Synthesis and Biological Evaluation of (\pm)-Dinemasone C and Analogues

Amie M. Stewart, ${ }^{\dagger}$ Kathrin Meier, ${ }^{\dagger}$ Barbara Schulz, ${ }^{\ddagger}$ Michael Steinert, ${ }^{\dagger}$ and Barry B.Snider* ${ }^{\dagger}$${ }^{\dagger}$ Department of Chemistry MS 015, Brandeis University, Waltham, Massachusetts 02454-9110${ }^{\ddagger}$ Institute of Microbiology, University of Braunschweig,Spielmannstr. 7, 38106 Braunschweig, Germany
Experimental Procedures S2-6
Table S1. Comparison of the Spectral Data of Natural and SyntheticDinemasone C Diacetate (27)S7
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. S8-S20

General Procedure. Reactions were conducted in flame- or oven-dried glassware under a nitrogen atmosphere and were stirred magnetically. The phrase "concentrated" refers to removal of solvents by means of a rotary evaporator attached to a diaphragm pump (15-60 Torr) followed by removal of residual solvents at < 1 Torr with a vacuum pump. Flash chromatography was performed on silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was performed using silica gel $60 \mathrm{~F}-254$ pre-coated glass plates (0.25 mm). TLC Plates were analyzed by short wave UV illumination, or by dipping in vanillin stain (27 g of vanillin in 380 mL of $\mathrm{EtOH}, 50 \mathrm{~mL}$ of water and 20 mL of concentrated sulfuric acid) and heating on a hot plate or by spray with permanganate spray (5 g of KMnO_{4} in 495 mL of water). THF was dried and purified by distillation from sodium/benzophenone. DIPEA and benzene were distilled from $\mathrm{CaH}_{2} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a 400 MHz spectrometer in CDCl_{3} with tetramethylsilane as internal standard unless otherwise indicated. Chemical shifts are reported in δ (ppm downfield from tetramethylsilane). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). COSY spectra were recorded for all compounds and used to assign ${ }^{1} \mathrm{H}$ NMR spectra. IR spectra were acquired on an FT-IR spectrometer and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra were obtained using the following ionization techniques: chemical ionization (CI), electron impact (EI), electrospray ionization analyzed by quadrupole time of flight (QTOF).

(2S,3R,4S,4aR,7S,7aS)-rel-Hexahydro-3,4-dihydroxy-7-methyl-2-(1E)-1-propen-1-yl$\mathbf{5 H}$-furo[3,4-b]pyran-5-one (nor-Dinemasone B, 14). A solution of acetonide (13) ${ }^{5 \mathrm{~b}}(14 \mathrm{mg}$, $0.052 \mathrm{mmol})$ in $4: 1 \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 3 h and concentrated with heating. Flash chromatography of the residue on silica gel ($3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded 10 mg
(84\%) of nor-dinemasone B (14) as a white solid: mp 161-163 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $5.85(\mathrm{dq}, 1, J=15.6$, 6.8), 5.53 (ddd, $J=15.6,6.8,1.8), 4.57(\mathrm{dq}, 1, J=2.8,6.8), 4.25(\mathrm{~d}, 1 J=10.4, \mathrm{OH}), 4.20(\mathrm{dd}, 1$, $J=3.4,2.8), 3.88(\mathrm{ddd}, 1, J=10.4,9.2,6.8), 3.55(\mathrm{dd}, 1, J=9.2,6.8), 3.29(\mathrm{dd}, 1, J=9.2,9.2)$, 3.15 (dd, $1, J=6.8,3.4), 2.54(\mathrm{br} \mathrm{s}, 1, \mathrm{OH}), 1.77(\mathrm{dd}, 3, J=6.8,1.8), 1.47(\mathrm{~d}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 176.8, 130.9, 127.0, 79.7, 78.7, 75.4, 73.7, 71.6, 46.3, 18.0, 13.4; IR (neat) 3297, 2909, 1753, 1638, 1092, 1053, 952; HRMS (QTOF ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$251.0895, found 251.0899.

