## Synthesis and Biological Evaluation of $(\pm)$ -Dinemasone C and Analogues

Amie M. Stewart,<sup>†</sup> Kathrin Meier,<sup>‡</sup> Barbara Schulz,<sup>‡</sup> Michael Steinert,<sup>‡</sup> and Barry B. Snider\*<sup>†</sup>

<sup>†</sup>Department of Chemistry MS 015, Brandeis University, Waltham, Massachusetts 02454-9110

<sup>‡</sup> Institute of Microbiology, University of Braunschweig,

Spielmannstr. 7, 38106 Braunschweig, Germany

| Experimental Procedures                                            | .S2-6   |
|--------------------------------------------------------------------|---------|
| Table S1. Comparison of the Spectral Data of Natural and Synthetic |         |
| Dinemasone C Diacetate (27)                                        | .S7     |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra           | .S8-S20 |

General Procedure. Reactions were conducted in flame- or oven-dried glassware under a nitrogen atmosphere and were stirred magnetically. The phrase "concentrated" refers to removal of solvents by means of a rotary evaporator attached to a diaphragm pump (15-60 Torr) followed by removal of residual solvents at < 1 Torr with a vacuum pump. Flash chromatography was performed on silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was performed using silica gel 60 F-254 pre-coated glass plates (0.25 mm). TLC Plates were analyzed by short wave UV illumination, or by dipping in vanillin stain (27 g of vanillin in 380 mL of EtOH, 50 mL of water and 20 mL of concentrated sulfuric acid) and heating on a hot plate or by spray with permanganate spray (5 g of KMnO<sub>4</sub> in 495 mL of water). THF was dried and purified by distillation from sodium/benzophenone. DIPEA and benzene were distilled from CaH<sub>2</sub>. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a 400 MHz spectrometer in CDCl<sub>3</sub> with tetramethylsilane as internal standard unless otherwise indicated. Chemical shifts are reported in  $\delta$  (ppm downfield from tetramethylsilane). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). COSY spectra were recorded for all compounds and used to assign <sup>1</sup>H NMR spectra. IR spectra were acquired on an FT-IR spectrometer and are reported in wave numbers (cm<sup>-1</sup>). High resolution mass spectra were obtained using the following ionization techniques: chemical ionization (CI), electron impact (EI), electrospray ionization analyzed by quadrupole time of flight (QTOF).



(2S,3R,4S,4aR,7S,7aS)-*rel*-Hexahydro-3,4-dihydroxy-7-methyl-2-(1E)-1-propen-1-yl-5*H*-furo[3,4-*b*]pyran-5-one (*nor*-Dinemasone B, 14). A solution of acetonide (13)<sup>5b</sup> (14 mg, 0.052 mmol) in 4:1 AcOH/H<sub>2</sub>O (2.5 mL) was stirred at 25 °C for 3 h and concentrated with heating. Flash chromatography of the residue on silica gel (3% MeOH in CH<sub>2</sub>Cl<sub>2</sub>) yielded 10 mg

S2

(84%) of *nor*-dinemasone B (**14**) as a white solid: mp 161-163 °C; <sup>1</sup>H NMR 5.85 (dq, 1, J = 15.6, 6.8), 5.53 (ddd, J = 15.6, 6.8, 1.8), 4.57 (dq, 1, J = 2.8, 6.8), 4.25 (d, 1 J = 10.4, OH), 4.20 (dd, 1, J = 3.4, 2.8), 3.88 (ddd, 1, J = 10.4, 9.2, 6.8), 3.55 (dd, 1, J = 9.2, 6.8), 3.29 (dd, 1, J = 9.2, 9.2), 3.15 (dd, 1, J = 6.8, 3.4), 2.54 (br s, 1, OH), 1.77 (dd, 3, J = 6.8, 1.8), 1.47 (d, 3, J = 6.8); <sup>13</sup>C NMR 176.8, 130.9, 127.0, 79.7, 78.7, 75.4, 73.7, 71.6, 46.3, 18.0, 13.4; IR (neat) 3297, 2909, 1753, 1638, 1092, 1053, 952; HRMS (QTOF ESI<sup>+</sup>) calcd for C<sub>11</sub>H<sub>16</sub>O<sub>5</sub>Na (MNa<sup>+</sup>) 251.0895, found 251.0899.



