Supporting Information for:

Catalytic C-H Bond Stannylation: A New Regioselective Pathway to C-Sn Bonds via C-H Bond Functionalization

Meghan E. Doster, Jillian A. Hatnean, Tamara Jeftic, Sunjay Modi, Samuel A. Johnson

Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada, N9B 3P4.

General Procedures. All reactions were performed under an atmosphere of dry oxygenfree dinitrogen by means of standard Schlenk or glovebox techniques. Benzene- d_6 was dried by refluxing with Na/K and was then vacuum transferred and degassed by three freeze-pump-thaw cycles. All other solvents were purchased anhydrous from Aldrich and further purified using a Grubbs' type column system (1), produced by Innovative Technology. ¹H, ¹³C{¹H}, ¹⁹F{¹H}, and ¹¹⁹Sn{¹H} NMR spectra were recorded on a Bruker AMX Spectrometer operating at 300 MHz or where stated at 500 MHz with respect to proton nuclei. ¹H NMR spectra were referenced to residual protons (C₆D₆, δ 7.15, CDCl₃, δ 7.24) with respect to tetramethylsilane at δ 0.00. ¹³C{¹H} spectra were referenced relative to solvent resonances (C_6D_6 , δ 128.0). ¹⁹ $F\{^1H\}$ NMR spectra were referenced to an external sample of 80 % CCl₃F in CDCl₃ at δ 0.0. ¹¹⁹Sn{¹H} NMR spectra were referenced to an external sample of SnMe₄ at δ 0.0. C₆D₆ was purchased from Cambridge Isotope Laboratory. The compounds pentafluorobenzene, 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrafluorobenzene, 1,3,5-, 1,2,4-, and 1,2,3-trifluorobenzene, 1,2-, 1.3-. 1,4-difluorobenzene, 2,3,5,6-tetrafluoropyridine, and fluorobenzene. tributyl(vinyl)tin, and Me₆Sn₂ were purchased from Aldrich. The compounds cistributyl(1-propenyl)tin and *cis-trans*-tributyl(1-propenyl)tin were purchased from Alfa Aesar. The compounds PⁱPr₃, PEt₃, PCy₃, and PⁱBu₃ were purchased from Strem Chemicals. The compounds MeNC₅H₄NⁱPr (2), Me₃Sn(vinyl) (3), Ni(COD)₂ (4), Pt(COD)₂ (5), Pt(PCy₃)₂ (6), C₆F₅D (7) and C₆F₄HD (8) were prepared by literature procedures. High Resolution Mass Spectroscopy was performed at McMaster University, Hamilton, Ontario, Canada. Note the method used for HRMS was positive-ion electron impact (EI), this is a high impact method and the loss of a butyl group for compounds **1-22** can be expected as EI often brings about the loss of R from R₃SnR'.(9, 10)

It should be noted that for reactions where a single product was obtained, passing the crude mixture through a silica plug and removal of volatiles in vacuo was sufficient in purifying the resulting oil as confirmed by ^{1}H , $^{19}F\{^{1}H\}$, and $^{31}P\{^{1}H\}$ NMR spectroscopy. This technique suitably removed all of the nitrogen donor or $P^{i}Pr_{3}$, and COD. In the reactions where multiple products were obtained, such as in the synthesis of the di- or trisubstituted products, further purification by a C_{18} reverse-phase silica column was used to separate the mono-substituted product from the di- or tri-substituted products. The monosubstituted products elute from the column first through numerous methanol washes; subsequent washes with toluene suitably removed the di- and tri-substituted products from the column. Removal of the volatiles in vacuo resulted in pure products as confirmed by ^{1}H and $^{19}F\{^{1}H\}$ NMR spectroscopy.

Synthesis of tributyl(2,3,4,5,6-pentafluorophenyl)stannane, 1. A solution of pentafluorobenzene (0.187 g, 1.11 mmol) and tributyl(vinyl)tin (0.176 g, 0.555 mmol) in 0.6 g of C_6D_6 was added to $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol) and $Ni(COD)_2$ (0.004 g, 0.017 mmol). The solution was heated at 35 °C for 1 h. The reaction mixture was

filtered through silica and the solvent was removed, leaving a colourless oil. (95 % yield by NMR spectroscopy; isolated 0.178 g, 70 % yield). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.88 (t, 9H, CH₃, ${}^{3}J_{HH} = 7.0 \text{ Hz}$); 1.16 (m with Sn satellites, 6H, SnCH₂, ${}^{2}J_{HSn} =$ 54.0 Hz, ${}^{3}J_{HH} = 8.3$ Hz); 1.31 (dt, 6H, SnCH₂CH₂CH₂, ${}^{3}J_{HH} = 7.7$ Hz, ${}^{3}J_{HH} = 7.2$ Hz); 1.51 (tt, 6H, SnCH₂CH₂, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{3}J_{HH} = 7.7$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –121.3 (AA'MM'N second order with Sn satellites, 2F, 2,6–Ar–F, $^3J_{\rm FSn}$ = 7.7 Hz); -153.0 (tt with Sn satellites, 1F, 4–Ar–F, ${}^{3}J_{FF}$ = 19.9 Hz, ${}^{4}J_{FF}$ = 1.8 Hz, ${}^{5}J_{FSn}$ = 7.4 Hz); -160.7 (AA'MM'N second order, 2F, 3,5–Ar–F). $^{13}C\{^{1}H\}$ NMR (C_6D_6 , 25 °C, 75.47 MHz): δ 11.7 (t with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 359$ Hz, , ${}^{1}J_{\text{CSn}(117)} = 343$ Hz, $^{4}J_{CF} = 2.0 \text{ Hz}$); 13.7 (s, CH_{3}); 27.5 (s with Sn satellites, SnCH₂ CH_{2} , $^{2}J_{CSn(119)} = 65.9 \text{ Hz}$, $^{2}J_{\text{CSn}(117)} = 63.1 \text{ Hz}$; 29.2 (s with Sn satellites, SnCH₂CH₂CH₂, $^{3}J_{\text{CSn}} = 21.3 \text{ Hz}$); 110.9 (t, 1-Ar-C, $^{2}J_{CF} = 53.7 \text{ Hz}$); 137.2 (dm, Ar-C, $^{1}J_{CF} = 254.9 \text{ Hz}$); 141.7 (dm, Ar-C, $^{1}J_{CF} =$ 251.1 Hz); 149.0 (dm, Ar–C, ${}^{1}J_{CF} = 234.1$ Hz). ${}^{119}Sn\{{}^{1}H\}$ NMR ($C_{6}D_{6}$, 25 °C, 111.96 MHz): $\delta -18.05$ (ttd, ${}^{3}J_{SnF} = 7.7$ Hz, ${}^{4}J_{SnF} = 2.0$ Hz, ${}^{5}J_{SnF} = 7.2$ Hz). Calcd for $C_{18}H_{27}F_5Sn$: [M⁺ – C_4H_8], 401.0351. Found: m/z 401.0346.

Alternate synthesis of tributyl(2,3,4,5,6-pentafluorophenyl)stannane, 1. A solution of pentafluorobenzene (0.057 g, 0.335 mmol) in toluene was added to a mixture of tributyl(vinyl)tin (0.106 g, 0.335 mmol), PⁱPr₃ (0.0054 g, 0.033 mmol), and Ni(COD)₂ (0.0046 g, 0.017 mmol). The solution is heated at 80 °C for 3 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (98 % yield by NMR spectroscopy).

Synthesis of tributyl(2,3,5,6-tetrafluorophenyl)stannane, 2. To a solution of 1,2,4,5tetrafluorobenzene (0.417 g, 2.76 mmol) and tributyl(vinyl)tin (0.176 g, 0.55 mmol) in $0.6 \text{ g of } C_6D_6 \text{ was added MeNC}_5H_4N^i\text{Pr} (0.005 \text{ g}, 0.033 \text{ mmol}) \text{ and Ni(COD)}_2 (0.004 \text{ g},$ 0.0167 mmol). The solution was heated at 35 °C for 30 min, filtered through silica and the solvent was removed, leaving a colourless oil. (95 % yield by NMR spectroscopy). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.86 (t, 9H, CH_3 , $^3J_{HH} = 7.4$ Hz); 1.19 (m with Sn satellites, 6H, $SnCH_2$. $^2J_{HSn} = 54.5$ Hz, $^3J_{HH} = 7.8$ Hz); 1.30 (qd, 6H, $SnCH_2CH_2CH_2$, $^{3}J_{HH} = 7.5 \text{ Hz}, ^{3}J_{HH} = 7.4 \text{ Hz}); 1.52 \text{ (tt, 6H, SnCH}_{2}\text{C}H_{2}, ^{3}J_{HH} = 7.8 \text{ Hz}, ^{3}J_{HH} = 7.5 \text{ Hz});$ 6.37 (tt, 1H, 4–Ar–H, ${}^{3}J_{HF} = 9.3$ Hz, ${}^{4}J_{HF} = 7.5$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): $\delta -122.4$ (AA'MM' second order, 2F, 2,6–Ar–F, ${}^{3}J_{SnF} = 6.0$ Hz); -138.4 (AA'MM' second order, 2F, 3,5–Ar–F, ${}^{4}J_{SnF} = 0.4 \text{ Hz}$). ${}^{13}C\{{}^{1}H\}$ NMR (C_6D_6 , 25 °C, 75.47 MHz): δ 11.5 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 359 \text{ Hz}$, ${}^{1}J_{\text{CSn}(117)} = 343 \text{ Hz}$); 13.8 (s, CH₃); 27.5 (s with Sn satellites, SnCH₂CH₂, ${}^{2}J_{CSn} = 64.4$ Hz); 29.2 (s with Sn satellites, $SnCH_2CH_2CH_2$, ${}^3J_{CSn} = 20.5 Hz$); 107.2 (t, 4-Ar-C, ${}^2J_{CF} = 23.0 Hz$); 118.7 (tt, 1-Ar-C, $^{2}J_{CF} = 48.7 \text{ Hz}, ^{3}J_{CF} = 3.4 \text{ Hz}); 145.8 \text{ (dm, 2,6-Ar-}C, ^{1}J_{CF} = 255.9 \text{ Hz}); 149.1 \text{ (dm, 3,5-$ Ar-C, ${}^{1}J_{CF} = 235.1 \text{ Hz}$). ${}^{119}Sn\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 111.96 MHz): δ -21.5 (t, ${}^{3}J_{SnF} =$ 6.0 Hz). Calcd for $C_{18}H_{28}F_4Sn$: $[M^+ - C_4H_9]$, 383.0445. Found: m/z 383.0445.

Alternate synthesis of tributyl(2,3,5,6-tetrafluorophenyl)stannane, 2. A solution of 1,2,4,5-tetrafluorobenzene (0.250 g, 1.7 mmol) in toluene was added to a mixture of tributyl(vinyl)tin (0.106 g, 0.335 mmol), PⁱPr₃ (0.0054 g, 0.033 mmol), and Ni(COD)₂ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 10 min. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (93 % yield by NMR spectroscopy, 7 % of 3).

Synthesis of 2,3,5,6-tetrafluorophenyl-1,4-bis(tributylstannane), 3. To a solution of 1,2,4,5-tetrafluorobenzene (0.083 g, 0.55 mmol) and tributyl(vinyl)tin (0.440 g, 1.39 mmol) in 0.6 g of C₆D₆ was added MeNC₅H₄N^{*i*}Pr (0.005 g, 0.033 mmol) and Ni(COD)₂ (0.004 g, 0.017 mmol). The solution was heated to 45 °C for 6 h, filtered through silica and the solvent removed, leaving a colourless oil. (85 % yield by NMR spectroscopy, 11% of **2**). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.85 (t, 9H, CH₃, ³J_{HH} = 7.4 Hz); 1.20 (m with Sn satellites, 6H, SnCH₂, ²J_{HSn} = 51.6 Hz, ³J_{HH} = 8.2 Hz); 1.30 (qt, 6H, SnCH₂CH₂, ³J_{HH} = 7.5 Hz, ³J_{HH} = 7.2 Hz); 1.54 (tt, 6H, SnCH₂CH₂, ³J_{HH} = 7.9 Hz, ³J_{HH} = 7.5 Hz). ¹⁹F{¹H} NMR (C₆D₆, 25 °C, 282.40 MHz): δ -112.3 (s with second order Sn satellites A₂A'₂, 4F, 2,3,5,6–Ar–F, ³J_{SnF} = 5.0 Hz). ¹³C{¹H} NMR (C₆D₆, 25 °C, 75.47 MHz): δ 11.1 (s with Sn satellites, SnCH₂, ¹J_{CSn(119)} = 359 Hz, ¹J_{CSn(117)} = 343 Hz); 13.4 (s, CH₃); 27.2 (s with Sn satellites, SnCH₂, ¹J_{CSn} = 63.8 Hz); 28.9 (s with Sn

satellites, SnCH₂CH₂CH₂, ${}^2J_{\text{CSn}} = 20.7 \text{ Hz}$); 119.1 (pentet, 1,3–Ar–C, ${}^2J_{\text{CF}} = 60.4 \text{ Hz}$, ${}^3J_{\text{CF}} = 21.7 \text{ Hz}$); 148.7 (dm, 2,3,5,6–Ar–C, ${}^1J_{\text{CF}} = 244.9 \text{ Hz}$). ${}^{119}\text{Sn}\{{}^1\text{H}\}$ NMR (C₆D₆, 25 °C, 111.96 MHz): δ –21.3 (AA'X₂X'₂ second order, ${}^3J_{\text{SnF}} = 5.0 \text{ Hz}$). Calcd for C₃₀H₅₄F₄Sn₂: [M⁺ – C₄H₉], 673.1501. Found: m/z 673.1518.