(3S,4S,6R)-rel-Tetrahydro-4-hydroxy-6-methyl-3-[(1R,2E,4E)-1-hydroxy-2,4-hexadien-1-yl]-2H-pyran-2-one (17) and (3S,4S,6R)-rel-Tetrahydro-4-hydroxy-6-methyl-3-
[(1S,2E,4E)-1-hydroxy-2,4-hexadien-1-yl]-2H-pyran-2-one (16). Lithium diisopropylamide was prepared from diisopropylamine $(2.4 \mathrm{~mL}, 17.3 \mathrm{mmol})$ and $n-\mathrm{BuLi}(13.3 \mathrm{~mL}, 1.3 \mathrm{M}$ in hexanes, 17.3 mmol$)$ in THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of $15(898 \mathrm{mg}, 6.90 \mathrm{mmol})$ in THF (10 mL) was added over 5 min . The mixture was stirred for 45 min and treated with a $4: 1$ mixture of $(2 E, 4 E)$ - and $(2 E, 4 Z)-2,4$-hexadienal $(0.92 \mathrm{~mL}$, $8.34 \mathrm{mmol})$. The mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and treated with 10% aqueous HCl solution (40 mL). After separation of the layers, the aqueous layer was extracted with ether $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Flash chromatography of the residue on silica gel (2:1 hexanes/EtOAc) yielded $694 \mathrm{mg}(44 \%)$ of a $2: 1$ mixture of 17 and 16 , plus trace amounts of the $2 E, 4 Z$ isomers (cis16/17). Flash chromatography of a different batch on silica gel ($4: 1$ hexanes/EtOAc) yielded $536 \mathrm{mg}(34 \%)$ of a $4: 3$ mixture 17 and $\mathbf{1 6}$ followed by $158 \mathrm{mg}(10 \%)$ of pure $\mathbf{1 7}$ as a colorless gum.

Data for 17: ${ }^{1} \mathrm{H}$ NMR 6.36 (dd, $1, J=15.2,10.8, \mathrm{H}-3$ '), 6.06 (ddq, $1, J=14.8,10.8,1.6, \mathrm{H}-$ $\left.4^{\prime}\right), 5.77\left(\mathrm{dq}, 1, J=14.8,6.8, \mathrm{H}-5^{\prime}\right), 5.69(\mathrm{dd}, 1, J=15.2,6.4, \mathrm{H}-2$ '), 4.85-4.80 (m, 1, H-1'), 4.37 (ddq, $1, J=12.0,2.2,6.4, \mathrm{H}-6), 4.15-4.08(\mathrm{~m}, 1, \mathrm{H}-4), 3.04(\mathrm{~d}, 1, J=7.2, \mathrm{OH}), 2.68$ (dd, 1 , $J=9.2,3.4, \mathrm{H}-3), 2.19(\mathrm{ddd}, 1, J=12.0,4.4,2.2, \mathrm{H}-5 \mathrm{eq}), 2.07(\mathrm{~d}, 1, J=4.0, \mathrm{OH}), 1.77(\mathrm{~d}, 3$, $J=6.8, \mathrm{H}-6$ '), 1.68 (ddd, $1, J=12.0,12.0,12.0, \mathrm{H}-5 \mathrm{ax}), 1.40(\mathrm{~d}, 3, J=6.4, \mathrm{H}-6-\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $172.8,132.6,131.3,130.2,129.1,73.7,71.0,64.7,55.6,39.1,21.4,18.1$; IR (neat) 3410, 2979, 2932, 1707, 1390, 1257, 1087, 991; HRMS (QTOF ESI ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$ 249.1103, found 249.1102 .

Partial data for 16 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.11-5.07 (m, 1, H-1'), 4.25$4.18(\mathrm{~m}, 1, \mathrm{H}-4), 3.44(\mathrm{~d}, 1, J=1.2, \mathrm{OH}), 2.85(\mathrm{dd}, 1, J=9.2,5.2, \mathrm{H}-3), 2.55(\mathrm{~d}, 1, J=3.4, \mathrm{OH})$, 1.67 (ddd, $1, J=12.0,12.0,12.0, \mathrm{H}-5 \mathrm{ax}), 1.39(\mathrm{~d}, 3, J=6.4, \mathrm{H}-6-\mathrm{Me})$. Other peaks overlapped with the major isomer 17.

Partial data for cis-16/17 were determined from the mixture: 6.71 ($\mathrm{dd}, 1, J=15.6,10.8$).

