Supporting Information

Formic Acid Acting as an Efficient Oxygen Scavenger in Four-Electron Reduction of Oxygen Catalyzed by a Heterodinuclear Iridium-Ruthenium Complex in Water

Shunichi Fukuzumi*, Takeshi Kobayashi, and Tomoyoshi Suenobu

Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan, Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea Fax: +81-6-6879-7370; Tel: +81-6-6879-7368

* To whom correspondence should be addressed.E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

A Table of Contents

Experimental Section	Page 1
Figure S1 (S1)	Page 6
Figure S2 (S2)	Page 7
Figure S3 (S3)	Page 8

Experimental Section

Materials.

Commercially available reagents: hydrogen hexachloroiridate, H_2IrCl_6 (Tanaka Kikinzoku), *cis*-dichlorobis(2,2'-bipyridine)ruthenium(II) dihydrate, $[Ru^{II}(bpy)_2(Cl_2)] \cdot 2H_2O$ (Stream Chemicals, Inc.), η^5 -pentamethylcyclopentadiene (Kanto Chemical Co., Inc.), 2,2'-bipyrimidine (Johnson Matthey, Inc.), formic acid, sodium hydroxide, diluted sulfuric acid (1.0 M, Wako Pure Chemical Industries.), peracetic acid (9%) in acetic acid solution (Aldrich Chemical Co.), D_2O (99.9% D, Cambridge Isotope Laboratories) were the best available purity and used without further purification unless otherwise noted. H_2 gas (99.99999%, Japan Air Gases Co.) and a standard gas ($H_2 1.07\%$, $CO_2 1.07\%$, CO 1.06%, N_2 96.8%; GL Sciences Co., Ltd.) as a reference of GC analysis were used without further purification.

General Methods.

All experiments were carried out under an Ar or N₂ atmosphere by using standard Schlenk techniques. Purification of water (18.2 M Ω cm) was performed with a Milli-Q system (Millipore; Direct-Q 3 UV). ¹H NMR spectra were recorded on a JEOL JNM-AL300 spectrometer and a Varian UNITY INOVA600. The ¹H and ¹³C NMR experiments in D₂O were performed by dissolving the samples in D₂O in an NMR tube (diameter = 5.0 mm) with a sealed capillary tube (diameter = 1.5 mm) containing 3-(trimethylsilyl)propionic-2,2',3,3'-d₄ acid sodium salt (TSP) (100 mM, as a reference with the methyl proton resonance set at 0.00 ppm) dissolved in D₂O for deuterium lock. UV-vis absorption spectra were recorded on a Hewlett Packard 8453 diode array spectrophotometer with a quartz cuvette (path length = 1 mm or 1 cm) at 298 K. Kinetic measurements were performed on a UNISOKU RSP-601 stopped-flow spectrometer equipped with MOS-type highly sensitive photodiodes at 298 K. Electrospray ionization mass spectrometry (ESI-MS) data were obtained by an API 150EX quadrupole mass spectrometer (PE-Sciex) in the positive detection mode, equipped with an ion spray interface. The sprayer was held at a potential of +5.0 kV, and compressed N₂ was employed to assist liquid nebulization. The orifice potential was maintained at +30.0 V. The filtration with the membrane filter was performed using the membrane filter (Toyo, Roshi Kaisha, Ltd., H100A025A, pore diameter, 1 μ m)

pH-Adjustment.

In a pH range of 1.1-7.8, the pH values of the solutions were determined by a pH meter (TOA, HM-20J) equipped with a pH combination electrode (TOA, GST-5725C). The pH of the solution was adjusted by using 1.00–10.0 M NaOH/H₂O or 1.00 M H₂SO₄ without buffer. **Syntheses.**

 $[Ir^{III}(Cp^*)(Cl)_2]_2$:¹ To H₂IrCl₆ (1.02 g, 3.87 mmol) in 6 mL of methanol was added excess η^5 -pentamethylcyclopentadiene (1.5 mL). The mixture was stirred under reflux for 37 h. After the mixture was cooled to 0 °C, the product was isolated by filtration and washing with ether to yield an yellow blown powder of $[Ir^{III}(Cp^*)(Cl)_2]_2$, which was dried in vacuo {Yield: 73% based on H₂IrCl₆}. ¹H NMR (300 MHz, in CDCl₃, 298 K): δ (ppm) 1.60 (s, η^5 -C₅(CH₃)₅, 15H). Anal. Calcd for $[Ir^{III}(Cp^*)(Cl)_2]_2$: C₂₀H₃₀Cl₄Ir₂: C, 30.15%; H, 3.80%. Found: C, 30.14 %; H, 3.72 %.