(35,45,6*R*)-*rel*-Tetrahydro-4-hydroxy-6-methyl-3-[(1*R*,2*E*,4*E*)-1-hydroxy-2,4-hexadien-1-yl]-2*H*-pyran-2-one (17) and (35,45,6*R*)-*rel*-Tetrahydro-4-hydroxy-6-methyl-3-[(1*S*,2*E*,4*E*)-1-hydroxy-2,4-hexadien-1-yl]-2*H*-pyran-2-one (16). Lithium diisopropylamide was prepared from diisopropylamine (2.4 mL, 17.3 mmol) and *n*-BuLi (13.3 mL, 1.3 M in hexanes, 17.3 mmol) in THF (30 mL) at 0 °C. The solution was cooled to -78 °C. A solution of 15 (898 mg, 6.90 mmol) in THF (10 mL) was added over 5 min. The mixture was stirred for 45 min and treated with a 4:1 mixture of (2*E*,4*E*)- and (2*E*,4*Z*)-2,4-hexadienal (0.92 mL, 8.34 mmol). The mixture was stirred for 3 h at -78 °C and treated with 10% aqueous HCl solution (40 mL). After separation of the layers, the aqueous layer was extracted with ether (3 × 30 mL). The combined organic layers were washed with brine, dried over MgSO<sub>4</sub>, and concentrated. Flash chromatography of the residue on silica gel (2:1 hexanes/EtOAc) yielded 694 mg (44%) of a 2:1 mixture of 17 and 16, plus trace amounts of the 2*E*,4*Z* isomers (*cis*-16/17). Flash chromatography of a different batch on silica gel (4:1 hexanes/EtOAc) yielded 536 mg (34%) of a 4:3 mixture 17 and 16 followed by 158 mg (10%) of pure 17 as a colorless gum. Data for **17**: <sup>1</sup>H NMR 6.36 (dd, 1, J = 15.2, 10.8, H-3'), 6.06 (ddq, 1, J = 14.8, 10.8, 1.6, H-4'), 5.77 (dq, 1, J = 14.8, 6.8, H-5'), 5.69 (dd, 1, J = 15.2, 6.4, H-2'), 4.85-4.80 (m, 1, H-1'), 4.37 (ddq, 1, J = 12.0, 2.2, 6.4, H-6), 4.15-4.08 (m, 1, H-4), 3.04 (d, 1, J = 7.2, OH), 2.68 (dd, 1, J = 9.2, 3.4, H-3), 2.19 (ddd, 1, J = 12.0, 4.4, 2.2, H-5eq), 2.07 (d, 1, J = 4.0, OH), 1.77 (d, 3, J = 6.8, H-6'), 1.68 (ddd, 1, J = 12.0, 12.0, 12.0, H-5ax), 1.40 (d, 3, J = 6.4, H-6-Me); <sup>13</sup>C NMR 172.8, 132.6, 131.3, 130.2, 129.1, 73.7, 71.0, 64.7, 55.6, 39.1, 21.4, 18.1; IR (neat) 3410, 2979, 2932, 1707, 1390, 1257, 1087, 991; HRMS (QTOF ESI<sup>+</sup>) calcd for C<sub>12</sub>H<sub>18</sub>O<sub>4</sub>Na (MNa<sup>+</sup>) 249.1103, found 249.1102.

Partial data for **16** were determined from the mixture: <sup>1</sup>H NMR 5.11-5.07 (m, 1, H-1'), 4.25-4.18 (m, 1, H-4), 3.44 (d, 1, J = 1.2, OH), 2.85 (dd, 1, J = 9.2, 5.2, H-3), 2.55 (d, 1, J = 3.4, OH), 1.67 (ddd, 1, J = 12.0, 12.0, 12.0, H-5ax), 1.39 (d, 3, J = 6.4, H-6-Me). Other peaks overlapped with the major isomer **17**.

Partial data for *cis*-16/17 were determined from the mixture: 6.71 (dd, 1, J = 15.6, 10.8).