Alternate synthesis of 2,3,5,6-tetrafluorophenyl-1,4-bis(tributylstannane), 3. A solution of 1,2,4,5-tetrafluorobenzene (0.051 g, 0.335 mmol) and tributyl(vinyl)tin (0.265 g, 0.835 mmol) in toluene was added to a mixture of PⁱPr₃ (0.0054 g, 0.033 mmol) and Ni(COD)₂ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 8 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (99 % yield by NMR spectroscopy).

Synthesis of tributyl(2,3,4,6-tetrafluorophenyl)stannane, 4. To a solution of 1,2,3,5-tetrafluorobenzene (0.417 g, 2.76 mmol) and tributyl(vinyl)tin (0.176 g, 0.55 mmol) in 0.6 g of C_6D_6 was added MeNC₅H₄N^{*i*}Pr (0.005 g, 0.033 mmol) and Ni(COD)₂ (0.004 g, 0.017 mmol). The solution was heated to 35 °C for 40 min, filtered through silica and the solvent was removed, leaving a colourless oil. (95 % yield by NMR spectroscopy; isolated 0.200 g, 82 % yield). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.88 (t, 9H, CH_3 , $^3J_{HH}$ = 7.3 Hz); 1.18 (m with Sn satellites, 6H, SnC H_2 , $^2J_{HSn}$ = 7.3 Hz, $^3J_{HH}$ = 8.7 Hz); 1.32 (qt, 6H, SnC H_2 C H_2 C H_2 , $^3J_{HH}$ = 7.3 Hz, $^3J_{HH}$ = 7.7 Hz); 1.55 (tt, 6H, SnC H_2 C H_2 ,

 $^{3}J_{HH} = 8.7 \text{ Hz}, ^{3}J_{HH} = 7.6 \text{ Hz}); 6.17 \text{ (dddd, 1H, 5-Ar-}H, ^{3}J_{HF} = 10.8, ^{3}J_{HF} = 6.0 \text{ Hz}, ^{4}J_{HF}$ = 4.7 Hz, ${}^{5}J_{HF}$ = 2.4 Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –96.2 (td with Sn satellites, 1F, 6-Ar-F, ${}^{3}J_{FSn} = 3.5 \text{ Hz}$, ${}^{4}J_{FF} = 3.5 \text{ Hz}$, ${}^{5}J_{FF} = 13.0 \text{ Hz}$); -115.2 (ddd with Sn satellites, 1F, 4–Ar–F, ${}^{3}J_{FF} = 26.8 \text{ Hz}$, ${}^{4}J_{FF} = 7.0 \text{ Hz}$, ${}^{4}J_{FF} = 3.5 \text{ Hz}$, ${}^{5}J_{FSn} = 2.2 \text{ Hz}$); -132.3 (ddd with Sn satellites, 1F, 2–Ar–F, ${}^{3}J_{FSn} = 3.6$ Hz, ${}^{3}J_{FF} = 20.1$ Hz, ${}^{4}J_{FF} = 7.0$ Hz, ${}^{4}J_{FF} = 7.0$ 3.5 Hz); -165.9 (ddd with Sn satellites, 1F, 3-Ar-F, ${}^{3}J_{FF} = 20.1$ Hz, ${}^{3}J_{FF} = 26.8$ Hz, ${}^{4}J_{FSn}$ = 4.1 Hz, ${}^{5}J_{\text{FF}}$ = 13.0 Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 11.4 (t with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 362 \text{ Hz}$, ${}^{1}J_{\text{CSn}(117)} = 345 \text{ Hz}$ ${}^{4}J_{\text{CF}} = 1.9 \text{ Hz}$); 13.8 (s, CH₃); 27.6 (s with Sn satellites, SnCH₂CH₂, ${}^2J_{\text{CSn}(119)} = 65 \text{ Hz}$, ${}^2J_{\text{CSn}(117)} = 62 \text{ Hz}$); 29.3 (s with Sn satellites, SnCH₂CH₂CH₂CH₂, ${}^{3}J_{\text{CSn}} = 20.8 \text{ Hz}$); 100.7 (ddm, 5–Ar–C, ${}^{2}J_{\text{CF}} = 35.9 \text{ Hz}$, ${}^{2}J_{\text{CF}}$ = 20.9 Hz); 111.0 (tm, 1–Ar–C, ${}^{2}J_{CF}$ = 50.7 Hz); 137.3 (dm, Ar–C, ${}^{1}J_{CF}$ = 251.9 Hz); 151.9 (dm, Ar–C, ${}^{1}J_{CF} = 238.7$ Hz); 155.0 (dm, Ar–C, ${}^{1}J_{CF} = 220.5$ Hz); 161.2 (dm, Ar– C, ${}^{1}J_{CF} = 234.1 \text{ Hz}$). ${}^{119}Sn\{{}^{1}H\}$ NMR ($C_{6}D_{6}$, 25 °C, 111.96 MHz): δ –26.6 (dddd, ${}^{3}J_{SnF} =$ 3.6 Hz, ${}^{3}J_{\rm SnF} = 3.6$ Hz, ${}^{4}J_{\rm SnF} = 4.4$ Hz, ${}^{2}J_{\rm SnF} = 2.8$ Hz,). Calcd for $C_{18}H_{28}F_{4}Sn$: M+, 440.1149. Found: m/z 440.1148.

Alternate synthesis of tributyl(2,3,4,6-tetrafluorophenyl)stannane, 4. A solution of 1,2,3,5-tetrafluorobenzene (0.151 g, 1.01 mmol) and tributyl(vinyl)tin (0.106 g, 0.335 mmol) in toluene was added to a mixture of PⁱPr₃ (0.0054 g, 0.033 mmol) and Ni(COD)₂ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 30 min. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (90 % yield by NMR spectroscopy, 10 % of 5).

Synthesis of 2,4,5,6-tetrafluorophenyl-1,3-bis(tributylstannane), 5. To a solution of 1,2,3,5-tetrafluorobenzene (0.083 g, 0.55 mmol) and tributyl(vinyl)tin (0.440 g, 1.39 mmol) in 0.6 g of C₆D₆ was added MeNC₅H₄NⁱPr (0.005 g, 0.033 mmol) and Ni(COD)₂ (0.004 g, 0.0167 mmol). The solution was heated to 40 °C for 18 h, filtered through silica and the solvent was removed, leaving a colourless oil. (84 % yield by NMR spectroscopy, 12 % of 4). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.89 (t, 9H, CH_3 , $^3J_{HH}$ = 7.3 Hz); 1.23 (m, 6H, SnC H_2 , ${}^3J_{HH}$ = 8.6 Hz); 1.34 (qd, 6H, SnC H_2 C H_2 C H_2 , ${}^3J_{HH}$ = 7.3 Hz, ${}^{3}J_{HH} = 7.5 \text{ Hz}$); 1.58 (tt, 6H, SnCH₂CH₂, ${}^{3}J_{HH} = 7.6 \text{ Hz}$, ${}^{3}J_{HH} = 8.6 \text{ Hz}$). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –77.5 (d, 1F, 2–Ar–F, ${}^{5}J_{FF}$ = 15.2 Hz); –115.9 (d, 2F, 4,6–Ar–F, ${}^{3}J_{FF}$ = 25.3 Hz); -165.7 (td with Sn satellites, 1F, 5–Ar–F, ${}^{3}J_{FF}$ = 25.3 Hz, $^4J_{\rm FSn} = 3.1$ Hz, $^5J_{\rm FF} = 15.2$ Hz). $^{13}{\rm C}\{^1{\rm H}\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 11.2 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 358 \text{ Hz}$, ${}^{1}J_{\text{CSn}(117)} = 342 \text{ Hz}$); 13.5 (s, CH₃); 27.2 (s with Sn satellites, $SnCH_2CH_2$, ${}^2J_{CSn(119)} = 64$ Hz, ${}^2J_{CSn(117)} = 62$ Hz); 29.0 (s with Sn satellites, $SnCH_2CH_2CH_2$, ${}^3J_{CSn} = 20.7 \text{ Hz}$); 110.0 (ddm, 1,3-Ar-C, ${}^2J_{CF} = 50.5 \text{ Hz}$, ${}^2J_{CF} = 64.2$ Hz); 137.3 (dm, Ar–C, ${}^{1}J_{CF} = 262.8$ Hz); 155.6 (dm, Ar–C, ${}^{1}J_{CF} = 237.0$ Hz); 164.9 (dm, Ar-C, ${}^{1}J_{CF} = 237.8 \text{ Hz}$). ${}^{119}\text{Sn}\{{}^{1}\text{H}\}$ NMR ($C_{6}D_{6}$, 25 °C, 111.96 MHz): δ -28.7 (m AA'XX'YZ second order, ${}^4J_{\text{SnSn}} = 3.1 \text{ Hz}$). Calcd for $C_{30}H_{54}F_4Sn_2$: [M+ - C_4H_9], 673.1501. Found: m/z 673.1502.

Alternate synthesis of 2,4,5,6-tetrafluorophenyl-1,3-bis(tributylstannane), 5. A solution of 1,2,3,5-tetrafluorobenzene (0.051 g, 0.335 mmol) and tributyl(vinyl)tin (0.265 g, 0.835 mmol) in toluene was added to a mixture of PⁱPr₃ (0.0054 g, 0.033 mmol) and Ni(COD)₂ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 12 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (99 % yield by NMR spectroscopy).

$$F$$
 $SnBu_3$
 Bu_3Sn
 F

Synthesis of tributyl(2,3,4,5-tetrafluorophenyl)stannane, **6.** To a solution of 1,2,3,4-tetrafluorobenzene (0.417 g, 2.776 mmol) and tributyl(vinyl)tin (0.176 g, 0.55 mmol) in 0.6 g of C₆D₆ was added MeNC₅H₄NⁱPr (0.005 g, 0.033 mmol) and Ni(COD)₂ (0.004 g, 0.017 mmol). The solution was heated to 45 °C for 12 h, filtered through silica and the solvent was removed, leaving a colourless oil. (38 % yield by NMR spectroscopy). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.90 (t, 9H, CH₃, ³J_{HH} = 7.4 Hz); 1.10 (m with Sn satellites, 6H, SnCH₂, ²J_{HSn} = 48.1 Hz, ³J_{HH} = 8.4 Hz); 1.31 (qt, 6H, SnCH₂CH₂CH₂, ³J_{HH} = 7.4 Hz, ³J_{HH} = 7.7 Hz); 1.52 (tt, 6H, SnCH₂CH₂, ³J_{HH} = 8.5 Hz, ³J_{HH} = 7.7 Hz); 6.70 (dddd with Sn satellites, 1H, 6–Ar–H, ³J_{HSn} = 21.0 Hz, ³J_{HF} = 8.1, ⁴J_{HF} = 2.3 Hz, ⁴J_{HF} = 2.3 Hz, ⁴J_{HF} = 2.3 Hz, ⁵J_{HF} = 8.1 Hz). ¹⁹F{¹H} NMR (C₆D₆, 25 °C, 282.40 MHz): δ –120.6 (ddd, 1F, 2–Ar–F, ³J_{FF} = 27.5 Hz, ⁵J_{FF} = 16.0 Hz, ⁴J_{FF} = 3.0 Hz, ³J_{SnF} = 14.3 Hz); –139.4 (ddd, 1F, 5–Ar–F, ³J_{FF} = 19.5 Hz, ⁴J_{FF} = 16.0 Hz, ⁴J_{FF} = 1.8 Hz); –155.5 (ddd, 1F, 3–Ar–F, ³J_{FF} = 27.5