(2R,3S,7R,8aS)-rel-3,7,8,8a-Tetrahydro-3-hydroxy-7-methyl-2-(1E)-1-propen-1-yl-2H,5H-pyrano[4,3-b]pyran-5-one (26). Pyridine ($0.54 \mathrm{~mL}, 6.7 \mathrm{mmol}$) and acetic anhydride $(0.32 \mathrm{~mL}, 3.4 \mathrm{mmol})$ were added to a solution of diol $19(33 \mathrm{mg}, 0.13 \mathrm{mmol})$ and DMAP (8 mg , $0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The solution was stirred for 18 h at $25^{\circ} \mathrm{C}$ under nitrogen, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, and washed with $2 \mathrm{M} \mathrm{HCl}(1 \times 10 \mathrm{~mL})$. After separation of the layers, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, and concentrated to give crude 25.

Crude 25 was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(590 \mathrm{mg}, 4.2 \mathrm{mmol})$ was added. The mixture was stirred for 24 h at $25^{\circ} \mathrm{C}$, treated with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated. Flash
chromatography of the residue on MeOH -deactivated silica gel ($3: 1$ hexanes/EtOAc) yielded $15 \mathrm{mg}(49 \%)$ of 26 as a colorless gum: ${ }^{1} \mathrm{H}$ NMR $7.06\left(\mathrm{br} \mathrm{s}, 1, \mathrm{w}_{1 / 2}=8, \mathrm{H}-4\right), 5.96(\mathrm{dq}, 1$, $\left.J=15.6,6.4, \mathrm{H}-2^{\prime}\right), 5.56\left(\mathrm{dd}, 1, J=15.6,7.2, \mathrm{H}-1^{\prime}\right), 4.50(\mathrm{ddq}, 1, J=12.4,2.3,6.0, \mathrm{H}-7), 4.44$ (br d, $J=12.4, \mathrm{H}-8 \mathrm{a}), 4.21-4.16(\mathrm{~m}, 1, \mathrm{H}-3), 3.81(\mathrm{dd}, 1, J=7.6,7.2, \mathrm{H}-2), 2.26(\mathrm{br} \mathrm{d}, 1$, $J=12.4, \mathrm{H}-8 \mathrm{eq}), 1.90(\mathrm{~d}, 1, J=6.0, \mathrm{OH}), 1.79\left(\mathrm{~d}, 3, J=6.4, \mathrm{H}-3^{\prime}-\mathrm{Me}\right), 1.70(\mathrm{ddd}, 1, J=12.4$, 12.4, 12.4, H-8ax), 1.44 (d, 3, $J=6.0, ~ H-7-M e) ;{ }^{13} \mathrm{C}$ NMR 163.5, 139.5, 132.2, 130.4, 127.7, 79.7, 73.2, 71.2, 67.8, 37.1, 21.8, 18.1; IR (neat) $3414,2980,2935,2858,1714,1652,1247$, 1109, 1048; MS (70 eV): $m / z(\%)=154(45), 139(2), 125(10), 113(15), 112(100) ;$ HRMS (QTOF ESI') calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$247.0946, found 247.0948.

(2R,3R,4S,4aR,7R,8aS)-rel-3,4-bis(Acetyl)hexahydro-7-methyl-2-(1E)-1-propen-1-yl-2H,5H-pyrano[4,3-b]pyran-5-one (27). Acetic anhydride ($8.9 \mu \mathrm{~L}, 0.094 \mathrm{mmol}$) and TMSOTf $(1.0 \mu \mathrm{~L}, 0.0055 \mathrm{mmol})$ were added to a solution of a $2: 1$ mixture of $\mathbf{2}$ and $\mathbf{1 9}(7.6 \mathrm{mg}$, $0.031 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and the solution was stirred at $25^{\circ} \mathrm{C}$ under nitrogen for 2 h . The reaction was treated with $\mathrm{MeOH}(0.1 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, washed with water (5 mL), dried over MgSO_{4} and concentrated. Flash chromatography of the residue on MeOH deactivated silica gel (20% EtOAc in toluene) yielded $2.1 \mathrm{mg}(21 \%)$ of epi-27 followed by $4.9 \mathrm{mg}(48 \%)$ of 27 as a colorless gum.

Data for epi-27: ${ }^{1} \mathrm{H}$ NMR 5.97 (dd, $1, J=2.6,2.3, \mathrm{H}-4$), 5.85 (dq, $\left.1, J=15.2,6.4, \mathrm{H}-2^{\prime}\right), 5.37$ (ddq, $J=15.2,6.0,2.0, \mathrm{H}^{\prime}-1$), 4.74 (dd, $1, J=10.0,2.6, \mathrm{H}-3$), 4.52-4.44 (m, 1, H-7), 4.11-4.03 (m, 2, H-8a and H-2), 2.48 (dd, $1, J=11.2,2.3, H-4 \mathrm{a}$), 2.33 (ddd, $1, J=12.8,3.5,3.5, \mathrm{H}-8 \mathrm{eq}$), 2.09 (s, 3), 1.98 (s, 3), 1.78-1.68 (m, 1, H-8ax), 1.72 (dd, $3, J=6.4,2.0, H-3 '-M e), 1.44(d, 3$, $J=6.0, \mathrm{H}-7-\mathrm{Me})$.