 $[Ir^{III}(Cp^*)(H_2O)_3](SO_4)$:² A solution of $[Ir^{III}(Cp^*)(Cl)_2]_2$ (0.96 g, 1.32 mmol) and Ag₂SO₄ (0.83 g, 2.66 mmol) in H₂O (70 mL) was stirred at ambient temperature for 5 h in the dark, and then the solution was filtered with membrane filter. The filtrate was evaporated under reduced pressure to yield an orange powder of $[Ir^{III}(Cp^*)(H_2O)_3](SO_4)$, which was dried in vacuo {Yield: 86 % based on $[Ir^{III}(Cp^*)(Cl)_2]_2$ }. ¹H NMR (300 MHz, in DMSO-*d*₆, 298 K): δ (ppm) 1.68 (s, η^5 -C₅(CH₃)₅, 15H), 3.31 (br, 3(H₂O), 6H). Anal. Clad for $[Ir^{III}(Cp^*)(H_2O)_3](SO_4)$: $C_{10}H_{21}O_7SIr$: C, 25.15 %; H, 4.43 %. Found: C, 25.39 %; H, 4.48 %.

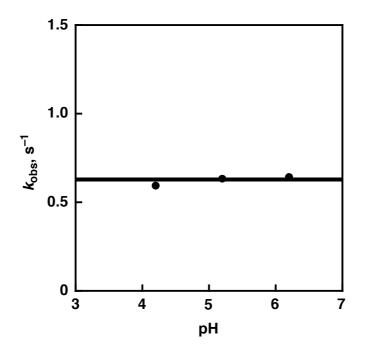
 $[Ru^{II}(bpy)_2(H_2O)_2](SO_4)$: A solution of $[Ru^{II}(bpy)_2(Cl_2)] \cdot 2H_2O$ (3.1 g, 6.0 mmol) and Ag_2SO_4 (1.87 g, 6.0 mmol) in H_2O (20 mL) was stirred at ambient temperature for 12 h and then the solution was filtered with membrane filter. The filtrate was evaporated under reduced pressure to yield a red powder of $[Ru^{II}(bpy)_2(H_2O)_2](SO_4)$, which was dried in vacuo

{Yield: 90 % based on $[Ru^{II}(bpy)_2(Cl_2)] \cdot 2H_2O$ }. ¹H NMR (300 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) 7.06 (t, J = 7 Hz, 2H, bpy), 7.70 (d, J = 6 Hz, 2H, bpy), 7.74 (t, J = 8 Hz, 2H, bpy), 7.88 (t, J = 7 Hz, 2H, bpy), 8.23 (t, J = 8 Hz, 2H, bpy), 8.34 (d, J = 8 Hz, 2H, bpy), 8.56 (d, J = 8 Hz, 2H, bpy), 9.36 (d, J = 5 Hz, 2H, bpy). Anal. Calcd for $[Ru^{II}(bpy)_2(H_2O)_2](SO_4) \cdot H_2O$: C₂₀H₂₀N₄O₆SRu \cdot H₂O: C, 42.63 %; H, 3.93 %; N, 9.94 %. Found: C, 42.53 %; H, 3.67 %; N, 9.95 %.

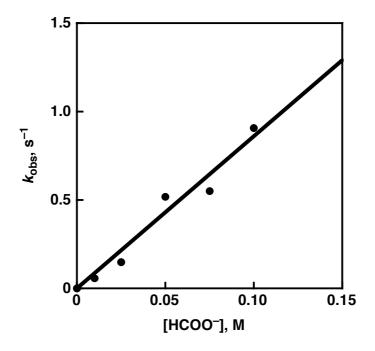
 $[Ru^{II}(bpy)_2(bpm)](SO_4)$: A solution of $[Ru^{II}(by)_2(H_2O)_2](SO_4)$ (0.6 g, 1.1 mmol) and 2,2'-bipyrimidine (137 mg, 1.1 mmol) in H₂O (40 mL) was stirred at ambient temperature for 5 h. The mixture was chromatographed on a Sephadex (G-10) column using H₂O as an eluent. The product was evaporated under reduced pressure to yield an orange powder of $[Ru^{II}(bpy)_2(bpm)](SO_4)$, which was dried in vacuo {Yield: 92% based on $[Ru^{II}(bpy)_2(H_2O)_2](SO_4)$. ¹H NMR (300 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) 7.41 (t, *J* = 7 Hz, 2H, bpy), 7.45 (t, *J* = 7 Hz, 2H, bpy), 7.60 (t, *J* = 5 Hz, 2H, bpm), 7.80 (d, J = 5 Hz, 2H, bpy), 7.94 (d, J = 5 Hz, 2H, bpy), 8.09 (t, J = 8 Hz, 2H, bpy), 8.12 (t, J= 8 Hz, 2H, bpy), 8.24 (dd, *J* = 6, 2 Hz, 2H, bpm), 8.57 (d, *J* = 8 Hz, 2H, bpy), 8.58 (d, *J* = 7 Hz, 2H, bpy), 9.09 (dd, J = 5, 2 Hz, 2H, bpm). Anal. Calcd for $[Ru^{II}(bpy)_{2}(bpm)](SO_{4}) \bullet 4H_{2}O: C_{28}H_{22}N_{8}O_{4}SRu \bullet 4H_{2}O: C, 45.46\%; H, 4.09\%; N, 15.15\%.$ Found: C, 45.39 %; H, 4.06 %; N, 15.36 %.