(2R,3S,7R,8aS)-*rel*-3,7,8,8a-Tetrahydro-3-hydroxy-7-methyl-2-(1*E*)-1-propen-1-yl-2*H,5H*-pyrano[4,3-*b*]pyran-5-one (26). Pyridine (0.54 mL, 6.7 mmol) and acetic anhydride (0.32 mL, 3.4 mmol) were added to a solution of diol **19** (33 mg, 0.13 mmol) and DMAP (8 mg, 0.07 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL). The solution was stirred for 18 h at 25 °C under nitrogen, diluted with CH<sub>2</sub>Cl<sub>2</sub> (8 mL), and washed with 2 M HCl (1 × 10 mL). After separation of the layers, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, and concentrated to give crude **25**.

Crude **25** was dissolved in MeOH (15 mL) and  $K_2CO_3$  (590 mg, 4.2 mmol) was added. The mixture was stirred for 24 h at 25 °C, treated with 2 M HCl (10 mL), and extracted with  $CH_2Cl_2$  (3 × 20 mL). The combined organic layers were dried over MgSO<sub>4</sub> and concentrated. Flash

chromatography of the residue on MeOH-deactivated silica gel (3:1 hexanes/EtOAc) yielded 15 mg (49%) of **26** as a colorless gum: <sup>1</sup>H NMR 7.06 (br s, 1, w<sub>1/2</sub> = 8, H-4), 5.96 (dq, 1, J = 15.6, 6.4, H-2'), 5.56 (dd, 1, J = 15.6, 7.2, H-1'), 4.50 (ddq, 1, J = 12.4, 2.3, 6.0, H-7), 4.44 (br d, J = 12.4, H-8a), 4.21-4.16 (m, 1, H-3), 3.81 (dd, 1, J = 7.6, 7.2, H-2), 2.26 (br d, 1, J = 12.4, H-8eq), 1.90 (d, 1, J = 6.0, OH), 1.79 (d, 3, J = 6.4, H-3'-Me), 1.70 (ddd, 1, J = 12.4, 12.4, H-8ax), 1.44 (d, 3, J = 6.0, H-7-Me); <sup>13</sup>C NMR 163.5, 139.5, 132.2, 130.4, 127.7, 79.7, 73.2, 71.2, 67.8, 37.1, 21.8, 18.1; IR (neat) 3414, 2980, 2935, 2858, 1714, 1652, 1247, 1109, 1048; MS (70 eV): m/z (%) = 154 (45), 139 (2), 125 (10), 113 (15), 112 (100); HRMS (QTOF ESI<sup>+</sup>) calcd for C<sub>12</sub>H<sub>16</sub>O<sub>4</sub>Na (MNa<sup>+</sup>) 247.0946, found 247.0948.



(2R,3R,4S,4aR,7R,8aS)-*rel*-3,4-bis(Acetyl)hexahydro-7-methyl-2-(1*E*)-1-propen-1-yl-2*H*,5*H*-pyrano[4,3-*b*]pyran-5-one (27). Acetic anhydride (8.9 µL, 0.094 mmol) and TMSOTf (1.0 µL, 0.0055 mmol) were added to a solution of a 2:1 mixture of **2** and **19** (7.6 mg, 0.031 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) and the solution was stirred at 25 °C under nitrogen for 2 h. The reaction was treated with MeOH (0.1 mL), diluted with CH<sub>2</sub>Cl<sub>2</sub> (5 mL), washed with water (5 mL), dried over MgSO<sub>4</sub> and concentrated. Flash chromatography of the residue on MeOHdeactivated silica gel (20% EtOAc in toluene) yielded 2.1 mg (21%) of *epi*-**27** followed by 4.9 mg (48%) of **27** as a colorless gum.

Data for *epi-27*: <sup>1</sup>H NMR 5.97 (dd, 1, J = 2.6, 2.3, H-4), 5.85 (dq, 1, J = 15.2, 6.4, H-2'), 5.37 (ddq, J = 15.2, 6.0, 2.0, H-1'), 4.74 (dd, 1, J = 10.0, 2.6, H-3), 4.52-4.44 (m, 1, H-7), 4.11-4.03 (m, 2, H-8a and H-2), 2.48 (dd, 1, J = 11.2, 2.3, H-4a), 2.33 (ddd, 1, J = 12.8, 3.5, 3.5, H-8eq), 2.09 (s, 3), 1.98 (s, 3), 1.78-1.68 (m, 1, H-8ax), 1.72 (dd, 3, J = 6.4, 2.0, H-3'-Me), 1.44 (d, 3, J = 6.0, H-7-Me).