Hz, ${}^{3}J_{\text{FF}} = 19.5$ Hz, ${}^{4}J_{\text{FF}} = 1.8$ Hz); -155.8 (ddd, 1F, 4–Ar–F, ${}^{3}J_{\text{FF}} = 19.5$ Hz, ${}^{3}J_{\text{FF}} = 19.5$ Hz, ${}^{4}J_{\text{FF}} = 3.0$ Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 10.4 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{SnC}(119)} = 356$ Hz, ${}^{1}J_{\text{SnC}(117)} = 339$ Hz); 13.8 (s, CH₃); 27.6 (s with Sn satellites, SnCH₂CH₂, ${}^{3}J_{\text{CSn}} = 19.5$ Hz); 16.4 (td, 6–Ar–C, ${}^{2}J_{\text{CF}} = 16.3$ Hz, ${}^{3}J_{\text{CF}} = 4.8$ Hz); 122.9 (d with Sn satellites, 1–Ar–C, ${}^{2}J_{\text{CF}} = 46.9$ Hz, ${}^{1}J_{\text{CSn}} = 257.9$ Hz); 140.4 (dm, Ar–C, ${}^{1}J_{\text{CF}} = 260.1$ Hz); 141.1 (dm, Ar–C, ${}^{1}J_{\text{CF}} = 259.4$ Hz); 148.1 (ddd, Ar–C, ${}^{1}J_{\text{CF}} = 252.5$ Hz, ${}^{2}J_{\text{CF}} = 10.5$ Hz, ${}^{3}J_{\text{CF}} = 2.5$ Hz); 150.8 (dd, Ar–C, ${}^{1}J_{\text{CF}} = 231.2$ Hz, ${}^{2}J_{\text{CF}} = 6.1$ Hz). ${}^{119}\text{Sn}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 111.96 MHz): δ –25.7 (dddd, ${}^{3}J_{\text{SnF}} = 15.2$ Hz, ${}^{4}J_{\text{SnF}} = 11.0$ Hz, ${}^{4}J_{\text{SnF}} = 5.0$ Hz, ${}^{5}J_{\text{SnF}} = 7.0$ Hz). Calcd for C₁₈H₂₈F₄Sn: [M⁺ – C₄H₉] 383.0445. Found: m/z 383.0437.

Alternate synthesis of tributyl(2,3,4,5-tetrafluorophenyl)stannane, 6. A solution of 1,2,3,4-tetrafluorobenzene (0.252 g, 1.67 mmol) and tributyl(vinyl)tin (0.106 g, 0.335 mmol) in toluene was added to a mixture of PⁱPr₃ (0.0054 g, 0.033 mmol) and Ni(COD)₂ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 4 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (95 % yield by NMR spectroscopy).

Synthesis of tributyl(2,3,6-trifluorophenyl)stannane, 7. To a solution of 1,2,4-trifluorobenzene (0.220 g, 1.67 mmol) and tributyl(vinyl)tin (0.176 g, 0.55 mmol) in 0.6

g of C_6D_6 was added MeN $C_5H_4N^i$ Pr (0.005 g, 0.033 mmol) and Ni(COD)₂ (0.004 g, 0.017 mmol). The solution was heated to 35 °C for 7 h, filtered through silica and the solvent was removed, leaving a colourless oil. (98 % yield by NMR spectroscopy). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.86 (t, 9H, CH₃, ${}^{3}J_{HH} = 7.3$ Hz); 1.19 (m with Sn satellites, 6H, $SnCH_2$, $^2J_{HSn} = 55.0$ Hz, $^3J_{HH} = 8.5$ Hz); 1.30 (qt, 6H, $SnCH_2CH_2CH_2$, $^3J_{HH}$ = 7.6 Hz, ${}^{3}J_{HH}$ = 7.3 Hz); 1.54 (tt, 6H, SnCH₂CH₂, ${}^{3}J_{HH}$ = 7.6 Hz, ${}^{3}J_{HH}$ = 8.5 Hz); 6.40 (dddd, 1H, 4–Ar–H, ${}^{3}J_{HF} = 9.1$, ${}^{3}J_{HH} = 5.4$ Hz, ${}^{4}J_{HF} = 2.8$ Hz, ${}^{4}J_{HF} = 1.6$ Hz); 6.63 (ddd, 1H, 5–Ar–H, ${}^{3}J_{HF} = 5.3$ Hz, ${}^{3}J_{HH} = 5.3$ Hz, ${}^{4}J_{HF} = 9.1$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –98.5 (dd with Sn satellites, 1F, 6–Ar–F, ${}^{4}J_{\text{FF}} = 17.8$ Hz, ${}^{5}J_{\text{FF}} = 1.6$ Hz, $^{3}J_{SnF} = 7.8 \text{ Hz}$; -116.6 (dd with Sn satellites, 1F, 3-Ar-F, $^{3}J_{FF} = 26.8 \text{ Hz}$, $^{5}J_{FF} = 1.6 \text{ Hz}$, $^{3}J_{SnF}$ = 5.5 Hz); -143.2 (dd with Sn satellites, 1F, 2-Ar-F, $^{3}J_{FF}$ = 26.8 Hz, $^{4}J_{FF}$ = 17.8 Hz, $^{3}J_{\rm SnF} = 7.4 \text{ Hz}$). $^{13}C\{^{1}H\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 10.0 (t with Sn satellites, $SnCH_2$, ${}^{1}J_{CSn(119)} = 360$ Hz, ${}^{1}J_{CSn(117)} = 344$ Hz, ${}^{4}J_{CF} = 1.8$ Hz); 12.4 (s, CH_3); 26.2 (s with Sn satellites, SnCH₂CH₂, ${}^2J_{\text{CSn}(119)} = 65 \text{ Hz}$, ${}^2J_{\text{CSn}(117)} = 62 \text{ Hz}$); 27.9 (s with Sn satellites, $SnCH_2CH_2CH_2$, ${}^3J_{CSn} = 20.8 \text{ Hz}$); 109.2 (td, 4-Ar-C, ${}^2J_{CF} = 32.1 \text{ Hz}$, ${}^3J_{CF} = 4.3 \text{ Hz}$); 115.4 (ddd, 1–Ar–C, $^2J_{CF} = 52.9$ Hz, $^2J_{CF} = 45.8$ Hz, $^3J_{CF} = 3.5$ Hz); 116.9 (dd, 5–Ar–C, $^{2}J_{CF} = 20.3 \text{ Hz}, ^{3}J_{CF} = 9.8 \text{ Hz}); 146.0 \text{ (ddd, } 6-\text{Ar-}C, ^{1}J_{CF} = 248.3 \text{ Hz}, ^{3}J_{CF} = 18.7 \text{ Hz}, ^{4}J_{CF}$ = 3.9 Hz); 152.8 (ddd, 2–Ar–C, ${}^{1}J_{CF}$ = 237.2 Hz, ${}^{2}J_{CF}$ = 20.1 Hz, ${}^{3}J_{CF}$ = 12.3 Hz); 161.0 (ddd, 3-Ar-C, ${}^{1}J_{CF} = 233.6 \text{ Hz}$, ${}^{2}J_{CF} = 16.8 \text{ Hz}$, ${}^{4}J_{CF} = 2.3 \text{ Hz}$). ${}^{119}\text{Sn}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 111.96 MHz): δ –28.7 (ddd, ${}^{3}J_{\text{SnF}} = 7.8$ Hz, ${}^{3}J_{\text{SnF}} = 7.4$, ${}^{4}J_{\text{SnF}} = 5.6$ Hz). Calcd for $C_{18}H_{29}F_3Sn$: [M+ – C_4H_9], 365.0539. Found: m/z 365.0537.

Alternate synthesis of tributyl(2,3,6-trifluorophenyl)stannane, 7. A solution of 1,2,4-trifluorobenzene (0.192 g, 1.456 mmol) and tributyl(vinyl)tin (0.115 g, 0.36 mmol) in

toluene was added to a mixture of PⁱPr₃ (0.0058 g, 0.036 mmol) and Ni(COD)₂ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 1 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (98 % yield by NMR spectroscopy).

Synthesis of 2,3,6-trifluorophenyl-1,4-bis(tributylstannane), 8. A solution of 1,2,4-trifluorobenzene (0.048 g, 0.364 mmol) and tributyl(vinyl)tin (0.288 g, 0.910 mmol) in toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0058 g, 0.036 mmol) and Ni(COD)₂ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 48 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (50 % yield by NMR spectroscopy, 40 % of **7** and Bu₆Sn₂, 5 % of 2,4,5-trifluorophenyl-1,3-bis(tributylstannane), **9**). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.84 (t, 9H, SnCH₂CH₂CH₂CH₃, ${}^{3}J_{HH} = 7.1$ Hz); 1.09 (m with Sn satellites, 6H, SnCH₂, ${}^{2}J_{HSn} = 51.2$ Hz, ${}^{3}J_{HH} = 7.4$ Hz); 1.29 (qt, 6H, SnCH₂CH₂CH₂, ${}^{3}J_{HH} = 8.1$ Hz, ${}^{3}J_{HH} = 7.4$ Hz); 1.55 (tt with Sn satellites, 6H, SnCH₂CH₂CH₂, ${}^{3}J_{HH} = 8.1$ Hz, ${}^{3}J_{HSn} = 3.1$ Hz); 6.35 (m, 1H, 6–Ar–H). ¹⁹F{¹H} NMR (C₆D₆, 25 °C, 282.40 MHz): δ –99.2 (dd with Sn satellites, 1F, 5–Ar–F, ${}^{4}J_{FF} = 22.1$ Hz, ${}^{5}J_{FF} = 0.9$ Hz, ${}^{3}J_{SnF} = 9.8$ Hz); –115.7 (dd with Sn satellites, 1F, 2–Ar–F, ${}^{3}J_{FF} = 33.4$ Hz, ${}^{5}J_{FF} = 0.9$ Hz, ${}^{3}J_{SnF} = 20.6$ Hz); –124.6 (dd with Sn satellites,

1F, 3-Ar-F, ${}^{3}J_{FF} = 33.4$ Hz, ${}^{4}J_{FF} = 22.1$ Hz, ${}^{3}J_{FSn(119)} = 21.5$ Hz, ${}^{3}J_{FSn(117)} = 9.5$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 10.5 (s with Sn satellites, SnCH₂, ${}^{1}J_{CSn(119)} = 354$ Hz, ${}^{1}J_{CSn(117)} = 338$ Hz); 11.5 (s, SnCH₂CH₂CH₂CH₃); 27.6 (s with Sn satellites, SnCH₂CH₂CH₂, ${}^{3}J_{CSn} = 20.4$ Hz); 116.9 (ddd, 4-Ar-C, ${}^{2}J_{CF} = 27.6$ Hz, ${}^{3}J_{CF} = 14.5$ Hz, ${}^{4}J_{CF} = 4.7$ Hz); 117.6 (dd, 1-Ar-C, ${}^{2}J_{CF} = 46.2$ Hz, ${}^{3}J_{CF} = 2.5$ Hz); 132.6 (d, 6-Ar-C, ${}^{2}J_{CF} = 44.8$ Hz), 151.0 (ddd, 5-Ar-C, ${}^{1}J_{CF} = 233$ Hz, ${}^{3}J_{CF} = 15.8$ Hz, ${}^{4}J_{CF} = 3.2$ Hz); 153.8 (ddd, 2-Ar-C, ${}^{1}J_{CF} = 244.8$ Hz, ${}^{2}J_{CF} = 19.7$ Hz, ${}^{3}J_{CF} = 17.1$ Hz); 162.9 (dd, 3-Ar-C, ${}^{1}J_{CF} = 238.3$ Hz, ${}^{2}J_{CF} = 14.5$ Hz). ${}^{119}Sn\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 186.49 MHz): δ -30.5 (virtual quartet, 1Sn, ${}^{3}J_{SnF} = 9.3$ Hz, ${}^{3}J_{SnF} = 8.6$); -31.2 (m, 1Sn, ${}^{3}J_{SnF} = 21.32$ Hz, ${}^{3}J_{SnF} = 11.44$). Calcd for C₃₀H₅₅F₃Sn₂: [M+ $C_{C4}H_{9}$], 655.1596. Found: m/z 655.1594.

