Supporting Information

Authors: Gero Bauser, Harrie-Jan Hendricks Franssen, Hans-Peter Kaiser, Ulrich Kuhlmann,

Fritz Stauffer and Wolfgang Kinzelbach

Manuscript title:

Real-Time Management of an Urban Groundwater Well Field Threatened by Pollution

Pages: S1, S2: Table S1; S3: Table S2; S4: Figure S1; S5: Figure S2;

Technical data of vertical wells:

(7 vertical wells VFB 330-336)

Design	Slotted filter pipes: diameter 600 mm, depth : 20 – 24 m (from surface). Wells are supplied with subaqueous pumps	
Delivery rate	At low groundwater level: $20,000 \text{ m}^3/\text{day}$ (in total) At high groundwater level: $30,000 \text{ m}^3/\text{day}$ (in total)	

(12 vertical wells VFB 306-312 and 316-324)

Design	Slotted filter pipes: diameter 600 mm, depth 16 – 34 m (from surface)
Delivery rate	At low groundwater level: $42,000 \text{ m}^3/\text{day}$ (in total) At high groundwater level: $50,'000 \text{ m}^3/\text{day}(\text{in total})$

Technical data of recharge basins

Basin I	Filter area (rectangular shape): 3,825 m ² length: 85m, width: 45 m
Basin II	Filter area (rectangular shape): 4,000 m ² length: 80m; width 50 m
Basin III	Filter area (trapezoidal): 3,905 m ² 71m x 75m / 355 m
Vertical design of slow sand filter	 1.2 mm fleece mat 7 cm split layer (grain diameter 3-6 mm) 100 cm filter sand (grain diameter 0.2-2/2.4mm) ca. 30 cm filter gravel (grain diameter 4-15mm) ca. 80 cm coarse filter gravel (grain diameter 15-30mm) Transition to natural brash
Normal filter velocity	2.5 – 3 m/day
Maximum filter velocity	10 m/day
Water storage level	Maximum: 3 m
Length of cascade	70 m

Technical data of infiltration wells:

(12 infiltration wells S1-S12)

Design	Slotted filter-pipes: diameter 600 mm, depth: 25 – 30 m (from surface).
Infiltration rate per day	$3500 m^3/day$ (for each well)

Technical data of horizontal wells

Abstraction capacity	Maximum 50,000 m ³ /day (ca. 600 l/s).
Depth of wells	20-25 m
Well shaft diameter	4 m
12 Horizontal filter pipes on 2 levels, star-shaped design	Internal diameter 300 mm length 300 - 380 m
	Slotted filter (stainless steel) \emptyset 300 mm (horizontal wells A, B und D)
	Ribbed filter (polypropylene) \emptyset 170 mm (horizontal well C)
Subaqueous pump	3 Pieces. Type: K 302-2a à 193 l/s 30 m of manometric delivery height
Motors	3 Pieces: 90 kW /400 V 1450 Revolutions per minute
Aeration of well shaft	2 compressors à 200 m^3 air injection per hour
Electrical power supply	Transformer station (6 kV/400 V) High-voltage switch board Low-voltage switch board Battery for co-current flow 48 V for control and emergency operation

Table S1: Comparison of historical mean artificial recharge and optimized artificial recharge in basins and infiltration wells according to simulation scenario II.

Basin Nr. or Group	Historical mean artificial	Optimal mean artificial
of infiltration wells	recharge (m ³ day ⁻¹)	recharge (m ³ day ⁻¹)
S 1-6	4,400	500
S 7	1,000	1,000
III	8,400	6,000
S 8-10	3,100	6,000
II	4,200	7,000
S11-12	2,000	1,000
Ι	4,400	6,000

Figure S1: Non-linear transfer function curve of a fuzzy logic controller for any group of infiltration well or basin. Plotted is the amount of artificial recharge as function of the head difference for a pair of observation points and the modification over time of this head difference. The parameter p_{u_j} defines the slope of the function curve.

Figure S2: Path lines produced by particle back tracking with boundary conditions of April 30th, 2004. The computation uses the historical artificial recharge in the basins and wells. The dashed line indicates the boundary of the contaminated city area which is located south of the line. The yellow lines indicate the path lines with real-time control, and the red lines the path lines for the historic management.

The coordinates K_1 and K_2 [m] belong to the Swiss grid. The boundary is set at the Swiss grid coordinates: y = 249730 m = const for all x-values < 680000 m.

For x-values > 680000 m, the linear function y = m*x + b (with m =-0.378, b=506863 m) is defined as boundary.

