Supporting Information

New Light-Harvesting Molecular Systems Constructed with a Ru(II) Complex and a Linear-shaped Re(I) Oligomer

Youhei Yamamoto, Yusuke Tamaki, Tatsuto Yui, Kazuhide Koike,^{*} and Osamu Ishitan^{*}

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology,

2-12-1-E1-9 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan, CREST, Japan Science and Technology

Agency, and National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa,

Tsukuba, Ibaraki 305-8569, Japan

The authors of reference 9: Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W.

Figure S1. ESI-MS spectrum of **Ru-Re5**⁷⁺(PF₆)₇ dissolved in MeCN.

Figure S2. Peaks corresponding to $[\mathbf{M} + (\mathbf{PF_6})]^{6+}$ in the ESI-TOFMS spectrum of **Ru-Re5**⁷⁺(PF₆)₇ (a), and the calculated isotope distribution pattern (b).

Figure S3. ESI-MS spectrum of **Ru-Re3A**⁵⁺(PF₆)₅ dissolved in MeCN.

Figure S4. UV/vis absorption spectra of **Ru-Re3A**⁵⁺ (black line), **Ru-Re3B**⁵⁺ (red line) and **Ru-Re5**⁷⁺ (blue line) in MeCN solutions.

Figure S5. Emission spectra from degassed MeCN solutions containing the Ru(II)-Re(I) multinuclear complexes by excitation using 350- and 480-nm light and the corresponding Re(I) oligomers by excitation using 350-nm light: (a) **Ru-Re3B**⁵⁺ and **Re3**³⁺; (b) **Ru-Re5**⁷⁺ and **Re5**⁵⁺. They are standardized by the number of absorbed photons at the excitation wavelength.

Calculations of the energy transfer rate constants from the terminal Re(I) unit to the interior Re(I) unit (k_1 (Re3³⁺)) and the radiative and non-radiative rates from each Re(I) units in Re3³⁺.

The emission decay of Re3^{3+} could be fitted with the following double-exponential functions: with τ = 15 ns and 893 ns which can be attributed to the emission from the terminal and the interior Re(I) units, respectively.

$$I(t) = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$$
(S1)

Therefore, the energy transfer rate constant from the excited terminal Re(I) unit to the interior Re(I) unit (k_1 (Re3³⁺) in Scheme 3e) can be calculated using the summed rate constant of the radiative and non-radiative decay from the terminal Re(I) unit (k_r (Re3³⁺, terminal) + k_{nr} (Re3³⁺, terminal)) and the following equation:

$$k_1(\text{Re}3^{3+}) = \frac{1}{15 \times 10^{-9}} - \left[(k_r(\text{Re}3^{3+}, \text{terminal}) + k_{nr}(\text{Re}3^{3+}, \text{terminal})) \right]$$
 (S2)

The emission decay of the dimer Re(I) complex, $[(CO)_3(dmb)Re-PP-Re(dmb)(CO)_3]^{2+}$ (**Re2**²⁺), has a similar structure as the terminal Re(I) unit in **Re3**³⁺ and could be fitted to a single-exponential with 537 ns. If $[k_r(Re3^{3+}, terminal) + k_{nr}(Re3^{3+}, terminal)]$ is the same to that of **Re2**²⁺ (1.9×10⁶s⁻¹), the $k_1(Re3^{3+})$ can be calculated as $6.5 \times 10^7 s^{-1}$.

Calculation of the energy transfer efficiency in Ru-Re3A⁵⁺

The energy transfer efficiencies from the Re(I) units to the Ru(II) unit in **Ru-Re3A**⁵⁺ were calculated using the following two equations, and all of the estimated energy transfer rate constants are given in the Results and Discussion section.