2,4,5-trifluorophenyl-1,3-bis(**tributylstannane**), **9.** ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 6.32 (m, 1H, 6–Ar–F). ¹⁹F{¹H} NMR (C₆D₆, 25 °C, 282.40 MHz): δ –78.9 (dd with Sn satellites, 1F, 2–Ar–F, ⁵ J_{FF} = 19.8 Hz, ⁴ J_{FF} = 3.6 Hz, ³ J_{SnF} = 14.7 Hz); –116.7 (dd with Sn satellites, 1F, 4–Ar–F, ³ J_{FF} = 24.4 Hz, ⁵ J_{FF} = 19.5 Hz); –143.5 (dd with Sn satellites, 1F, 5–Ar–F, ³ J_{FF} = 24.4 Hz, ⁵ J_{FF} = 19.8 Hz, ⁴ J_{SnF} = 3.6 Hz). ¹¹⁹Sn{¹H} NMR (C₆D₆, 25 °C, 186.49 MHz): δ –29.9 (m, 1Sn, 3–Ar–Sn, ³ J_{SnF} = 9.7 Hz, ³ J_{SnF} = 7.3); –34.3 (m, 1Sn, 1–Ar–Sn). Calcd for C₃₀H₅₅F₃Sn₂: [M+ – C₄H₉], 655.1596. Found: m/z 655.1594.

$$Bu_3Sn$$
 F
 $SnBu_3$
 Bu_3Sn
 F
 $SnBu_3$
 F
 $SnBu_3$
 F
 $SnBu_3$

Synthesis of tributyl(2,4,6-trifluorophenyl)stannane, 10. To a solution of 1,3,5trifluorobenzene (0.147 g, 1.11 mmol) and tributyl(vinyl)tin (0.176 g, 0.55 mmol) in 0.6 g of C_6D_6 was added MeNC₅H₄NⁱPr (0.005 g, 0.033 mmol) and Ni(COD)₂ (0.004 g, 0.017 mmol). The solution was heated to 40 °C for 4 h, filtered through silica and the solvent was removed, leaving a colourless oil. (91 % yield by NMR spectroscopy; isolated 0.167 g, 83 % yield). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.87 (t, 9H, CH_3 , $^{3}J_{HH} = 7.3 \text{ Hz}$); 1.18 (m with Sn satellites, 6H, SnC H_{2} , $^{3}J_{HSn} = 53.4 \text{ Hz}$, $^{3}J_{HH} = 8.7 \text{ Hz}$); 1.31 (qt, 6H, SnCH₂CH₂CH₂, ${}^{3}J_{HH} = 7.6$ Hz, ${}^{3}J_{HH} = 7.3$ Hz); 1.54 (tt, 6H, SnCH₂CH₂, $^{3}J_{HH} = 8.9 \text{ Hz}, ^{3}J_{HH} = 7.5 \text{ Hz}); 6.34 (AA'XYY' second order, 2H, 3,5-Ar-H, <math>^{3}J_{HF} = 9.1,$ $^{3}J_{HF} = 5.9 \text{ Hz}$). $^{19}F\{^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –90.3 (d, 2F, 2,6–Ar–F, $^{4}J_{FF}$ = 8.2 Hz, ${}^{3}J_{\text{FSn}}$ = 8.5 Hz); -108.7 (t with Sn satellites, 1F, 4–Ar–F, ${}^{4}J_{\text{FF}}$ = 8.2 Hz, ${}^{5}J_{\text{SnF}}$ = 3.1 Hz). ¹³C{¹H} NMR (C₆D₆, 25 °C, 75.47 MHz): δ 11.2 (t with Sn satellites, SnCH₂, $^{1}J_{\text{CSn}(119)} = 361 \text{ Hz}, \ ^{1}J_{\text{CSn}(117)} = 349 \text{ Hz} \ ^{4}J_{CF} = 1.7 \text{ Hz}$; 13.8 (s, CH₃); 27.6 (s with Sn satellites, $SnCH_2CH_2$, ${}^2J_{CSn(119)} = 64$ Hz, ${}^2J_{CSn(117)} = 62$ Hz); 29.4 (s with Sn satellites, $SnCH_2CH_2CH_2$, ${}^3J_{CSn} = 20.7 \text{ Hz}$); 99.7 (ddd, 3,5–Ar–C, ${}^2J_{CF} = 33.6 \text{ Hz}$, ${}^2J_{CF} = 24.6 \text{ Hz}$, $^{4}J_{CF} = 5.0 \text{ Hz}$); 109.1 (td, 1-Ar-C, $^{2}J_{CF} = 51.0 \text{ Hz}$, $^{4}J_{CF} = 4.2 \text{ Hz}$, $^{1}J_{CSn} = 239.3 \text{ Hz}$); 164.9 (dt, 4–Ar–C, ${}^{1}J_{CF} = 248.2 \text{ Hz}$, ${}^{3}J_{CF} = 14.6 \text{ Hz}$); 168.1 (ddd, 2,6–Ar–*C*, ${}^{1}J_{CF} = 237.7 \text{ Hz}$,

 $^{3}J_{\text{CF}} = 23.7 \text{ Hz}, \, ^{3}J_{\text{CF}} = 14.7 \text{ Hz}). \, ^{119}\text{Sn}\{^{1}\text{H}\} \text{ NMR } (C_{6}D_{6}, 25 \, ^{\circ}\text{C}, 111.96 \text{ MHz}): \delta -31.0 \text{ (td,} \, ^{3}J_{\text{SnF}} = 8.9 \text{ Hz}, \, ^{5}J_{\text{SnF}} = 3.1 \text{ Hz}). \, \text{Calcd for } C_{18}H_{29}F_{3}\text{Sn}: [M+-C_{4}H_{9}], \, 365.0539. \, \text{Found:} \, m/z \, 365.0519.$

Alternate synthesis of tributyl(2,4,6-trifluorophenyl)stannane, 10. A solution of 1,3,5-trifluorobenzene (0.144 g, 1.092 mmol) and tributyl(vinyl)tin (0.106 g, 0.364 mmol) in toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0058 g, 0.036 mmol) and $Ni(COD)_{2}$ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 30 min. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (83 % yield by NMR spectroscopy, 17 % of 11).

Synthesis of 2,4,6-trifluorophenyl-1,3-bis(tributylstannane), 11. To a solution of 1,3,5-trifluorobenzene (0.061 g, 0.47 mmol) and tributyl(vinyl)tin (0.296 g, 0.93 mmol) in 0.6 g of C_6D_6 was added MeN $C_5H_4N^i$ Pr (0.007 g, 0.047 mmol) and Ni(COD)₂ (0.006 g, 0.023 mmol). The solution was heated to 40 °C for 18 h, filtered through silica and the solvent was removed, leaving a colourless oil. (38 % yield by NMR spectroscopy, 55 % of **10**). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.90 (t, 18H, CH_3 , $^3J_{HH}$ = 7.2 Hz); 1.27 (m with Sn satellites, 12H, Sn CH_2 , $^3J_{HH}$ = 8.4 Hz); 1.36 (qt, 6H, Sn $CH_2CH_2CH_2$, $^3J_{HH}$ = 7.8 Hz, $^3J_{HH}$ = 7.2 Hz); 1.62 (tt, 6H, Sn CH_2CH_2 , $^3J_{HH}$ = 7.6 Hz, $^3J_{HH}$ = 7.3 Hz); 6.50 (td with Sn satellites, 1H, 5–Ar–H, $^3J_{HF}$ = 8.6, $^5J_{HF}$ = 2.8 Hz, $^4J_{SnF}$ = 6.9 Hz). ¹⁹F{¹H} NMR

(C₆D₆, 25 °C, 282.40 MHz): δ –71.0 (t with Sn satillites, 1F, 2–Ar–F, ${}^4J_{FF}$ = 2.5 Hz, ${}^3J_{FSn}$ = 5 Hz); –90.7 (d with Sn satellites, 2F, 4,6–Ar–F, ${}^4J_{FF}$ = 2.4 Hz, ${}^3J_{SnF}$ = 8 Hz). 13 C{ 1 H} NMR (C₆D₆, 25 °C, 75.47 MHz): δ 11.3 (br s with Sn satellites, SnCH₂, ${}^{1}J_{CSn(119)}$ = 367 Hz, ${}^{1}J_{CSn(117)}$ = 348 Hz); 13.8 (s, CH₃); 27.5 (s with Sn satellites, SnCH₂CH₂, ${}^{2}J_{CSn}$ = 64 Hz); 29.4 (s with Sn satellites, SnCH₂CH₂, ${}^{3}J_{CSn}$ = 21 Hz); 99.5 (td, 5–Ar–C, ${}^{2}J_{CF}$ = 31.7 Hz, ${}^{4}J_{CF}$ = 5.7 Hz); 108.3 (dd, 1,3–Ar–C, ${}^{2}J_{CF}$ = 60.0 Hz, ${}^{2}J_{CF}$ = 53.3 Hz); 169.5 (ddd, 4,6–Ar–C, ${}^{1}J_{CF}$ = 238.3 Hz, ${}^{3}J_{CF}$ = 22.2 Hz, ${}^{3}J_{CF}$ = 14.6 Hz); 172.5 (dt, 2–Ar–C, ${}^{1}J_{CF}$ = 228.5 Hz, ${}^{3}J_{CF}$ = 23.2 Hz). ${}^{119}Sn\{{}^{1}$ H} NMR (C₆D₆, 25 °C, 111.96 MHz): δ –31.5 (virtual quartet, ${}^{3}J_{SnF}$ = 6.4 Hz, ${}^{5}J_{SnF}$ = 5.8 Hz).

Alternate synthesis of 2,4,6-trifluorophenyl-1,3-bis(tributylstannane), 11. A solution of 1,3,5-trifluorobenzene (0.048 g, 0.364 mmol) and tributyl(vinyl)tin (0.288 g, 0.910 mmol) in toluene was added to a mixture of PⁱPr₃ (0.0058 g, 0.036 mmol) and Ni(COD)₂ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 12 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (45 % yield by NMR spectroscopy, 50 % yield 12, 2 % yield 10).

$$F$$
 $SnBu_3$
 Bu_3Sn
 F

Synthesis of 2,4,6-trifluorophenyl-1,3,5-tris(tributylstannane), 12. A solution of 1,3,5-trifluorobenzene (0.048 g, 0.364 mmol) and tributyl(vinyl)tin (0.404 g, 1.27 mmol) in

toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0058 g, 0.036 mmol) and Ni(COD)₂ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 18 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (95 % yield by NMR spectroscopy, 5 % of 11). ¹H NMR ($C_{6}D_{6}$, 25 °C, 300.13 MHz): δ 0.93 (t, 9H, SnCH₂CH₂CH₂CH₃, ³ J_{HH} = 6.5 Hz); 1.26 (m, 6H, SnCH₂, ³ J_{HH} = 8.1 Hz); 1.38 (qt, 6H, SnCH₂CH₂CH₂, ³ J_{HH} = 7.7 Hz, ³ J_{HH} = 6.5 Hz); 1.65 (m, 6H, SnCH₂CH₂, ³ J_{HH} = 7.7 Hz). ¹⁹F{¹H} NMR ($C_{6}D_{6}$, 25 °C, 282.40 MHz): δ -73.0 (s with Sn satellites, 3F, ³ J_{FSn} = 44.2 Hz). ¹³C{¹H} NMR ($C_{6}D_{6}$, 25 °C, 75.47 MHz): δ 11.4 (s with Sn satellites, SnCH₂, ¹ $J_{CSn(119)}$ = 360.9 Hz, ¹ $J_{CSn(117)}$ = 341.3 Hz); 13.9 (s, SnCH₂CH₂CH₂CH₃); 27.6 (s with Sn satellites, SnCH₂CH₂, ² J_{CSn} = 64 Hz); 29.4 (s with Sn satellites, SnCH₂CH₂CH₂CH₂, ³ J_{CSn} = 22 Hz); 107.4 (td with Sn satellites, 1,3,5–Ar–C, ² J_{CF} = 57.75 Hz, ⁴ J_{CF} = 3.17 Hz, J_{CSn} = 252 Hz); 174.2 (d with Sn satellites, 2,4,6–Ar–C, J_{CF} = 228.08 Hz, ² J_{CSn} = 22.92 Hz). ¹¹⁹Sn{¹H} NMR ($C_{6}D_{6}$, 25 °C, 111.96 MHz): δ –32.2 (m, ³ J_{SnF} = 7.28 Hz, ⁵ J_{SnF} = 1.4 Hz).