Data for 27: 5.81 (dd, $1, J=3.5,3.0, H-4), 5.80\left(\mathrm{dq}, 1, J=15.2,6.8, \mathrm{H}-2^{\prime}\right), 5.36$ (ddq, $J=15.2,8.2,1.5, \mathrm{H}-1$ '), 5.09 (dd, $1, J=9.8,3.0, \mathrm{H}-3$), 4.43 (ddd, $J=9.0,3.5,3.3, \mathrm{H}-8 \mathrm{a}), 4.32-$ 4.24 (m, 1, H-7), 4.06 (dd, $J=9.8, ~ 8.2, ~ H-2), ~ 2.86(d d, 1, J=3.5,3.5, H-4 a), 2.42$ (ddd, 1, $J=15.2,9.0,3.5, H-8 \alpha), 2.15(\mathrm{~s}, 3), 1.98(\mathrm{~s}, 3), 1.73(\mathrm{ddd}, 1, J=15.2,12.0 .3 .3, \mathrm{H}-8 \beta), 1.69$ (dd, $3, J=6.8,1.5, \mathrm{H}-3 '-\mathrm{Me}), 1.39$ (d, 3, $J=6.0, \mathrm{H}-7-\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR 169.6, 169.2, 169.1, 131.8, $127.3,76.0,72.2,67.8,67.7,66.9,44.5,36.7,21.0,20.7,20.5,17.9$; IR (neat) $1750,1373,1244$, 1222, 1056; MS (70 eV): m/z (\%) = 283 (5), 267 (3), 223 (85), 154 (100), 113 (90), 112 (95); HRMS (QTOF ESI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 349.1263$, found 349.1271; HRMS (QTOF MS ESI $)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right)$327.1444, found 327.1438. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectral data are identical to those reported by Krohn ${ }^{1}$ as tabulated in Table S1 on page S9.

Tests for Biological Activity. For the agar diffusion assay, ${ }^{14}$ the compounds were dissolved in acetone at a concentration of 1,2 or $4 \mu \mathrm{~g} / \mu \mathrm{L}$. Fifty $\mu \mathrm{L}$ of the solution was transferred by pipette onto a sterile filter disc ($0.05,0.1$ or $0.2 \mathrm{mg} /$ filter disc), which was placed onto an appropriate agar growth medium for the respective test organisms (for Escherichia coli, Bacillus megaterium, Microbotryum violaceum, and Chlorella fusca see Schulz et al., ${ }^{14}$ and on YEB medium (10 g of N -(2-acetamido)-2-aminoethanesulfonic acid, 10 g of yeast extract, 0.4 g of cysteine, and 0.25 g of ferric pyrophosphate in 1000 mL of distilled water) for Legionella pneumophila Corby), and subsequently sprayed with a suspension of the respective test organism. The radii of the zones of inhibition in mm are reported in Table 1 and 2 for compounds $\mathbf{1 4}, \mathbf{1 7}, \mathbf{1 9}, 2$, and 26 , in Table 1 for the control substances penicillin, tetracycline, nystatin, actidione, and acetone, and in Table 2 for the control substance kanamycin.

Table S1. Comparison of the Spectral Data of Natural and Synthetic Dinemasone C Diacetate (27)

Natural Dinemasone C Diacetate (27)