From the excited terminal Re(I) unit:

 η_{ET1}

$$=\frac{k_{1}(\mathrm{Ru}-\mathrm{Re3A}^{3+})+k_{3}(\mathrm{Ru}-\mathrm{Re3A}^{3+})}{k_{r}(\mathrm{Ru}-\mathrm{Re3A}^{3+},\mathrm{terminal})+k_{1}(\mathrm{Ru}-\mathrm{Re3A}^{3+})+k_{3}(\mathrm{Ru}-\mathrm{Re3A}^{3+})}$$
(S3)

$$=\frac{6.5\times10^{7}+5.8\times10^{7}}{1.1\times10^{6}+6.5\times10^{7}+5.8\times10^{7}}$$
$$=99\%$$

From the interior Re(I) unit:

$$\eta_{\text{ET2}} = \frac{k_2(\text{Ru} - \text{Re3A}^{3+})}{k_r(\text{Ru} - \text{Re3A}^{3+}, \text{interior}) + k_{nr}(\text{Ru} - \text{Re3A}^{3+}, \text{interior}) + k_2(\text{Ru} - \text{Re3A}^{3+})}$$

$$= \frac{6.4 \times 10^6}{1.1 \times 10^6 + 6.4 \times 10^6}$$

$$= 85 \%$$
(S4)

Calculation of the emission decay kinetics in Ru-Re5⁷⁺

The **Ru-Re5**⁷⁺ is constructed with the following four different types of chromophores: the terminal Re(I) unit (**Re-V**), two interior Re(I) units (**Re-III** and **Re-IV**) and the Ru(II) unit (**Ru**) (Scheme S1).

After UV irradiation, all of the chromophores can absorb photons and become the ³MLCT excited state. Each of the excited states is relaxed through the intrinsic decay process (radiative and non-radiative relaxation) and various energy-transfer processes, and these time profiles should follow the set of rate equations (eqs. S5). We define k_{Ru} , $k_{\text{Re-V}}$, $k_{\text{Re-III}}$, and $k_{\text{Re-IV}}$ as the intrinsic decay rates of **Ru**, **Re-V**, **Re-III** and **Re-IV** excited states, respectively. The energy-transfer rate between the **Re-III** and **Re-IV** chromophores is represented by k_{m} . The following relationships are true:

$$\frac{d\mathrm{Ru}(t)}{dt} = -k_{\mathrm{Ru}}\mathrm{Ru}(t) + k_{2}(\mathrm{Ru} - \mathrm{Re}5^{7+})\mathrm{Re} - \mathrm{III}(t) + k_{3}(\mathrm{Ru} - \mathrm{Re}5^{7+})\mathrm{Re} - \mathrm{IV}(t) + k_{4}(\mathrm{Ru} - \mathrm{Re}5^{7+})\mathrm{Re} - \mathrm{V}(t)$$

$$\frac{d\mathrm{Re} - \mathrm{V}(t)}{dt} = -(k_{\mathrm{Re}-\mathrm{V}} + k_{1}(\mathrm{Ru} - \mathrm{Re}5^{7+}) + k_{4}(\mathrm{Ru} - \mathrm{Re}5^{7+}))\mathrm{Re} - \mathrm{V}(t)$$

$$\frac{d\mathrm{Re} - \mathrm{III}(t)}{dt} = -(k_{\mathrm{Re}-\mathrm{III}} + k_{m} + k_{2}(\mathrm{Ru} - \mathrm{Re}5^{7+}))\mathrm{Re} - \mathrm{III}(t) + k_{m}\mathrm{Re} - \mathrm{IV}(t)$$

$$\frac{d\mathrm{Re} - \mathrm{IV}(t)}{dt} = -(k_{\mathrm{Re}-\mathrm{II}} + k_{m} + k_{3}(\mathrm{Ru} - \mathrm{Re}5^{7+}))\mathrm{Re} - \mathrm{III}(t) + k_{m}\mathrm{Re} - \mathrm{III}(t) + k_{1}(\mathrm{Ru} - \mathrm{Re}5^{7+})\mathrm{Re} - \mathrm{V}(t)$$
(S5)

where Ru(t), Re-V(t), Re-III(t), and Re-IV are the concentration of the ³MLCT excited states of the **Ru**,

Re-V, Re-III, and Re-IV chromophores at time t.