Synthesis of tributyl(2,3,4-trifluorophenyl)stannane, 13. A solution of 1,2,3-trifluorobenzene (0.192 g, 1.456 mmol) and tributyl(vinyl)tin (0.115 g, 0.36 mmol) in toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0058 g, 0.036 mmol) and $Ni(COD)_{2}$ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 48 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (50 % yield

by NMR spectroscopy, 30 % of 14). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.86 (t, 9H, $SnCH_2CH_2CH_2CH_3$, $^3J_{HH} = 7.5$ Hz); 1.06 (m with Sn satellites, 6H, $SnCH_2$, $^3J_{HH} = 7.8$ Hz, ${}^{3}J_{HSn} = 51.6 \text{ Hz}$); 1.31 (qt, 6H, SnCH₂CH₂CH₂, ${}^{3}J_{HH} = 11.4 \text{ Hz}$, ${}^{3}J_{HH} = 7.1 \text{ Hz}$); 1.52 (tt, 6H, SnCH₂CH₂, ${}^{3}J_{HH} = 11.4 \text{ Hz}$, ${}^{3}J_{HH} = 7.8 \text{ Hz}$); 6.58 (m, 1H, 6–Ar–H, ${}^{4}J_{HF} = 2.1$, $^{3}J_{HH} = 7.0 \text{ Hz}$); 6.75 (m, 1H, 5–Ar–H, $^{3}J_{HF} = 6.4$, $^{3}J_{HH} = 7.0 \text{ Hz}$). $^{19}F\{^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): $\delta - 117.1$ (dd with Sn satellites, 1F, 2–Ar–F, ${}^{3}J_{FF} = 27.48$, ${}^{4}J_{FF} = 8.1$ Hz, ${}^{3}J_{\text{FSn}} = 27.8 \text{ Hz}$); -135.9 (dd, 1F, 4-Ar-F, ${}^{3}J_{\text{FF}} = 19.51$, ${}^{4}J_{\text{FF}} = 8.1 \text{ Hz}$); -161.7 (dd)with Sn satellites, 1F, 3–Ar–F, ${}^3J_{FF} = 27.48$, ${}^4J_{FF} = 8.1$ Hz, ${}^3J_{FSn} = 12.2$ Hz). ${}^{13}C\{{}^1H\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 10.3 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 354.4$ Hz, ${}^{1}J_{\text{CSn}(117)} = 338.3 \text{ Hz}$); 13.9 (s, SnCH₂CH₂CH₂CH₃); 27.6 (s with Sn satellites, $SnCH_2CH_2$, ${}^2J_{CSn} = 65.7 \text{ Hz}$); 29.3 (s with Sn satellites, $SnCH_2CH_2CH_2$, ${}^3J_{CSn} = 20 \text{ Hz}$); 113.4 (d with Sn satellites, 1–Ar–C, $^2J_{CF} = 16$ Hz, $^2J_{CSn} = 53.7$ Hz); 124.2 (dm, 5–Ar–C, $^{2}J_{CF} = 44.5 \text{ Hz}, \quad ^{3}J_{CF} = 5.6 \text{ Hz}); 130.3 \text{ (dm, 6-Ar-}C, }^{3}J_{CF} = 17.6 \text{ Hz}, \quad ^{4}J_{CF} = 6.4 \text{ Hz});$ 140.1 (ddd, 3–Ar–C, ${}^{1}J_{CF} = 242.2 \text{ Hz}$, ${}^{2}J_{CF} = 12.0 \text{ Hz}$, ${}^{2}J_{CF} = 7.2 \text{ Hz}$); 152.2 (ddd, 2–Ar– C, ${}^{1}J_{CF} = 242.9 \text{ Hz}$, ${}^{2}J_{CF} = 13.6 \text{ Hz}$, ${}^{3}J_{CF} = 4 \text{ Hz}$); 155.4 (dm, 4–Ar–C, ${}^{1}J_{CF} = 227.7 \text{ Hz}$, $^{3}J_{\text{CF}} = 5.6 \text{ Hz}$). $^{119}\text{Sn}\{^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 186.49 MHz): δ –31.8 (ddd, $^{3}J_{\text{SnF}} = 20.72$ Hz, ${}^{4}J_{SnF} = 12.24$ Hz, ${}^{5}J_{SnF} = 3.59$ Hz). Calcd for $C_{18}H_{29}F_{3}Sn$: [M+ – $C_{4}H_{9}$], 365.0539. Found: m/z 365.0534.

Synthesis of 2,3,4-trifluorophenyl-1,5-bis(tributylstannane), 14. A solution of 1,2,3trifluorobenzene (0.048 g, 0.364 mmol) and tributyl(vinyl)tin (0.288 g, 0.910 mmol) in toluene was added to a mixture of PⁱPr₃ (0.0058 g, 0.036 mmol) and Ni(COD)₂ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 72 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (30 % yield by NMR spectroscopy, 40 % of 13 and Bu_6Sn_2). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.91 (t, 9H, $SnCH_2CH_2CH_2CH_3$, $^3J_{HH} = 7.3$ Hz); 1.18 (m, 6H, $SnCH_2$, $^3J_{HH} = 8.1$ Hz); 1.36 (m, 6H, SnCH₂CH₂CH₂); 1.59 (m, 6H, SnCH₂CH₂); 7.31 (m with Sn satellites, 6– Ar-H, ${}^{4}J_{HF} = 2.6$, ${}^{3}J_{HSn} = 32.9$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): $\delta - 118.0$ (d with Sn satellites, 2F, 2,4-Ar-F, ${}^{3}J_{FF} = 25.9$, ${}^{3}J_{FSn} = 17.4$ Hz); -161.6 (t with Sn satellites, 1F, 3–Ar–F, ${}^{3}J_{FF} = 25.9$, ${}^{3}J_{FSn} = 9.93$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR ($C_{6}D_{6}$, 25 °C, 75.47 MHz): δ 10.4 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn(119)}} = 353.1 \text{ Hz}$, ${}^{1}J_{\text{CSn(117)}} = 335.2 \text{ Hz}$); 13.8 (s, SnCH₂CH₂CH₂CH₃); 27.7 (s with Sn satellites, SnCH₂CH₂, ${}^{2}J_{CSn} = 60.2 \text{ Hz}$); 29.4 (s with Sn satellites, SnCH₂CH₂CH₂, ${}^{3}J_{CSn} = 22$ Hz); 125.0 (dd with Sn satellites, 6–Ar– C, ${}^{3}J_{CF} = 4.6 \text{ Hz}$, ${}^{2}J_{CSn} = 44.2 \text{ Hz}$); 137.3 (td with Sn satellites, 1,5–Ar–C, ${}^{2}J_{CF} = 16.1 \text{ Hz}$, $^{3}J_{\text{CF}} = 8.4 \text{ Hz}, J_{\text{CSn}} = 131.1 \text{ Hz}); 152.2 \text{ (ddd, 2,4-Ar-}C, $^{1}J_{\text{CF}} = 244.5 \text{ Hz}, $^{2}J_{\text{CF}} = 12.3 \text{ Hz}, $^{2}J_{\text{C$ $^{3}J_{CF} = 8.2 \text{ Hz}$); 156.0 (ddd, 3–Ar–C, $^{1}J_{CF} = 236.5 \text{ Hz}$, $^{2}J_{CF} = 11.6 \text{ Hz}$, $^{3}J_{CF} = 7.5 \text{ Hz}$). ¹¹⁹Sn{¹H} NMR (C₆D₆, 25 °C, 186.49 MHz): δ –33.4 (m AA'XX'Y second order, ³ J_{CF} = $10.64 \text{ Hz}, {}^{4}J_{\text{SnSn}} = 5.7 \text{ Hz}.$

Synthesis of tributyl(2,6-difluorophenyl)stannane, 15. To a solution of 1,3difluorobenzene (0.180 g, 1.58 mmol) and tributyl(vinyl)tin (0.500 g, 1.58 mmol) in 1 mL of C_6D_6 was added MeNC₅H₄N^tPr (0.010 g, 0.063 mmol) and Ni(COD)₂ (0.009 g, 0.0315 mmol). The solution was allowed to react for 12 h at 37 °C, filtered through silica and the solvent was removed, leaving a colourless oil. (30 % yield by NMR spectroscopy, 30 % Bu₆Sn₂). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.84 (t, 9H, CH₃, $^{3}J_{HH} = 7.2 \text{ Hz}$); 1.20 (m with Sn satellites, 6H, SnC H_{2} , $^{2}J_{HSn} = 53.5 \text{ Hz}$, $^{3}J_{HH} = 8.7 \text{ Hz}$); 1.32 (qt, 6H, SnCH₂CH₂CH₂, ${}^{3}J_{HH} = 7.5$ Hz, ${}^{3}J_{HH} = 7.2$ Hz); 1.55 (tt, 6H, SnCH₂CH₂, $^{3}J_{HH} = 8.6 \text{ Hz}, ^{3}J_{HH} = 7.6 \text{ Hz}); 6.57 \text{ (dd, 2H, 3,5-Ar-}H, <math>^{3}J_{HF} = 6.3, ^{3}J_{HH} = 8.0 \text{ Hz}); 6.78$ (tt, 1H, 4–Ar–H, ${}^{3}J_{HH} = 8.0$, ${}^{4}J_{HF} = 7.1$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ -92.1 (s with Sn satellites, 2F, 2,6-Ar-F, ${}^{3}J_{FSn} = 14.5$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR ($C_{6}D_{6}$, 25 °C, 75.47 MHz): δ 11.2 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 360 \text{ Hz}$, ${}^{1}J_{\text{CSn}(117)} = 344 \text{ Hz}$); 13.9 (s, SnCH₂CH₂CH₂CH₃); 27.6 (s with Sn satellites, SnCH₂CH₂, ${}^{2}J_{CSn(119)} = 64$ Hz, $^{2}J_{\text{CSn}(117)} = 61 \text{ Hz}$); 29.4 (s with Sn satellites, SnCH₂CH₂CH₂, $^{3}J_{\text{CSn}} = 21 \text{ Hz}$); 110.2 (dd with Sn satellites, 3,5–Ar–C, ${}^2J_{CF} = 28.2$ Hz, ${}^4J_{CF} = 3.7$ Hz, ${}^3J_{CSn} = 13$ Hz); 114.0 (t, 1– Ar-C, ${}^{2}J_{CF} = 49.8 \text{ Hz}$); 131.8 (t, 4-Ar-C, ${}^{3}J_{CF} = 9.2 \text{ Hz}$); 168.2 (dd with Sn satellites, 2,6–Ar–C, ${}^{1}J_{CF} = 237.2 \text{ Hz}$, ${}^{3}J_{CF} = 19.2 \text{ Hz}$, ${}^{2}J_{CSn} = 4 \text{ Hz}$). ${}^{119}Sn\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 111.96 MHz): δ –33.1 (t, ${}^3J_{SnF}$ = 15.0 Hz). Calcd for $C_{18}H_{30}F_2Sn$: [M+ – C_4H_9], 345.0477. Found: m/z 345.0482.

Alternate synthesis of tributyl(2,6-difluorophenyl)stannane, 15. A solution of 1,3-difluorobenzene (0.100 g, 0.88 mmol) and tributyl(vinyl)tin (0.231 g, 0.73 mmol) in toluene was added to a mixture of P^iPr_3 (0.012 g, 0.073 mmol) and $Ni(COD)_2$ (0.01 g, 0.036 mmol). The solution was heated at 80 °C for 18 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (90 % yield by NMR spectroscopy).