Data for **27**: 5.81 (dd, 1, J = 3.5, 3.0, H-4), 5.80 (dq, 1, J = 15.2, 6.8, H-2'), 5.36 (ddq, J = 15.2, 8.2, 1.5, H-1'), 5.09 (dd, 1, J = 9.8, 3.0, H-3), 4.43 (ddd, J = 9.0, 3.5, 3.3, H-8a), 4.32-4.24 (m, 1, H-7), 4.06 (dd, J = 9.8, 8.2, H-2), 2.86 (dd, 1, J = 3.5, 3.5, H-4a), 2.42 (ddd, 1, J = 15.2, 9.0, 3.5, H-8 $\alpha$ ), 2.15 (s, 3), 1.98 (s, 3), 1.73 (ddd, 1, J = 15.2, 12.0. 3.3, H-8 $\beta$ ), 1.69 (dd, 3, J = 6.8, 1.5, H-3'-Me), 1.39 (d, 3, J = 6.0, H-7-Me); <sup>13</sup>C NMR 169.6, 169.2, 169.1, 131.8, 127.3, 76.0, 72.2, 67.8, 67.7, 66.9, 44.5, 36.7, 21.0, 20.7, 20.5, 17.9; IR (neat) 1750, 1373, 1244, 1222, 1056; MS (70 eV): m/z (%) = 283 (5), 267 (3), 223 (85), 154 (100), 113 (90), 112 (95); HRMS (QTOF ESI<sup>+</sup>) calcd for C<sub>16</sub>H<sub>22</sub>O<sub>7</sub>Na (MNa<sup>+</sup>) 349.1263, found 349.1271; HRMS (QTOF MS ESI<sup>+</sup>) calcd for C<sub>16</sub>H<sub>23</sub>O<sub>7</sub> (MH<sup>+</sup>) 327.1444, found 327.1438. The <sup>1</sup>H and <sup>13</sup>C spectral data are identical to those reported by Krohn<sup>1</sup> as tabulated in Table S1 on page S9.

**Tests for Biological Activity**. For the agar diffusion assay,<sup>14</sup> the compounds were dissolved in acetone at a concentration of 1, 2 or 4  $\mu$ g/ $\mu$ L. Fifty  $\mu$ L of the solution was transferred by pipette onto a sterile filter disc (0.05, 0.1 or 0.2 mg/filter disc), which was placed onto an appropriate agar growth medium for the respective test organisms (for *Escherichia coli, Bacillus megaterium, Microbotryum violaceum*, and *Chlorella fusca* see Schulz et al.,<sup>14</sup> and on YEB medium (10 g of *N*-(2-acetamido)-2-aminoethanesulfonic acid, 10 g of yeast extract, 0.4 g of cysteine, and 0.25 g of ferric pyrophosphate in 1000 mL of distilled water) for *Legionella pneumophila* Corby), and subsequently sprayed with a suspension of the respective test organism. The radii of the zones of inhibition in mm are reported in Table 1 and 2 for compounds **14**, **17**, **19**, **2**, and **26**, in Table 1 for the control substances penicillin, tetracycline, nystatin, actidione, and acetone, and in Table 2 for the control substance kanamycin. **Table S1**. Comparison of the Spectral Data of Natural and Synthetic Dinemasone C Diacetate(27)