 $[Ir^{III}(Cp^*)(H_2O)(bpm)Ru^{II}(bpy)_2](X)_n$ [1(X)_n, where X = SO₄ (n = 2) or PF₆ (n = 4)]: [Ir^{III}(Cp^{*})(H₂O)₃](SO₄) (115 mg, 0.24 mmol) was added to an aqueous solution (10 mL) of [Ru^{II}(bpy)₂(bpm)](SO₄) (163 mg, 0.24 mmol) and stirred for a few minutes. The product was evaporated under reduced pressure to yield quantitatively a green powder of 1(SO₄)₂, which was dried in vacuo. ¹H NMR (300 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) 1.71 (s, 15H, η^5 -C₅(CH₃)₅), 7.42 (t, *J* = 7 Hz, 2H, bpm), 7.50 (t, *J* = 7 Hz, 1H, bpy), 7.55 (t, *J* = 7 Hz, 1H, bpy), 7.70 (d, *J* = 5 Hz, 1H, bpy), 7.75 (d, *J* = 7 Hz, 1H, bpy), 7.95 (t, *J* = 6 Hz, 1H, bpy), 7.97 (t, *J* = 6 Hz, 1H, bpy), 8.05-8.14 (m, 5H, bpm and bpy), 8.18 (t, *J* = 8 Hz, 1H, bpy), 8.47 (d, *J* = 5 Hz, 1H, bpy), 8.53 (d, *J* = 6 Hz, 1H, bpy), 8.54-8.62 (m, 4H, bpm and bpy), 9.45 (td, J = 5 Hz, 2H, bpm). ¹³C NMR (300 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) 10.97 (η^5 -C₅(CH₃)₅), 93.54 (η^5 -C₅(CH₃)₅), 127.76, 127.31, 127.39, 127.58, 130.00, 130.25, 130.32, 130.52, 130.79, 131.03, 154.49, 154.61, 155.15, 156.31, 159.03, 159.75, 159.76, 159.88, 160.20, 160.49, 164.56, 164.77, 169.08, 169.23 (bpm and bpy). Addition of an aqueous saturated solution of KPF₆ into an aqueous solution (4.0 mL) of **1**(SO₄)₂ (44.4 mg, 40 μ mol) gave a yellow powder of **1**(PF₆)₄ {Isolated yield: 61% based on **1**(SO₄)₂}. Anal. Calcd for **1**(PF₆)₄: C₃₈H₃₉N₈OP₄F₂₄RuIr: C, 30.49 %; H, 2.63 %; N, 7.49 %. Found: C, 30.75 %; H, 2.73 %; N, 7.76 %. ESI-MS in MeOH: m/z = 1027 [Ir^{III}(Cp^{*})(OCH₃)(bpm)Ru^{II}(bpy)₂](SO₄)⁺

 $[Ir^{III}(Cp^*)(H)(bpm)Ru^{II}(bpy)_2]_2(SO_4)_3$ [3₂(SO₄)₃]: HCOOH solution (8.3 mL, 0.11 mol) was added to the solution of $1(SO_4)_2$ (1.0 mg, 6.0 μ mol) in deaerated H₂O (0.4 mL) at pH 2.0. The pH was adjusted by using H₂SO₄ solution. The mixture was heated at 333 K for 1 min. ¹H NMR (300 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) –11.4 (s, Ir-H), 1.91 (s, 15H, η^5 -C₅(CH₃)₅), 7.41-7.55 (m, 4H, bpm and bpy), 7.65-7.75 (m, 2H, bpm and bpy), 7.86 (d, J = 5 Hz, 1H, bpy), 7.98 (d, J = 7 Hz, 1H, bpy), 8.05-8.20 (m, 5H, bpm and bpy), 8.32 (m, 1H, bpy), 8.45-8.65 (m, 6H, bpm and bpy), 9.27 (d, J = 5 Hz, 2H, bpm).