Synthesis of tributyl(2,3-difluorophenyl)stannane, 16. A solution of 1,2-difluorobenzene (0.381 g, 3.34 mmol) and tributyl(vinyl)tin (0.106 g, 0.335 mmol) in toluene was added to a mixture of P^iPr_3 (0.0054 g, 0.033 mmol) and $Ni(COD)_2$ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 18 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (92 % yield by NMR spectroscopy, 2 % of 17). ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.84 (t, 9H, $SnCH_2CH_2CH_3$, $^3J_{HH} = 7.7$ Hz); 1.08 (m with satellites, 6H, $SnCH_2$, $^2J_{HSn} = 51.9$ Hz, $^3J_{HH} = 8.8$ Hz); 1.29 (m, 6H, $SnCH_2CH_2CH_2$); 1.52 (tt, 6H, $SnCH_2CH_2$, $^3J_{HH} = 8.8$ Hz, $^3J_{HH} = 6.8$ Hz); 6.75 (m, 1H, 5-Ar-H, $^3J_{HH} = 7.8$ Hz, $^4J_{HF} = 4.1$ Hz). 6.82 (ddm, 1H, 4-Ar-H, $^3J_{HF} = 9.4$ Hz, $^3J_{HH} = 7.8$, $^4J_{HF} = 4.1$ Hz), 7.08 (d with Sn satellites, 1H, 6-Ar-H,

 $^{3}J_{HH} = 7.3 \text{ Hz}, \, ^{3}J_{HSn} = 22.7 \text{ Hz}). \, ^{19}F\{^{1}H\} \text{ NMR } (C_{6}D_{6}, 25 \, ^{\circ}\text{C}, 282.40 \text{ MHz}): } \delta -119.8 \text{ (d with Sn satellites, 1F, 2-Ar-}F, \, ^{3}J_{FF} = 28.5 \text{ Hz}, \, ^{3}J_{FSn} = 28.4 \text{ Hz}); -138.1 \text{ (d with Sn satellites, 1F, 3-Ar-}F, \, ^{3}J_{FF} = 28.5 \text{ Hz}, \, ^{4}J_{FSn} = 17.5 \text{ Hz}). \, ^{13}C\{^{1}H\} \text{ NMR } (C_{6}D_{6}, 25 \, ^{\circ}\text{C}, 75.47 \text{ MHz}): } \delta 10.3 \text{ (s, Sn}CH_{2}, \, ^{1}J_{CSn(119)} = 353.5 \text{ Hz}, \, ^{1}J_{CSn(117)} = 335.9 \text{ Hz}); \, 13.8 \text{ (s, Sn}CH_{2}CH_{2}CH_{2}CH_{3}); \, 27.6 \text{ (s with Sn satellites, Sn}CH_{2}CH_{2}, \, ^{2}J_{CSn} = 52.7 \text{ Hz}); \, 29.3 \text{ (s with Sn satellites, Sn}CH_{2}CH_{2}CH_{2}, \, ^{3}J_{CSn} = 22.9 \text{ Hz}); \, 117.78 \text{ (d, 6-Ar-}C, \, ^{3}J_{CF} = 17.56 \text{ Hz}); \, 123.3 \text{ (s, 5-Ar-}C); \, 130.2 \text{ (d, 4-Ar-}C, \, ^{2}J_{CF} = 41.7 \text{ Hz}); \, 131.7 \text{ (d, 1-Ar-}C, \, ^{3}J_{CF} = 13.17 \text{ Hz}); \, 150.7 \text{ (dd, 3-Ar-}C, \, ^{1}J_{CF} = 254.68 \text{ Hz}, \, ^{2}J_{CF} = 21.96 \text{ Hz}); \, 154.7 \text{ (dd, 2-Ar-}C, \, ^{1}J_{CF} = 234.92 \text{ Hz}, \, ^{2}J_{CF} = 21.96 \text{ Hz}). \, ^{119}\text{Sn}\{^{1}H\} \text{ NMR } (C_{6}D_{6}, 25 \, ^{\circ}\text{C}, \, 186.49 \text{ MHz}): } \delta -34.2 \text{ (dd, } \, ^{3}J_{SnF} = 30.6 \text{ Hz}, \, ^{4}J_{SnF} = 18.1 \text{ Hz}). \, \text{Calcd for } C_{18}H_{30}F_{2}\text{Sn}: \, [\text{M+} - \text{C}_{4}H_{9}], \, 347.0633. \, \text{Found: } \, \text{m/z} \, 347.0641.$

Synthesis of 2,3-difluorophenyl-1,4-bis(tributylstannane), 17. A solution of 1,2-difluorobenzene (0.042 g, 0.364 mmol) and tributyl(vinyl)tin (0.288 g, 0.910 mmol) in toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0058 g, 0.036 mmol) and $Ni(COD)_{2}$ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 72 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (25 % yield by NMR spectroscopy, 50 % of 16 and $Bu_{6}Sn_{2}$). ¹H NMR ($C_{6}D_{6}$, 25 °C, 300.13 MHz): δ 0.87 (t, 9H, $SnCH_{2}CH_{2}CH_{2}CH_{3}$, $^{3}J_{HH}$ = 7.2 Hz); 1.15 (m with satellites, 6H, $SnCH_{2}$

 $^2J_{\text{HSn}} = 57.2 \text{ Hz}, \, ^3J_{\text{HH}} = 8.5 \text{ Hz}); \, 1.33 \text{ (m, 6H, SnCH}_2\text{CH}_2\text{C}H}_2); \, 1.58 \text{ (m, 6H, SnCH}_2\text{C}H}_2); \, 7.23 \text{ (s with Sn satellites, 5,6-Ar-}H, <math>^3J_{\text{HSn}} = 12.7 \text{ Hz}). \, ^{19}\text{F}\{^1\text{H}\} \text{ NMR (C}_6\text{D}_6, 25 \, ^{\circ}\text{C}, 282.40 \text{ MHz}): }\delta \, -118.8 \text{ (s with Sn satellites, 2F, 2,3-Ar-}F, <math>^3J_{\text{FSn}} = 28.3 \text{ Hz}). \, ^{13}\text{C}\{^1\text{H}\} \text{ NMR (C}_6\text{D}_6, 25 \, ^{\circ}\text{C}, 75.47 \text{ MHz}): }\delta \, 10.5 \text{ (s, SnCH}_2, \, ^1J_{\text{CSn(119)}} = 352.09 \text{ Hz}, \, ^1J_{\text{CSn(117)}} = 336.0 \, \text{Hz}); \, 13.8 \, \text{ (s, SnCH}_2\text{C}H}_2\text{C}H}_2\text{C}H}_3); \, 27.6 \, \text{ (s with Sn satellites, SnCH}_2\text{C}H}_2\text{C}H}_2, \, ^3J_{\text{CSn}} = 24.1 \, \text{Hz}); \, 125.3 \, \text{(m, 1,4-Ar-}C); \, 132.3 \, \text{(dd, 5,6-Ar-}C, }^3J_{\text{CF}} = 8.29 \, \text{Hz, }^4J_{\text{CF}} = 7.25 \, \text{Hz}); \, 154.6 \, \text{(d with Sn satellites, 2,3-Ar-}C, \, ^1J_{\text{CF}} = 243.9 \, \text{Hz, }^2J_{\text{CSn}} = 19.25 \, \text{Hz}). \, ^{119}\text{Sn}\{^1\text{H}\} \, \text{NMR (C}_6\text{D}_6, 25 \, ^{\circ}\text{C}, 186.49 \, \text{MHz}): }\delta \, -35.1 \, \text{(t, }^3J_{\text{SnF}} = 29.2 \, \text{Hz}). \, \text{C}_{30}\text{H}_{56}\text{F}_2\text{Sn}_2: \, [\text{M+} - \text{C}_4\text{H}_9],. \, \text{Found: m/z}. \,$

Synthesis of tributyl(2,5-difluorophenyl)stannane, 18. A solution of 1,4-difluorobenzene (0.381 g, 3.34 mmol) and tributyl(vinyl)tin (0.106 g, 0.335 mmol) in toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0054 g, 0.033 mmol) and $Ni(COD)_{2}$ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 18 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (90 % yield by NMR spectroscopy, 10 % of 19). ¹H NMR ($C_{6}D_{6}$, 25 °C, 300.13 MHz): δ 0.85 (t, 9H, $SnCH_{2}CH_{2}CH_{2}CH_{3}$, $^{3}J_{HH} = 7.1$ Hz); 1.07 (m with satellites, 6H, $SnCH_{2}$, $^{2}J_{HSn} = 50.6$ Hz, $^{3}J_{HH} = 8.0$ Hz); 1.31 (qt, 6H, $SnCH_{2}CH_{2}CH_{2}$, $^{3}J_{HH} = 7.1$ Hz, $^{3}J_{HH} = 6.6$ Hz); 1.53 (tt, 6H,

SnCH₂CH₂, ${}^{3}J_{HH} = 8.0$ Hz, ${}^{3}J_{HH} = 7.1$ Hz); 6.64 (m, 3,4–Ar–H, ${}^{3}J_{HF} = 8.1$ Hz, ${}^{3}J_{HH} = 6.6$ Hz, ${}^{4}J_{HH} = 4.7$ Hz); 7.1 (dddd, 6–Ar–H, ${}^{5}J_{HH} = 8$ Hz, ${}^{3}J_{HF} = 7.2$ Hz, ${}^{3}J_{HH} = 4.7$ Hz, ${}^{4}J_{HF} = 1.9$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –101.3 (d with Sn satellites, 1F, 2–Ar–F, ${}^{5}J_{FF} = 20.7$ Hz, ${}^{3}J_{FSn} = 26.2$ Hz), –120.7 (d with Sn satellites, 1F, 5–Ar–F, ${}^{5}J_{FF} = 20.7$ Hz, ${}^{3}J_{FSn} = 8.7$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 10.2 (s with Sn satellites, SnCH₂, ${}^{1}J_{CSn(119)} = 354.4$ Hz, ${}^{1}J_{CSn(117)} = 339.6$ Hz); 13.8 (s, SnCH₂CH₂CH₂CH₃); 27.7 (s with Sn satellites, SnCH₂CH₂, ${}^{2}J_{CSn} = 50.3$ Hz); 29.3 (s with Sn satellites, SnCH₂CH₂CH₂CH₂, ${}^{3}J_{CSn} = 21.6$ Hz); 115.5 (dd with Sn satellites, 4–Ar–C, ${}^{2}J_{CF} = 32.3$ Hz, ${}^{3}J_{CF} = 7.9$ Hz, ${}^{4}J_{CSn} = 27.1$ Hz); 117.0 (dd, 1–Ar–C, ${}^{2}J_{CF} = 24.3$ Hz, ${}^{3}J_{CF} = 9.4$ Hz); 123.1 (dd with Sn satellites, 6–Ar–C, ${}^{2}J_{CF} = 20.8$ Hz, ${}^{3}J_{CF} = 16.1$ Hz, ${}^{2}J_{CSn} = 16.9$ Hz); 129.5 (dd, 3–Ar–C, ${}^{2}J_{CF} = 50.6$ Hz, ${}^{3}J_{CF} = 4.7$ Hz); 159.7 (d, 5–Ar–C, ${}^{1}J_{CF} = 247.3$ Hz); 163.5 (d, 2–Ar–C, ${}^{1}J_{CF} = 229.7$ Hz). ${}^{119}Sn\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 186.49 MHz): δ –35.0 (dd, ${}^{3}J_{SnF} = 26.98$ Hz, ${}^{4}J_{SnF} = 9.0$ Hz). Calcd for C₁₈H₃₀F₂Sn: [M+ – C₄H₉], 347.0633. Found: m/z 347.0633.

Synthesis of 2,5-difluorophenyl-1,4-bis(tributylstannane), 19. A solution of 1,4-difluorobenzene (0.042 g, 0.364 mmol) and tributyl(vinyl)tin (0.288 g, 0.910 mmol) in toluene was added to a mixture of $P^{i}Pr_{3}$ (0.0058 g, 0.036 mmol) and $Ni(COD)_{2}$ (0.005 g, 0.018 mmol). The solution was heated at 80 °C for 72 h. The reaction mixture was

2,5-difluorophenyl-1,3-bis(tributylstannane), **20.** ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.85 (t, 9H, SnCH₂CH₂CH₂CH₃, ${}^3J_{\text{HH}} = 6.8$ Hz); 1.11 (m, 6H, SnCH₂, ${}^3J_{\text{HH}} = 8.5$ Hz); 1.2 (m, 6H, SnCH₂CH₂CH₂); 1.55 (m, 6H, SnCH₂CH₂); 7.21 (dd with Sn satellites, 2H, 4,6–Ar–H, ${}^3J_{\text{HF}} = 6.5$ Hz, ${}^4J_{\text{HF}} = 3.4$ Hz, ${}^3J_{\text{HSn}} = 31.0$ Hz). ${}^{19}F\{^1\text{H}\}$ NMR (C_6D_6 , 25 °C, 282.40 MHz): δ –82.3 (d with Sn satellites, 1F, 2–Ar–F, ${}^5J_{\text{FF}} = 24.2$ Hz, ${}^3J_{\text{FSn}} = 17.3$ Hz), –121.2 (d with Sn satellites, 1F, 5–Ar–F, ${}^5J_{\text{FF}} = 24.2$ Hz, ${}^3J_{\text{FSn}} = 7.9$ Hz). ${}^{13}C\{^1\text{H}\}$ NMR (C_6D_6 , 25 °C, 75.47 MHz): δ 11.6 (s with Sn satellites, SnCH₂, ${}^1J_{\text{CSn}} = 357.9$ Hz); 14.3 (s, SnCH₂CH₂CH₂CH₃); 27.7 (s with Sn satellites, SnCH₂CH₂, ${}^2J_{\text{CSn}} = 63.7$ Hz); 29.5 (s, SnCH₂CH₂CH₂); 115.5 (dd, 1–Ar–C, ${}^2J_{\text{CF}} = 32.9$ Hz, ${}^3J_{\text{CF}} = 8.8$ Hz); 122.1 (dd, 3,6–Ar–C, ${}^2J_{\text{CF}} = 21.96$ Hz, ${}^3J_{\text{CF}} = 19.76$ Hz); 161.0 (d, 2–Ar–C, ${}^1J_{\text{CF}} = 241.4$ Hz); 163.5 (d, 2–

Ar–C, ${}^{1}J_{CF} = 228.2 \text{ Hz}$). ${}^{119}Sn\{{}^{1}H\}$ NMR ($C_{6}D_{6}$, 25 °C, 186.49 MHz): δ –35.6 (dd, ${}^{3}J_{SnF}$ = 17.8 Hz, ${}^{4}J_{SnF}$ = 7.2 Hz).

