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(1) GaAs nanoneedles 

 As discussed in the main text, GaAs NNs can be obtained by MOCVD on roughened 

GaAs and silicon27 or on planar sapphire28 substrates. Figure 1 presents typical SEM images of 

GaAs NNs grown on roughened GaAs(111)B and Si(111) substrates27. With increasing the 

growth time, the NN length is correspondingly increased without changing its shape, angle or tip 

dimension. These observations elucidate the growth of NNs being via continuous deposition on 

their initial 3D surface, favored along the [0001] WZ crystal orientation. Some NNs envelope 

each other during growth [Fig. 1 (a)]. The white hexagonal shapes in Fig. 1 (b) indicate well-

aligned vertical, sharp NNs with a length of 2–3 µm. The NN sidewalls align to the <−1−12> ZB 

substrate directions. Figure 1 (c) shows a zoomed-in SEM image of a typical NN tip viewed 

nearly perpendicular to the growth axis. A linear array of NNs can be also attained as 

demonstrated in Fig. 1(d). Figure 1(e) shows 30° tilted and top-down views of a 4 µm long 

nanoneedle grown on a 4° off-cut Si (111) substrate. Typical taper angles of these NNs range 

between 6 and 90.   
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Fig.1. GaAs NNs grown by MOCVD on roughened GaAs(111)B (a-d) and Si (e) substrates. 

 

Figures 2 from Ref. [27] demonstrate pure WZ structure of GaAs NNs. Figure 2 (a) 

shows a HRTEM image on the [1−100] zone axis of a NN and its corresponding FFT. The tip in 

the image comes to an atomically sharp point of just 2–4 nm wide. The material remains single-

crystal WZ all the way up until the tip. Figure 3(b) shows a FFT from another NN on the 

[1−210] zone axis, showing the distinct WZ pattern. The c and a axes for these NNs were 

determined to be 6.52 and 3.98 Å, respectively. This c/a ratio is 1.638, which is close to the ideal 

hexagonal c/a ratio of 1.633.  More details regarding the NN growth and crystal structure can be 

found in Ref. [27]. 
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Fig. 2. HRTEM images of GaAs nanoneedles. (a) [1−100] 

zone axis HRTEM image of GaAs NN. The insets show the zoomed-out view, and also the 

image FFT. (b) FFT from another NN on its [1−210] zone axis with a distinct WZ pattern. (c) 

Top-down [0001] TEM image of a NN. The image to the right shows a selected area diffraction 

pattern from the circled area, with distinct wurtzite {1−100} spots matching the expected unique 

wurtzite 3.45 Å spacing.  

 

(2) Details of calculations 

To calculate the volume and sidewall surface area of pyramidal islands with tapered 

sidewalls, we consider the regular vertical facets of elementary length dl separated by the 

horizontal steps of width dr (see Fig. 1 (d) of the main text) so that 

constRLdrdl === β2// .                            (S1) 

Here, L is the height, R is the base dimension and RL 2/≡β is the aspect ratio. The cross-

sectional area at distance l  from the substrate surface equals 2
1 )2/( rC with π21 =C  for a 
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cylinder; 331 =C  for a hexagonal prism and 81 =C  for a rectangular prism. In particular, 

2
1 )2/( RCSB = is the base surface area at 0=l . Obviously,   
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This formula is equivalent to the well known expression for the volume of a regular prism. The 

surface area of vertical sidewalls of elementary height dl equals rdlC )2/( 2 with π42 =C  for a 

cylinder, 122 =C  for a hexagonal prism and 162 =C for a rectangular prism. Integration at 

constant β  yields: 
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Equations (S2) and (S3) give the formulas used in the main text with geometrical coefficients 

3/11 =k  and 2/12 =k .  