[Ir¹(Cp^{*})(bpm)Ru^{II}(bpy)₂](SO₄) [4(SO₄)]: 5 M HCOOH/HCOONa solution (1.2 μL, 6.0 μmol) was added to the solution of $1(SO_4)_2$ (1.3 mg, 0.90 μmol) in deaerated D₂O (0.6 mL) at pD 6.5. The mixture was heated at 313 K for 15 min. ¹H NMR (300 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) 1.88 (s, 15H, η^5 -C₅(CH₃)₅), 6.14 (dd, J = 7, 4 Hz, 2H, bpm), 7.06 (d, J = 5 Hz, 2H, bpm), 7.30 (t, J = 6 Hz, 2H, bpy), 7.36 (t, J = 7 Hz, 2H, bpy), 7.89 (d, J = 5 Hz, 2H, bpy), 8.03 (t, J = 7 Hz, 2H, bpy), 8.05 (t, J = 6 Hz, 2H, bpy), 8.07 (d, J = 5 Hz, 2H, bpy), 8.52 (d, J = 6 Hz, 2H, bpy), 8.54 (d, J = 5 Hz, 2H, bpy), 8.76 (d, J = 7 Hz, 2H, bpm). ¹³C NMR (600 MHz, in D₂O, reference to TSP in D₂O, 298 K): δ (ppm) 11.57 (η^5 -C₅(CH₃)₅), 90.21 (η^5 -C₅(CH₃)₅), 110.65, 126.52, 129.62, 129.95, 140.32, 144.97, 150.75, 154.67, 154.73, 157.40, 159.86, 160.21 (bpm and bpy).

Catalytic Oxygen Reduction.


Typically, an aqueous 5 M HCOOH/HCOONa solution (0.4 mL, 2.0 mmol) was added to the solution of $1(SO_4)_2$ (1.2 μ mol) in aerated H₂O (2.0 mL) at pH 3.6 at 298 K. The volume of dead space in the reaction vessel is 595 μ L. The amounts of evolved gases (H₂ and CO₂) were analyzed by a Shimadzu GC-14B gas chromatograph {N₂ carrier, active carbon with a particle size of 60-80 mesh at 353 K} equipped with a thermal conductivity detector. The amounts of evolved O₂ gas was analyzed by a Shimadzu GC-17A gas chromatograph [Ar carrier, HP-molesieve capillary column (19095P-MS0), 30 m × 0.53 mm, Agilent Technology at 313 K] equipped with a thermal conductivity detector. The amount of dissolved dioxygen was monitored with a Clark-type oxygen electrode (YSI, Inc., Model 5300A).

References.

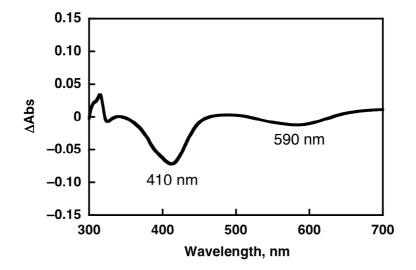

- (1) Ogo, S.; Fukuzumi, S.; Isobe, K. Jpn. Kokai Tokkyo Koho JP 2005, 281169.
- (2) Ogo, S.; Makihara, N.; Watanabe, Y. Organometallics 1999, 18, 5470.

Figure S1. Plot of the pseudo-first-order rate constant for formation of a intermediate **B** (k_{obs}) vs pH in the reduction of O₂ (0.13 mM) by **3** (0.10 mM) in he presence of HCOOH/HCOONa (10 mM) in H₂O at 298 K.

Figure S2. Plot of the pseudo-first-order rate constant (k_{obs}) vs concentrat on of HCOO⁻ for the reaction of an intermediate **B** with HCOO⁻ in the reduction of O₂ (0.13 mM) by **3** (0.10 mM) in H₂O at pH 5.2 at 298 K.

Figure S3. Difference absorption spectrum by subtracting the spectrum of an aqua complex **1** from that observed after the reaction of **1** (95 μ M) with CH₃C(O)OOH (67 mM) in the presence of CH₃COOH (0.64 M) at pH 2.1 at 298 K taken at 20 min after mixing.