The rate equations (eqs. S5) may be rewritten:

$$\frac{d\operatorname{Ru}(t)}{dt} = -k_{\operatorname{Ru}}\operatorname{Ru}(t) + k_{2}(\operatorname{Ru} - \operatorname{Re}5^{7+})\operatorname{Re-III}(t) + k_{3}(\operatorname{Ru} - \operatorname{Re}5^{7+})\operatorname{Re-IV}(t) + k_{4}(\operatorname{Ru} - \operatorname{Re}5^{7+})\operatorname{Re-V}(t)$$

$$\frac{d\operatorname{Re-V}(t)}{dt} = -\alpha\operatorname{Re-V}(t)$$

$$\frac{d\operatorname{Re-III}(t)}{dt} = -(\beta - \delta)\operatorname{Re-III}(t) + k_{m}\operatorname{Re-IV}(t)$$

$$\frac{d\operatorname{Re-IV}(t)}{dt} = -(\beta + \delta)\operatorname{Re-IV}(t) + k_{m}\operatorname{Re-III}(t) + k_{1}(\operatorname{Ru} - \operatorname{Re}5^{7+})\operatorname{Re-V}(t)$$
(S5')

where the parameters α , β , δ , and μ are defined as follows:

$$\alpha = k_{\text{Re-V}} + k_1(\text{Ru} - \text{Re5}^{7+}) + k_4(\text{Ru} - \text{Re5}^{7+})$$

$$\beta = \frac{1}{2} \{ (k_{\text{Re-III}} + k_m + k_2(\text{Ru} - \text{Re5}^{7+})) + (k_{\text{Re-IV}} + k_m + k_3(\text{Ru} - \text{Re5}^{7+})) \}$$

$$\delta = \frac{k_3(\text{Ru} - \text{Re5}^{7+}) - k_2(\text{Ru} - \text{Re5}^{7+})}{2}$$

$$\mu = \frac{1}{2} \sqrt{4k_m^2 + (k_3(\text{Ru} - \text{Re5}^{7+}) - k_2(\text{Ru} - \text{Re5}^{7+}))^2}$$
(S7)

Scheme S1. Relaxation processes in **Ru-Re5**⁷⁺.

The decay functions of the excited states at time t are calculated as the solution of eqs. S5 or S5' rate equations.

The initial concentrations of the excited states are assumed to be follows:

$$Ru(0) = Ru_0$$

$$Re - V(0) = 2(Re - V_0)$$

$$Re - III(0) = Re - III_0$$

$$Re - IV(0) = 2(Re - IV_0)$$
(S8)

The set of rate equations (eqs. S5) can be solved analytically. The solutions are the sums of the one to four exponential functions that have the common decay rate constants (α , $\beta + \mu$, $\beta - \mu$, and k_{Ru}) for each chromophores. The solutions of eqs. S5 for the **Re-V**, **Re-III**, **Re-IV**, and **Ru**, are calculated as follows:

(1) the decay function of **Re-V** is

$$\operatorname{Re-V}(t) = 2(\operatorname{Re-V}_0)e^{-\alpha t}$$
(S9)

(2) the decay function of **Re-III** is

$$\operatorname{Re-III}(t) = \operatorname{A}_{1\operatorname{Re-III}} e^{-\alpha t} + \operatorname{A}_{2\operatorname{Re-III}} e^{-(\beta+\mu)t} + \operatorname{A}_{3\operatorname{Re-III}} e^{-(\beta-\mu)t}$$
(S10)

where A_{1Re-III}, A_{2Re-III} and A_{3 Re-III} are the pre-exponential factors that were defined as follows:

$$A_{\rm IRe-III} = \frac{2k_m k_1 ({\rm Ru} - {\rm Re5}^{7+})}{(\alpha - \beta + \mu)(\alpha - \beta - \mu)} T_0$$

$$A_{\rm 2Re-III} = -\frac{k_m k_1 ({\rm Ru} - {\rm Re5}^{7+})}{(\alpha - \beta - \mu)\mu} T_0 - \frac{\delta + 2k_m - \mu}{2\mu} B_0$$

$$A_{\rm 3Re-III} = \frac{k_m k_1 ({\rm Ru} - {\rm Re5}^{7+})}{(\alpha - \beta + \mu)\mu} T_0 + \frac{\delta + 2k_m + \mu}{2\mu} B_0$$
(S11)