Synthesis of tributyl(2-fluorophenyl)stannane, 21. A solution of fluorobenzene (0.321 g, 3.34 mmol) and tributyl(vinyl)tin (0.106 g, 0.334 mmol) in toluene was added to a mixture of $P'Pr_3$ (0.0054 g, 0.033 mmol) and $Ni(COD)_2$ (0.0046 g, 0.017 mmol). The solution was heated at 80 °C for 72 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a colourless oil. (15 % yield by NMR spectroscopy). ¹H NMR (C₆D₆, 25 °C, 300.13 MHz): δ 0.92 (t, 9H, SnCH₂CH₂CH₂CH₃, $^{3}J_{HH} = 7.7 \text{ Hz}$); 1.15 (m with satellites, 6H, SnC H_{2} , $^{2}J_{HSn} = 58.2 \text{ Hz}$, $^{3}J_{HH} = 8.2 \text{ Hz}$); 1.35 (m, 6H, $SnCH_2CH_2CH_2$); 1.6 (m, 6H, $SnCH_2CH_2$, $^3J_{HH} = 7.3$ Hz, $^3J_{HH} = 8.2$ Hz); 6.89 (dd, 1H, 3-Ar-H, ${}^{3}J_{HH} = 7.3$, ${}^{3}J_{HF} = 8.2$ Hz); 7.28 (m, 1H, 6-Ar-H, ${}^{3}J_{HH} = 7.3$, ${}^{4}J_{HF} = 6.8$ Hz); 7.37 and 7.39 (dd, 2H, 4,5–Ar–H, ${}^{3}J_{HH} = 7.8$, ${}^{4}J_{HF} = 4.5$ Hz, ${}^{5}J_{HF} = 2.1$ Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆, 25 °C, 282.40 MHz): δ –93.7 (s with Sn satellites, ${}^{3}J_{\text{FSn}} = 36 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 75.47 MHz): δ 10.2 (s with Sn satellites, SnCH₂, ${}^{1}J_{\text{CSn}(119)} = 353.4$ Hz, ${}^{1}J_{\text{CSn}(117)} = 337.2 \text{ Hz}$); 13.9 (s, SnCH₂CH₂CH₂CH₃); 27.7 (s with Sn satellites, $SnCH_2CH_2$, ${}^2J_{CSn} = 53.4 \text{ Hz}$); 29.5 (s with Sn satellites, $SnCH_2CH_2CH_2$, ${}^3J_{CSn} = 21.1 \text{ Hz}$); 114.6 (d, 1–Ar–C, ${}^{2}J_{CF} = 27.8 \text{ Hz}$); 124.5 (d with Sn satellites, 6–Ar–C, ${}^{3}J_{CF} = 2.4 \text{ Hz}$, $^{2}J_{\text{CSn}} = 34.52 \text{ Hz}$); 128.8 (s, 4–Ar–*C*); 130.67 (d, 5–Ar–*C*, $^{4}J_{\text{CF}} = 7.7 \text{ Hz}$); 137.5 (d, 3–Ar–*C*, $^{2}J_{\text{CF}} = 15.1 \text{ Hz}$); 167.9 (d, 2–Ar–*C*, $^{1}J_{\text{CF}} = 234.5 \text{ Hz}$). $^{119}\text{Sn}\{^{1}\text{H}\}$ NMR (C₆D₆, 25 °C, 186.49 MHz): δ –37.4 (d, $^{3}J_{\text{SnF}} = 36.35 \text{ Hz}$). Calcd for C₁₈H₃₁FSn: [M+ – C₄H₉], 329.0728. Found: m/z 329.0742.

Synthesis of tributyl(2,3,5,6-tetrafluoropyridyl)stannane, 22. A solution of 2,3,5,6-tetrafluoropyridine (0.110 g, 0.73 mmol) in toluene was added to a mixture of tributyl(vinyl)tin (0.231 g, 0.73 mmol), $P^{i}Pr_{3}$ (0.0116 g, 0.073 mmol), and Ni(COD)₂ (0.01 g, 0.036 mmol). The solution was heated at 80 °C for 2 h. The reaction mixture was filtered through silica and the solvent was removed, leaving a pale orange oil. (98 % yield by NMR spectroscopy; isolated 0.277 g, 87 %). ^{1}H NMR ($^{c}P_{6}$, 25 °C, 300.13 MHz): δ 0.89 (t, 9H, SnCH₂CH₂CH₂CH₂CH₃, $^{3}J_{HH}$ = 6.6 Hz); 1.17 (m, 6H, SnCH₂, $^{3}J_{HH}$ = 7.7 Hz); 1.29 (qt, 6H, SnCH₂CH₂CH₂, $^{3}J_{HH}$ = 6.9 Hz, $^{3}J_{HH}$ = 6.6 Hz); 1.49 (tt, 6H, SnCH₂CH₂, $^{3}J_{HH}$ = 7.7 Hz, $^{3}J_{HH}$ = 6.6 Hz). $^{19}F\{^{1}H\}$ NMR ($^{c}P_{6}$, 25 °C, 282.40 MHz): δ –93.5 (AA'MM' second order, 2F, 2,6–Ar–F); -125.4 (AA'MM' second order, 2F, 2,6–Ar–F). $^{13}C\{^{1}H\}$ NMR ($^{c}P_{6}$, 25 °C, 75.47 MHz): δ 11.6 (t with Sn satellites, SnCH₂, $^{1}J_{CSn(119)}$ = 359.7 Hz, $^{1}J_{CSn(117)}$ = 341.6 Hz, $^{4}J_{CF}$ = 1.8 Hz); 13.7 (s with Sn satellites, SnCH₂CH₂CH₂CH₂CH₃, $^{4}J_{CSn}$ = 2.7 Hz); 27.4 (s with Sn satellites, SnCH₂CH₂CH₂, $^{3}J_{CSn}$ = 21.1 Hz); 66.8 Hz, $^{2}J_{CSn(117)}$ = 63.3 Hz); 29.0 (s with Sn satellites, SnCH₂CH₂CH₂, $^{3}J_{CSn}$ = 21.1 Hz);

118.4 (tm, 1–Ar–C, ${}^2J_{CF} = 21.1$ Hz); 143.7 (dddd second order, 2,6–Ar–C, ${}^1J_{CF} = 234.5$ Hz, J = 24.1, 10.3, 1.7 Hz); 145.3 (dm second order, 3,5–Ar–C, ${}^1J_{CF} = 244.8$ Hz). ${}^{119}Sn\{{}^1H\}$ NMR (C₆D₆, 25 °C, 111.95 MHz): δ –19.3 (tt, ${}^3J_{SnF} = 11.26$ Hz, ${}^4J_{SnF} = 7.0$ Hz). Calcd for C₁₇H₂₇F₄NSn: [M+ – C₄H₉], 384.0397. Found: m/z 384.0387.

Reaction of MeNC₅H₄NⁱPr and Bu₃Sn(vinyl). A colourless solution of tributyl(vinyl)tin (0.010 g, 0.033 mmol) and MeNC₅H₄NⁱPr (0.005 g, 0.033 mmol) in 1 mL of C₆D₆ was allowed to react overnight at room temperature. The reaction mixture was analyzed by ¹H NMR spectroscopy, and only starting materials were observed.

$$-N$$
 $\stackrel{!}{\longrightarrow}$ N $\stackrel{!}{\longrightarrow}$ Pr $+$ $Bu_3Sn(vinyI)$ \longrightarrow No Reaction

Reaction of C₆F₅H and Bu₃Sn(vinyl). A colourless solution of tributyl(vinyl)tin (0.010 g, 0.031 mmol) and C₆F₅H (0.005 g, 0.031 mmol) in 1 mL of C₆D₆ was allowed to react overnight at 100 °C. The reaction mixture was analyzed by ^{1}H and $^{19}F\{^{1}H\}$ NMR spectroscopy, and only starting materials were observed.

$$C_6F_5H + Bu_3Sn(vinyl) \longrightarrow No Reaction$$

Reaction of MeNC₅H₄NⁱPr, C_6F_5H , and $Bu_3Sn(vinyl)$. A colourless solution of tributyl(vinyl)tin (0.021 g, 0.067 mmol), C_6F_5H (0.011 g, 0.067 mmol) and $MeNC_5H_4N^iPr$ (0.010 g, 0.067 mmol) in 1 mL of C_6D_6 was allowed to react overnight at

100 °C. The reaction mixture was analyzed by ¹H and ¹⁹F{¹H} NMR spectroscopy, and only starting materials were observed.

$$-N$$
 $\stackrel{!}{\longrightarrow}$ $N^{!}$ Pr $_{+}$ $C_{6}F_{5}H$ $_{+}$ $Bu_{3}Sn(vinyI)$ \longrightarrow No Reaction

Reaction of Ni(COD)₂, C₆F₅H, and Bu₃Sn(vinyl). A bright orange solution of tributyl(vinyl)tin (0.115 g, 0.364 mmol), C₆F₅H (0.061 mg, 0.364 mmol), and Ni(COD)₂ (0.005 g, 0.018 mmol) in 1 mL of C₆D₆ was allowed to react overnight at 50 °C. The reaction mixture was analyzed by ${}^{1}H$ and ${}^{119}Sn\{{}^{1}H\}$ NMR spectroscopy, there was free COD present at δ 2.10 and 5.50 and no remaining Ni(COD)₂. There was also a small amount of remaining tributyl(vinyl)tin, however, the major product was hexabutylditin with a 3 % impurity of the conversion to 1.

Reaction of C₆F₅H, Bu₃Sn(vinyl), Hg, and 10 % catalyst loading of Ni(COD)₂ and MeNC₅H₄NⁱPr. A dark golden yellow solution of tributyl(vinyl)tin (0.053 g, 0.167 mmol), C₆F₅H (0.028 g, 0.167 mmol), Hg (0.500 g, 2.49 mmol), Ni(COD)₂ (0.004 g, 0.0167 mmol), and MeNC₅H₄NⁱPr (0.005 mg, 0.033 mmol) in 1 mL of C₆D₆ was allowed to react for 30 min. 19 F{ 1 H} NMR (C₆D₆, 25 °C, 282.40 MHz): -121.3 (AA'MM'N second order with satellites, 2F, 1,5–Ar–*F*, 3 J_{FSn} = 7.7 Hz); -153.0 (tt with satellites, 1F, 3–Ar–*F*, 3 J_{FF} = 19.9 Hz, 4 J_{FF} = 1.8 Hz, 5 J_{FSn} = 7.4 Hz); -160.7 (AA'MM'N second order, 2F, 2,4–Ar–*F*).

After 30 min the desired product is formed, which indicates that MeNC₅H₄NⁱPr and nickel are directly involved in the reaction, but nickel metal is not.

Reaction of C_6F_5H , Bu_3SnH , and 5 % catalyst loading of $Ni(COD)_2$ and $MeNC_5H_4N^iPr$. A solution of C_6F_5H (0.056 g, 0.33 mmol), Bu_3SnH (0.097 g, 0.33

mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.005 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol). Upon addition of all components, H_2 was vigorously released forming $Bu_3SnSnBu_3$ and a precipitate. The precipitate was dissolved in CD_2Cl_2 and confirmed by 1H and $^{19}F\{^1H\}$ NMR spectroscopy to be trans–(MeNC $_5H_4N^iPr$) $_2NiF(2,2',3,3'-C_6F_4H)$ which is the expected C–F activation complex. This reaction was also performed analogously with $Ni(COD)_2$ and triisopropylphosphine as the ligand and provided hexabutylditin and various activation products.

Reaction of C_6F_5H , Bu_4Sn , and 10 % catalyst loading of $Ni(COD)_2$ and $MeNC_5H_4N^iPr$. A solution of C_6F_5H (0.028 g, 0.167 mmol), Bu_4Sn (0.058 g, 0.167 mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.004 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol) and allowed to react for 1 day at 60 °C. No significant reaction was observed by 1H and $^{19}F\{^1H\}$ NMR spectroscopy. This reaction was also performed stoichiometrically at room temperature with $Ni(COD)_2$ and triisopropylphosphine as the ligand and provided the same results.