|         |                 | Natural Dinemasone C Diacetate (27) |                                                                        |                 | Synthetic Dinemasone C Diacetate (27) |                                                |  |
|---------|-----------------|-------------------------------------|------------------------------------------------------------------------|-----------------|---------------------------------------|------------------------------------------------|--|
| Atom #  | <sup>13</sup> C | $^{1}\mathrm{H}$                    |                                                                        | <sup>13</sup> C | <sup>1</sup> H                        |                                                |  |
|         |                 |                                     |                                                                        |                 |                                       |                                                |  |
| 2       | 76.0            | 4.08                                | $(\mathrm{dd}, J_{2,3} = 10.0, J_{2,1'} = 7.7)$                        | 76.0            | 4.06                                  | $(dd, J_{2,3} = 9.8, J_{2,1'} = 8.2)$          |  |
| 3       | 67.8            | 5.11                                | $(dd, J_{3,2} = 10.0, J_{3,4} = 3.3)$                                  | 67.7            | 5.09                                  | $(dd, J_{3,2} = 9.8, J_{3,4} = 3.0)$           |  |
| 3-OAc   | 20.7            | 1.99                                | (s)                                                                    | 20.7            | 1.98                                  | (s)                                            |  |
|         | 169.2           |                                     |                                                                        | 169.2           |                                       |                                                |  |
| 4       | 67.0            | 5.83                                | $(\mathrm{dd}, J_{4,3} = J_{4,4a} = 3.3)$                              | 66.9            | 5.81                                  | $(\mathrm{dd}, J_{4,4a} = 3.5, J_{4,3} = 3.0)$ |  |
| 4-OAc   | 20.9            | 2.14                                | (s)                                                                    | 21.0            | 2.15                                  | (s)                                            |  |
|         | 169.6           |                                     |                                                                        | 169.6           |                                       |                                                |  |
| 4a      | 44.6            | 2.88                                | $(\mathrm{dd}, J_{4\mathrm{a},4} = J_{4\mathrm{a}.8\mathrm{a}} = 3.3)$ | 44.5            | 2.86                                  | $(dd, J_{4a,4} = 3.5,$                         |  |
|         |                 |                                     |                                                                        |                 |                                       | $J_{4a.8a} = 3.5$ )                            |  |
| 5       | 169.0           |                                     |                                                                        | 169.1           |                                       |                                                |  |
| 7       | 72.2            | 4.32                                | (m)                                                                    | 72.2            | 4.32-4                                |                                                |  |
| 7-Me    | 20.5            | 1.41                                | $(d, J_{7,7} = 6.2)$                                                   | 20.5            | 1.39                                  | $(d, J_{7-Me,7} = 6.0)$                        |  |
| 8α      | 36.7            | 2.44                                | $(ddd, J_{gem} = 15.3,$                                                | 36.7            | 2.42                                  | $(ddd, J_{8\alpha,8\beta} = 15.2,$             |  |
|         |                 |                                     | $J_{8,8a} = 9.3, J_{8,7} = 3.6$                                        |                 |                                       | $J_{8\alpha,8a} = 9.0, J_{8\alpha,7} = 3.5$    |  |
| 8β      |                 | 1.75                                | $(ddd, J_{gem} = 15.3,$                                                |                 | 1.73                                  | $(ddd, J_{8\beta,8\alpha} = 15.2,$             |  |
|         |                 |                                     | $J_{8,7} = 12.0, J_{8,8a} = 3.3$                                       |                 |                                       | $J_{8\beta,7} = 12.0, J_{8\beta,8a} = 3.3$     |  |
| 8a      | 67.9            | 4.44                                | $(ddd, J_{8a,8} = 9.3,$                                                | 67.8            | 4.43                                  | $(ddd, J_{8a,8\alpha} = 9.0,$                  |  |
|         |                 |                                     | $J_{8a,8} = J_{8a,4a} \ 3.3)$                                          |                 |                                       | $J_{8a,8\beta} = 3.3, J_{8a,4a} = 3.5)$        |  |
| 1'      | 127.4           | 5.38                                | $(ddq, J_{1',2'} = 15.3,$                                              | 127.3           | 5.36                                  | $(ddq, J_{1',2'} = 15.2,$                      |  |
|         |                 |                                     | $J_{1',2} = 7.7, J_{1',3'} = 1.7$                                      |                 |                                       | $J_{1',2} = 8.2, J_{1',3'} = 1.5)$             |  |
| 2'      | 131.5           | 5.79                                | (overlapped with H-4)                                                  | 131.8           | 5.80                                  | $(dq, 1, J_{2',1'} = 15.2,$                    |  |
|         |                 |                                     |                                                                        |                 |                                       | $J_{2',3'} = 6.8$ )                            |  |
| 3' (Me) | 17.9            | 1.70                                | $(\mathrm{dd}, J_{3',2'} = 6.5, J_{3',1'} = 1.7)$                      | 17.9            | 1.69                                  | $(dd, J_{3',2'} = 6.8, J_{3',1'} = 1.5)$       |  |
|         |                 |                                     |                                                                        |                 |                                       |                                                |  |

<sup>1</sup>H and <sup>13</sup>C NMR assignments were taken from reference 1.











ò

mđđ



<u>S10</u>



















