Ciru =~ alt
ﬁ —H— kRu

The observed emission intensity in the emission decay measurement should be proportional to the linear
combination of the concentrations of the excited states Re-V(t), Re-lli(t), Re-IV(t) and Ru(t).
Therefore the emission decay function should follow the sum of no more than four exponential

functions, as follows:
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I,()=Ae”+ 4, + 4,7 + 4,7 (S21)
where

Kypg = & =Ko, + K (RU-RE5"") +k, (Ru-Re5™)

Kypp = B+ 11 = %(ZKRe-III +2k,, +k,(Ru-Re5"") +k,(Ru-Re5"") + \/4km2 +(k,(Ru-Re5"") —k,(Ru-Re5™))* (S22)

Ko = 8 — 1 = %(2|<Re_,V +2k,, +k,(Ru-Re5"") +k,(Ru-Re5™) —\/4ka +(k,(Ru-Re5") —k,(Ru-Re5™))?

I(obs4 = kRu

and A, Ay, Az, and A, are the parameters that represent the contributions of each of the exponential

components.

The energy-transfer rate constants are derived as a solution of the set of eqs S22, as follows:

kl(Ru - Re57+) = kobs1 - kRe—V - kRu

a1
k,(Ru-Re5™) = E[(kobSZ +Kopg) = 2(Kge + Ky ) + \/(kobsz —Kopss)® =4k, ]
(S23)

K, (RU=RES™) = (K +Kup) ~ 2Ky ) =K — i) =2k 7]

k,(Ru-Re5™) =kg,

Because all of the observed decay rate constants, Kopsi, Kobs2, Kobss and Kopsa Should be positive real
numbers, the following limiting condition exists for the rate constants, ky(Ru-Re5'"), ks(Ru-Re5’") and
Kim:

(kypo =K opa)’ —4k,> >0 (S24)
Therefore, the energy-migration rate between the Re-lIl and Re-1V chromophores, ky, has the
following upper limit:

kosz — kobs3

2 (S25)
_L4x107s7-6.7x10°%" _ o o6

2

k, <
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