Atom \#	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$		${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	
2	76.0	4.08	$\left(\mathrm{dd}, J_{2,3}=10.0, J_{2,1^{\prime}}=7.7\right)$	76.0	4.06	$\left(\mathrm{dd}, J_{2,3}=9.8, J_{2,1^{\prime}}=8.2\right)$
3	67.8	5.11	$\left(\mathrm{dd}, J_{3,2}=10.0, J_{3,4}=3.3\right)$	67.7	5.09	$\left(\mathrm{dd}, J_{3,2}=9.8, J_{3,4}=3.0\right)$
3-OAc	20.7	1.99	(s)	20.7	1.98	(s)
	169.2	-		169.2	-	
4	67.0	5.83	(dd, $\left.J_{4,3}=J_{4,4 \mathrm{a}}=3.3\right)$	66.9	5.81	$\left(\mathrm{dd}, J_{4,4 \mathrm{a}}=3.5, J_{4,3}=3.0\right)$
4-OAc	20.9	2.14	(s)	21.0	2.15	(s)
	169.6	-		169.6	-	
4a	44.6	2.88	$\left(\mathrm{dd}, J_{4 \mathrm{a}, 4}=J_{4 \mathrm{a} .8 \mathrm{a}}=3.3\right)$	44.5	2.86	$\begin{aligned} & \left(\mathrm{dd}, J_{4 \mathrm{a}, 4}=3.5,\right. \\ & \left.J_{4 \mathrm{a} .8 \mathrm{a}}=3.5\right) \end{aligned}$
5	169.0	-		169.1	-	
7	72.2	4.32	(m)	72.2	4.32-4	. 24 (m)
7-Me	20.5	1.41	(d, $\left.J_{7,7}=6.2\right)$	20.5	1.39	$\left(\mathrm{d}, J_{7-\mathrm{Me}, 7}=6.0\right)$
8α	36.7	2.44	$\begin{aligned} & \left(\mathrm{ddd}, J_{\mathrm{gem}}=15.3\right. \\ & \left.J_{8,8 \mathrm{a}}=9.3, J_{8,7}=3.6\right) \end{aligned}$	36.7	2.42	$\begin{aligned} & \left(\mathrm{ddd}, J_{8 \alpha, 8 \beta}=15.2,\right. \\ & \left.J_{8 \alpha, 8 \mathrm{a}}=9.0, J_{8 \alpha, 7}=3.5\right) \end{aligned}$
8β	-	1.75	$\begin{aligned} & \left(\mathrm{ddd}, J_{\mathrm{gem}}=15.3,\right. \\ & \left.J_{8,7}=12.0, J_{8,8 \mathrm{a}}=3.3\right) \end{aligned}$	-	1.73	$\begin{aligned} & \left(\mathrm{ddd}, J_{8 \beta, 8 \alpha}=15.2,\right. \\ & \left.J_{8 \beta, 7}=12.0, J_{8 \beta, 8 \mathrm{a}}=3.3\right) \end{aligned}$
8 a	67.9	4.44	$\begin{gathered} \left(\mathrm{ddd}, J_{8 \mathrm{a}, 8}=9.3,\right. \\ \left.J_{8 \mathrm{a}, 8}=J_{8 \mathrm{a}, 4 \mathrm{a}} 3.3\right) \end{gathered}$	67.8	4.43	$\begin{aligned} & \left(\text { ddd, } J_{8 \mathrm{a}, 8 \alpha}=9.0,\right. \\ & \left.J_{8 \mathrm{a}, 8 \beta}=3.3, J_{8 \mathrm{a}, 4 \mathrm{a}}=3.5\right) \end{aligned}$
$1 '$	127.4	5.38	$\begin{aligned} & \left(\mathrm{ddq}, J_{1^{\prime}, 2^{\prime}}=15.3,\right. \\ & \left.J_{1^{\prime}, 2}=7.7, J_{1^{\prime}, 3^{\prime}}=1.7\right) \end{aligned}$	127.3	5.36	$\begin{aligned} & \left(\mathrm{ddq}, J_{1^{\prime}, 2^{\prime}}=15.2,\right. \\ & \left.J_{1^{\prime}, 2}=8.2, J_{1^{\prime}, 3^{\prime}}=1.5\right) \end{aligned}$
2^{\prime}	131.5	5.79	(overlapped with $\mathrm{H}-4$)	131.8	5.80	$\begin{aligned} & \left(\mathrm{dq}, 1, J_{2^{\prime}, 1^{\prime}}=15.2,\right. \\ & \left.J_{2^{\prime}, 3^{\prime}}=6.8\right) \end{aligned}$
3 (Me)	17.9	1.70	$\left(\mathrm{dd}, J_{3^{\prime}, 2^{\prime}}=6.5, J_{3^{\prime}, 1^{\prime}}=1.7\right)$	17.9	1.69	$\left(\mathrm{dd}, J_{3^{\prime}, 2^{\prime}}=6.8, J_{3^{\prime}, 1^{\prime}}=1.5\right)$

[^0]

[^0]: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments were taken from reference 1.