(3) the decay function of **Re-IV** is

Re - IV(t) =
$$A_{1\text{Re-IV}}e^{-\alpha t} + A_{2\text{Re-IV}}e^{-(\beta+\mu)t} + A_{3\text{Re-IV}}e^{-(\beta-\mu)t}$$
 (S12)

where A_{1Re-IV} , $A_{2 Re-IV}$ and $A_{3 Re-IV}$ are the pre-exponential factors that were calculated as follows:

$$A_{\text{IRe-IV}} = -\frac{2(\alpha - \beta + \delta)k_1(\text{Ru} - \text{Re5}^{7+})}{(\alpha - \beta + \mu)(\alpha - \beta - \mu)}T_0$$

$$A_{\text{2Re-IV}} = -\frac{(\delta + \mu)k_1(\text{Ru} - \text{Re5}^{7+})}{2(\alpha - \beta - \mu)\mu}T_0 + \frac{2\mu + 2\delta - k_m}{2\mu}B_0$$
(S13)
$$A_{\text{3Re-III}} = \frac{(\delta - \mu)k_1(\text{Ru} - \text{Re5}^{7+})}{(\alpha - \beta + \mu)\mu}T_0 + \frac{2\mu - 2\delta + k_m}{2\mu}B_0$$
(4) the decay function of **Ru** is

$$\operatorname{Ru}(t) = f_{\operatorname{Rul}}(t)e^{-k_{\operatorname{Ru}}t}$$
(S14)

where

$$f_{\text{Ru1}}(t) = f_{\text{Ru2}}(t) + \int_0^t f_{\text{Ru3}}(s) ds$$
(S15)

The first and the second term in eqs. S15 should be substituted with the following:

$$f_{Ru2}(t) = Ru_{0}$$

$$f_{Ru3}(s) = \frac{1}{2(\alpha - \beta - \mu)(\alpha + \beta - \mu)\mu^{2}} f_{Ru4}(s)$$

$$f_{Ru4}(s) = A_{IRu}e^{-(\alpha - k_{r})s} + A_{2Ru}e^{-(\beta + \mu - k_{r})t} + A_{3Ru}e^{-(\beta - \mu - k_{r})t}$$
(S16)

where A_{1Ru} , A_{2Ru} and A_{3Ru} are the pre-exponential factors that were calculated as follows:

$$A_{1Ru} = 2[k_4(Ru - Re5^{7+}) - \frac{k_1(Ru - Re5^{7+})\{k_2(Ru - Re5^{7+})k_m - (\alpha - \beta + \delta)k_3(Ru - Re5^{7+})\}}{(\alpha - \beta + \mu)(\alpha - \beta - \mu)}]T_0$$

$$A_{2Ru} = \frac{k_1 (\text{Ru} - \text{Re5}^{7+}) \{ (\delta + \mu) k_3 (\text{Ru} - \text{Re5}^{7+}) - k_2 (\text{Ru} - \text{Re5}^{7+}) k_m}{(\alpha - \beta - \mu) \mu} T_0$$

$$- \frac{2k_2 (\text{Ru} - \text{Re5}^{7+}) (2k_m - \mu + \delta) + k_3 (\text{Ru} - \text{Re5}^{7+}) (k_m - 2\mu - 2\delta)}{2\mu} B_0 \qquad (S17)$$

$$A_{3Ru} = \frac{k_1(Ru - Re5^{-7})((\mu - \delta)k_3(Ru - Re5^{-7}) + k_2(Ru - Re5^{-7})k_m}{(\alpha - \beta + \mu)\mu}T_0$$
$$+ \frac{k_2(Ru - Re5^{-7})(2k_m + \mu + \delta) + k_3(Ru - Re5^{-7})(k_m + 2\mu + 2\delta)}{2\mu}B_0$$

Using the following equation for the exponential functions,

$$e^{-kt} \int_{0}^{t} e^{-(m-k)t} dt = \frac{1}{m-k} (e^{-kt} - e^{-mt})$$
(S18)

