Supporting Information

A New Class of Antitumor *trans*-amine-amidine-Pt(II) Cationic Complexes: Influence of Chemical Structure and Solvent on *in vitro* and *in vivo* Tumor Cell Proliferation

Cristina Marzano[‡], Silvia Mazzega Sbovata[§], Valentina Gandin[‡], Davide Colavito[†], Elda Del Giudice[†], Rino A. Michelin[§], Alfonso Venzo[#], Roberta Seraglia[#], Franco Benetollo[◊], Mariano Schiavon[‡], Roberta Bertani *[§]

Table of Contents Graphic

A New Class of Antitumor *trans*-Amine-Amidine-Pt(II) Cationic Complexes: Influence of Chemical Structure and Solvent on *in vitro* and *in vivo* Tumor Cell Proliferation

Content :

Elemental analyses;

Fragmentation pathways of compounds 1, 2 and 3 dissolved in CH₃CN under ESI conditions (Scheme SI 1);

Crystal data and structure refinement parameters (Table SI 1);

Selected bond lengths and angles (Table SI 2);

Crystal packing (Figure SI 1);

Crystallographic details in the form of a CIF file.

This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

S1 Elemental analyses Compound 1 :

trans-[Pt(NH₂CHCH₂CH₂)₂{N(H)=C(CH₃)N(H)CHCH₂CH₂}₂]²⁺[Cl⁻]₂ Anal. Calc. for C₁₆H₃₈N₆Cl₂O₂Pt (MW 612.51) : C, 31.38; H, 6.25; N, 13.72. Found: C, 31.40; H, 6.27; N, 13.74.

Compound 2

trans-[Pt(NH₂CH(CH₂)₃CH₂)₂{N(H)=C(CH₃)N(H)CH(CH₂)₃CH₂}₂]²⁺[Cl⁻]₂ Anal.Calc. for C₂₄H₅₄N₆Cl₂O₂Pt (MW 724.71) : C, 39.79; H, 7.51; N, 11.60. Found: C, 39.82; H, 7.50; N, 11.62.

Compound 3

trans-[Pt(NH₂CH(CH₂)₄CH₂)₂{N(H)=C(CH₃)N(H)CH(CH₂)₄CH₂}₂]²⁺[Cl⁻]₂ Anal.Calc. for C₂₈H₆₂N₆Cl₂O₂Pt (MW 780.81): C, 43.07; H, 8.00; N, 10.76. Found: C, 43.08; H, 7.99; N, 10.79.

S2

Scheme SI 1 : The fragmentation pathways of compounds 1, 2 and 3 dissolved in CH₃CN under ESI conditions

S3

Figure SI 1. Crystal packing viewed down *b* axis of *trans*-[Pt(NH₂CHCH₂CH₂)₂{N(H)=C(CH₃)N(H)CHCH₂CH₂}₂]²⁺[Cl⁻]₂ . 2H₂O (1). The two Cl anions and the two water molecules were in disordered position, with an occupancy factor of 70% and 30%, respectively.

S4

 Table SI 1. Crystal Data and Structure Refinement Parameters for Compound 1

compound	1	
empirical formula	$C_{16}H_{38}N_6O_2Cl_2Pt$	
fw	612.52	
T,K	293(2)	
λ (Å)	0.71073	
crystal system	triclinic	
space group	PĪ	
a (Å)	7.336(2)	
<i>b</i> (Å)	8.228(2)	
<i>c</i> (Å)	10.622(3)	
α (deg)	83.82(2)	
β (deg)	103.76(2)	
$\gamma(\text{deg})$	103.21(2)	
$V(\text{\AA}^3)$	605.3(3)	
Ζ	1	
$\rho_{\text{calc}}, \text{g cm}^{-3}$	1.680	
<i>F</i> (000)	304	
θ range/°	3-28	
μ (Mo K α), mm ⁻¹	6.038	
No. reflections collected	3053	
No. observed $[I \ge 2\sigma(I)]$	2888	
$R (F^2)^a$	0.030	
$Rw (F^2)^b$	0.077	
GOF	1.107	

 ${}^{a}R = \sum (|Fo| - |Fc|) / \sum |Fo|, \ {}^{b}R_{W} = [\sum \{w(|Fo|^{2} - |Fc|^{2})^{2}\} / \sum \{w(|Fo|^{2})^{2}\}]^{1/2}$

SI 5	
Table	SI 2. Selected bond lengths (Å) and angles (°) for compound 1

Pt-N(1)	2.055(4)	N(1)-Pt-N(2)	87.7(2)
Pt-N(2)	2.006(4)	N(1)-Pt-N(2)'	92.3(2)
N(1)-C(1)	1.458(7)	C(1)-N(1)-Pt	114.5(3)
N(2-C(4)	1.297(6)	C(4)-N(3)-C(6)	123.7(5)
N(3)-C(4)	1.341(7)	C(4)-N(2)-Pt	127.1(3)
N(3)-C(6)	1.434(7)	N(1)-C(1)-C(2)	119.1(5)
C(1)-C(2)	1.462(8)	N(1)-C(1)-C(3)	119.9(5)
C(1)-C(3)	1.486(8)	N(2)-C(4)-N(3)	120.3(4)
C(2)-C(3)	1.490(9)	N(2)-C(4)-C(5)	120.8(5)
C(4)-C(5)	1.498(7)	N(3)-C(4)-C(5)	119.0(5)
C(6)-C(8)	1.473(9)	N(3)-C(6)-C(8)	119.3(7)
C(6)-C(7)	1.485(9)	N(3)-C(6)-C(7)	116.4(6)
C(8)-C(7)	1.467(9)		
' at −x,-y,-z			