Reaction of C_6F_5H , Ph_4Sn , and 10 % catalyst loading of $Ni(COD)_2$ and $MeNC_5H_4N^iPr$. A solution of C_6F_5H (0.028 g, 0.167 mmol), Ph_4Sn (0.071 g, 0.167 mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.004 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol) and allowed to react for 1 day at 60 °C. No significant reaction was observed by 1H and $^{19}F\{^1H\}$ NMR spectroscopy. This reaction was also performed stoichiometrically at room temperature with $Ni(COD)_2$ and triisopropylphosphine as the ligand and provided the same results.

Reaction of C_6F_5H , Bu_3SnPh , and 10 % catalyst loading of $Ni(COD)_2$ and $MeNC_5H_4N^iPr$. A solution of C_6F_5H (0.028 g, 0.167 mmol), Bu_3SnPh (0.061 g, 0.167 mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.004 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol) and allowed to react for 1 day at 60 °C. No significant reaction was observed by 1H and $^{19}F\{^1H\}$ NMR spectroscopy.

$$2 - N$$
 $+ N^{1/P}r$
 $+ Ni(COD)_{2}$
 $+ Ni(COD)_{2}$
 $+ No Reaction$
 $+ No Reaction$
 $+ No Reaction$

Reaction of 5 % catalyst loading of $MeNC_5H_4N^iPr$ and $Ni(COD)_2$ with Me_6Sn_2 .

A solution of Me_6Sn_2 (0.109 g, 0.333 mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.004 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol) and allowed to react

for 1 h at room temperature. The reaction mixture was analyzed by ¹H NMR spectroscopy, only starting materials were observed.

$$N_{e_6}Sn_2$$

Me₆Sn₂

No Reaction

Reaction of 5 % catalyst loading of MeNC₅H₄NⁱPr and Ni(COD)₂ with Me₆Sn₂ and C₆F₅H. A solution of Me₆Sn₂ (0.109 g, 0.333 mmol) and C₆F₅H (0.060 g, 0.333 mmol) in 1 mL of C₆D₆ was mixed with Ni(COD)₂ (0.004 g, 0.0167 mmol) and MeNC₅H₄NⁱPr (0.005 g, 0.033 mmol) and allowed to react for 1 h at room temperature. The reaction mixture was analyzed by 1 H and 19 F{ 1 H} NMR spectroscopy, there was no observed reaction.

Reaction of 5 % catalyst loading of MeNC₅H₄NⁱPr and Ni(COD)₂ with C₆F₅H and Me₃Sn(vinyl). A solution of C₆F₅H (0.169 g, 1.00 mmol) and Me₃Sn(vinyl) (0.250 g, 1.00 mmol) in 1 mL of C₆D₆ was mixed with Ni(COD)₂ (0.014 g, 0.050 mmol) and MeNC₅H₄NⁱPr (0.015 g, 0.101 mmol) and allowed to react for 48 h at 50 °C. The reaction mixture was analyzed by ¹H and ¹⁹F{¹H} NMR spectroscopy, which indicated a 90 % conversion to the desired product by NMR spectroscopy, trimethyl(2,3,4,5,6–pentafluorophenyl)tin, with respect to C₆F₅H. This reaction was also performed analogously with Ni(COD)₂ and triisopropylphosphine as the ligand yielding the same

results after heating at 50 °C for 24 h. ¹H NMR (C_6D_6 , 25 °C, 300.13 MHz): δ 0.35 (s with satellites, 9H, CH_3 , $^2J_{Hsn} = 58.6$ Hz). ¹⁹F{¹H} NMR (C_6D_6 , 25 °C, 282.40 MHz): – 122.5 (AA'MM'X second order, 2F, 2,6–Ar–F, $^3J_{FF} = 15.8$ Hz); –153.9 (t, 1F, 4–Ar–F, $^3J_{FF} = 19.6$ Hz); –161.5 (AA'MM'X second order, 2F, 3,5–Ar–F, $^3J_{FF} = 15.8$ Hz, $^3J_{FF} = 19.6$ Hz).

Reaction of 3 % catalyst loading of P^tBu_3 and $Ni(COD)_2$ with 1,2,4,5– $C_6F_4H_2$ and $Bu_3Sn(vinyl)$. A solution of 1,2,4,5– $C_6F_4H_2$ (0.250 g, 1.67 mmol) and tributyl(vinyl)tin (0.176 g, 0.555 mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.004 g, 0.0167 mmol) and P^tBu_3 (0.005 g, 0.033 mmol) and allowed to react overnight at 60 °C. The reaction mixture was analyzed by 1H , $^{31}P\{^1H\}$, and $^{19}F\{^1H\}$ NMR spectroscopy, which indicated a 42 % conversion to the desired product **2**, with respect to remaining 1,2,4,5– $C_6F_4H_2$.

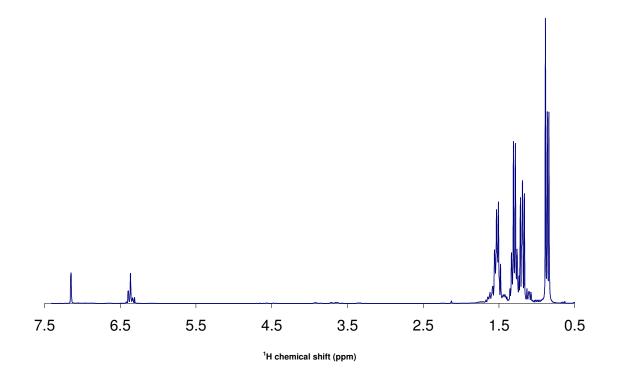
Reaction of 3 % catalyst loading of $Pt(COD)_2$ and $MeNC_5H_4N^iPr$ with C_6F_5H and $Bu_3Sn(vinyl)$. A solution of C_6F_5H (0.094 g, 0.555 mmol) and tributyl(vinyl)tin (0.176 g, 0.555 mmol) in 1 mL of C_6D_6 was mixed with $Pt(COD)_2$ (0.007 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol) and allowed to react overnight at 90 °C. The

reaction mixture was analyzed by ¹H and ¹⁹F{¹H} NMR spectroscopy, the desired activation product was not observed.

Reaction of 3 % catalyst loading of Pt(COD)₂ and PⁱPr₃ with 1,2,3,4–C₆F₄H₂ and Bu₃Sn(vinyl). A solution of 1,2,3,4–C₆F₄H₂ (0.083 g, 0.555 mmol) and tributyl(vinyl)tin (0.176 g, 0.555 mmol) in 1 mL of C₆D₆ was mixed with Pt(COD)₂ (0.007 g, 0.0167 mmol) and PⁱPr₃ (0.005 g, 0.033 mmol) and allowed to react overnight at 90 °C. The reaction mixture was analyzed by 1 H, 31 P{ 1 H}, and 19 F{ 1 H} NMR spectroscopy, the desired activation product was not observed.

Reaction of 3 % catalyst loading of Pt(PCy₃)₂ with C_6F_5H and $Bu_3Sn(vinyl)$. A solution of C_6F_5H (0.056 g, 0.333 mmol) and tributyl(vinyl)tin (0.106 g, 0.333 mmol) in 1 mL of C_6D_6 was mixed with Pt(PCy₃)₂ (0.013 g, 0.0167 mmol) and allowed to react overnight at 90 °C. The reaction mixture was analyzed by 1H , $^{31}P\{^1H\}$, and $^{19}F\{^1H\}$ NMR spectroscopy, only about 3 % conversion to the desired product 1 was observed by NMR with respect to remaining C_6F_5H .

Deuterium Labelling Studies


Reaction of 1,2,4,5–C₆F₄HD, Bu₃Sn(vinyl), and 5 % catalyst loading of Ni(COD)₂ and MeNC₅H₄NⁱPr. A solution of 1,2,4,5–C₆F₄HD (0.050 g, 0.33 mmol), tributyl(vinyl)tin (0.106 g, 0.33 mmol) in 1 mL of C₆D₆ was mixed with Ni(COD)₂ (0.005 g, 0.0167 mmol) and 1 (0.005 g, 0.033 mmol). The ¹⁹F{¹H} NMR spectra of the reaction mixture was recorded within 5 min of the initiation of the reaction in order to determine the initial deuterium isotope effect for C–H vs. C–D activation. Activation of hydrogen over deuterium can be confirmed by a ~0.3 ppm shift of any *ortho* fluorine adjacent to the remaining deuterium in the product and the isotope effect can be determined through integration. Oxidative addition is favored for C–H over C–D bonds, and the integrals of the peaks were found to be in a 2.1:1 at 298 K. ¹⁹F{¹H} NMR (C₆D₆, 25 °C, 282.40 MHz): –122.2 (AA'BB' second order, 2,4–Ar–F); –138.1 (AA'BB' second order, 1,4–Ar–F).

Reaction of C₆F₅D, *cis*-Bu₃Sn(propene), and 5 % catalyst loadings of Ni(COD)₂ and MeNC₅H₄NⁱPr. A solution of C₆F₅D (0.056 g, 0.33 mmol), *cis*-Bu₃Sn(propene) (0.110

g, 0.33 mmol) in 1 mL of C_6D_6 was mixed with $Ni(COD)_2$ (0.005 g, 0.0167 mmol) and $MeNC_5H_4N^iPr$ (0.005 g, 0.033 mmol). The reaction mixture was allowed to react overnight at room temperature. The resultant deuterium labeled propene was vacuum transferred to a J. Young tube containing $CDCl_3$ and analyzed by 1H NMR spectroscopy. This reaction was also performed analogously with triisopropylphosphine in lieu of the $MeNC_5H_4N^iPr$ ligand at 10 mol % catalyst loading.

Experimental chemical shifts and coupling constants of propene- d_1 CDCl₃. (11)

¹H NMR (CDCl₃, 25 °C, 300.13 MHz): δ 1.79 (dd, C H_3 , $^3J_{HH}$ = 6.78 Hz, $^4J_{HH}$ = 1.5 Hz); 5.08 (second order, H, $^3J_{HH}$ = 16.72 Hz, $^4J_{HH}$ = 2.05 Hz); 5.90 (dqt, H, $^3J_{HH}$ = 17.1 Hz, $^3J_{HH}$ = 6.50 Hz, $^3J_{HD}$ = 1.6 Hz).

Figure 1. ¹H NMR spectrum of **2** in C₆D₆.

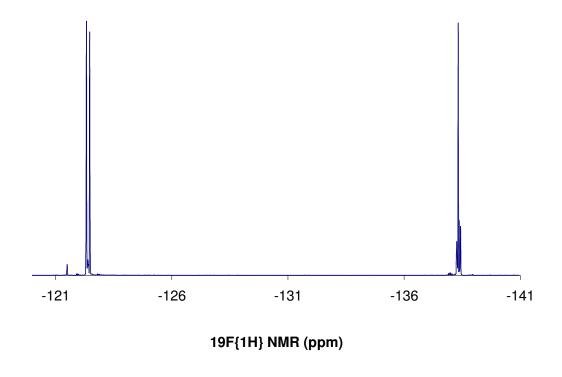


Figure 2. $^{19}F\{^1H\}$ NMR spectrum of 2 in C_6D_6 .

References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* **15**, 1518 (1996).
- 2. M. E. Doster, S. A. Johnson, *Angew. Chem.*, *Int. Ed.* **48**, 2185 (2009).
- 3. W. J. Scott, G. T. Crisp, J. K. Stille, *Org. Synth.* **68**, No pp given (1990).
- 4. D. J. Krysan, P. B. Mackenzie, *J. Org. Chem.* **55**, 4229 (1990).
- 5. M. Green, J. A. K. Howard, J. L. Spencer, F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 271 (1977).
- 6. J. Fornies, M. Green, J. L. Spencer, F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1006 (1977).
- 7. S. A. Johnson, E. T. Taylor, S. J. Cruise, *Organometallics* **28**, 3842 (2009).
- 8. S. A. Johnson, C. W. Huff, F. Mustafa, M. Saliba, J. Am. Chem. Soc. 130, 17278 (2008).
- 9. J. M. Miller, T. Chivers, G. F. Lanthier, J. Chem. Soc. A:, 2556 (1971).
- 10. N. Ostah, G. Lawson, Applied Organometallic Chemistry 14, 383 (2000).
- 11. A. A. Bothner-By, C. Naar-Colin, J. Am. Chem. Soc. 83, 231 (1961).