Ru(t) is represented by the sum of the four exponential functions:

$$Ru(t) = C_{1Ru}e^{-krt} + C_{2Ru}e^{-\alpha t} + C_{3Ru}e^{-(\beta+\mu)t} + C_{4Ru}e^{-(\beta-\mu)t}$$
(S19)

where C_{1Ru} , C_{2Ru} , C_{3Ru} , and C_{4Ru} are the pre-exponential factors that were calculated as follws:

$$C_{1Ru} = Ru_{0} + \frac{A_{1Ru}}{\alpha - k_{Ru}} + \frac{A_{2Ru}}{\beta + \mu - k_{Ru}} + \frac{A_{3Ru}}{\beta - \mu - k_{Ru}}$$

$$C_{2Ru} = -\frac{A_{1Ru}}{\alpha - k_{Ru}}$$

$$C_{3Ru} = -\frac{A_{2Ru}}{\beta + \mu - k_{Ru}}$$
(S20)

$$C_{4\mathrm{Ru}} = -\frac{A_{3\mathrm{Ru}}}{\beta - \mu - k_{\mathrm{Ru}}}$$

The observed emission intensity in the emission decay measurement should be proportional to the linear combination of the concentrations of the excited states Re-V(t), Re-III(t), Re-IV(t) and Ru(t). Therefore the emission decay function should follow the sum of no more than four exponential functions, as follows:

$$I_{em}(t) = A_1 e^{-\alpha t} + A_2 e^{-(\beta + \mu)t} + A_3 e^{-(\beta - \mu)t} + A_4 e^{-k_r t}$$
(S21)

where

$$k_{obs1} = \alpha = k_{\text{Re-V}} + k_1(\text{Ru} - \text{Re5}^{7+}) + k_4(\text{Ru} - \text{Re5}^{7+})$$

$$k_{obs2} = \beta + \mu = \frac{1}{2}(2k_{\text{Re-III}} + 2k_m + k_2(\text{Ru} - \text{Re5}^{7+}) + k_3(\text{Ru} - \text{Re5}^{7+}) + \sqrt{4k_m^2 + (k_2(\text{Ru} - \text{Re5}^{7+}) - k_3(\text{Ru} - \text{Re5}^{7+}))^2}$$

$$k_{obs3} = \beta - \mu = \frac{1}{2}(2k_{\text{Re-IV}} + 2k_m + k_2(\text{Ru} - \text{Re5}^{7+}) + k_3(\text{Ru} - \text{Re5}^{7+}) - \sqrt{4k_m^2 + (k_2(\text{Ru} - \text{Re5}^{7+}) - k_3(\text{Ru} - \text{Re5}^{7+}))^2}$$

$$k_{obs4} = k_{\text{Ru}}$$
(S22)

and A_1 , A_2 , A_3 , and A_4 are the parameters that represent the contributions of each of the exponential components.

The energy-transfer rate constants are derived as a solution of the set of eqs S22, as follows:

$$k_{1}(\operatorname{Ru} - \operatorname{Re5}^{7+}) = k_{obs1} - k_{\operatorname{Re-V}} - k_{\operatorname{Ru}}$$

$$k_{2}(\operatorname{Ru} - \operatorname{Re5}^{7+}) = \frac{1}{2} [(k_{obs2} + k_{obs3}) - 2(k_{\operatorname{Re-III}} + k_{m}) + \sqrt{(k_{obs2} - k_{obs3})^{2} - 4k_{m}^{2}}]$$

$$k_{3}(\operatorname{Ru} - \operatorname{Re5}^{7+}) = \frac{1}{2} [(k_{obs2} + k_{obs3}) - 2(k_{\operatorname{Re-IV}} + k_{m}) - \sqrt{(k_{obs2} - k_{obs3})^{2} - 4k_{m}^{2}}]$$

$$k_{4}(\operatorname{Ru} - \operatorname{Re5}^{7+}) = k_{\operatorname{Ru}}$$
(S23)

Because all of the observed decay rate constants, k_{obs1} , k_{obs2} , k_{obs3} and k_{obs4} should be positive real numbers, the following limiting condition exists for the rate constants, k_2 (Ru-Re5⁷⁺), k_3 (Ru-Re5⁷⁺) and k_m :

$$(k_{obs2} - k_{obs3})^2 - 4k_m^2 \ge 0$$
(S24)

Therefore, the energy-migration rate between the **Re-III** and **Re-IV** chromophores, k_m , has the following upper limit:

$$k_m \le \frac{k_{obs2} - k_{obs3}}{2}$$

$$= \frac{1.4 \times 10^7 s^{-1} - 6.7 \times 10^6 s^{-1}}{2} = 3.6 \times 10^6 s^{-1}$$
(S25)