Fe(II)-Catalyzed Amination of Aromatic C-H Bonds via Ring Opening of 2H-Azirines: Synthesis of 2,3Disubstituted Indoles

Samaresh Jana, Mack D. Clements, Barry K. Sharp and Nan Zheng*
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville

AR 72701.

Experimental Section
 Table of Contents

General Considerations S2
General Sequence for the Preparation of Azirines S3
Preparation of Compound 1c S4
Preparation of Compound 1f S5-S6
Preparation of Compound 1g S6-S8
Preparation of Compound $\mathbf{1 j}$ S8-S9
Preparation of Compound 1 k S9-S11
Preparation of Compound 11 S11-S13
Preparation of Compound 1m S13-S14
Preparation of Compound 1n S14-S16
General Method for the Preparation of Indoles S16
Optimization of Catalytic Conditions S16-S17
Characterization Data of Indoles 2a-2o S17-S25
References S26
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{2 a}-\mathbf{2 o}$; 4f, 4k, 1n, 3n, 4n S27-S72

General Considerations

All reactions were carried out under a nitrogen atmosphere unless otherwise stated. Dry solvents were purchased and used as received except THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$, and toluene. They were rigorously purged with argon for 2 h and then further purified by passing through two packed columns of neutral alumina (for THF and $\mathrm{Et}_{2} \mathrm{O}$) or through neutral alumina and copper (II) oxide (for toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) under argon from a solvent purification system. Anhydrous DMSO was purchased from Alfa Aesar in a ChemSeal ${ }^{\mathrm{TM}}$ bottle. 1,2-Dichloroethane and 1,2dimethoxyethane were purchased from EMD in spetum-seal bottles ($\mathrm{DriSol}^{\circledR}$). All the chemicals were purchased from Sigma-Aldrich, Alfa Aesar, TCI-America, or Acros. 1,1Diphenylacetone was purchased from TCI America; 4-bromophenyl acetone was purchased from Acros; 4-nitrophenyl acetone, (4-pyridyl) acetone and cyclopropyl phenyl ketone were purchased from Alfa Aesar. All the reactions from azirines to indoles were carried out under a nitrogen atmosphere in an oven-dried disposable screw-cap test tube (PTFE/Silicone Rubber Septa) with a stir bar.

All new compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR spectroscopy, in addition to elemental analysis performed by Atlantic Microlabs Inc., Norcross, GA and/or high resolution mass spectroscopy. For starting materials, copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are attached for those new compounds of which a satisfactory elemental analysis was not obtained. Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are attached for all final products (indoles). Nuclear Magnetic Resonance spectra were recorded on a Bruker 400 instrument. All ${ }^{1} \mathrm{H}$ NMR experiments are reported in δ units, parts per million (ppm) and were measured relative to the signals for residual chloroform (7.26 ppm), acetone (2.05) in the deuterated solvents. All ${ }^{13} \mathrm{C}$ NMR spectra (obtained with ${ }^{1} \mathrm{H}$ decoupling) are reported in ppm relative to deuterochloroform (77.00 ppm) or acetone- $\mathrm{d}_{6}(207.07 \mathrm{ppm})$. The following abbreviations are used to designate multiplicities of nmr signals: $\mathrm{s}=$ singlet, brs = broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, quint $=$ quintet, and dd (doublet of doublet). Coupling constants (J value) are reported as hertz (Hz). Infrared spectra were recorded using a Perkin-Elmer Spectrum 100 FTIR spectrometer. Melting points (uncorrected) were obtained on a Stuart SMP 10 melting point apparatus. The following compounds have been previously prepared and characterized: $\mathbf{1 a}^{1}, \mathbf{2} \mathbf{a}^{1}$, $\mathbf{1 b}^{2}, \mathbf{2 b}^{2}, \mathbf{1} \mathrm{~d}^{3}, \mathbf{2} \mathrm{~d}^{4}, \mathbf{1} \mathrm{e}^{2}, \mathbf{2} \mathrm{e}^{2}, \mathbf{1 h}^{1}, \mathbf{2 h}^{1}, \mathbf{1 i}^{\mathbf{2}}, \mathbf{2 \mathbf { i } ^ { 2 }}, \mathbf{2 i}^{\mathbf{\prime}^{2}}, \mathbf{1 o}^{1}, \mathbf{2 o}^{1}$, and $\mathbf{2 \mathbf { o } ^ { \prime 1 }}$.

General Sequence for the Synthesis of Azirines

The synthesis of azirines following a published sequence ${ }^{1,3}$ is stated as follows:
i) Preparation of Hydrazone: Ketone (1 mmol), sodium acetate (1.2 mmol) and acetic acid $(0.15 \mathrm{mmol})$ were taken in ethanol $(1.5 \mathrm{~mL})$ in a microwave tube. Then N, N-dimethyl hydrazine (3 mmol) was added. The resulting mixture was heated to $150{ }^{\circ} \mathrm{C}$ in microwave. After 1 h , it was diluted with water $(1.5 \mathrm{~mL})$ and then extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure provided the crude hydrazone that was purified by column chromatography on silica gel.
ii) Preparation of Hydrazonium Salt: Hydrazone (1 mmol) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ and MeI (3 mmol) was added at room temperature. After stirring at room temperature for 20 h , the solvent was removed under reduced pressure to provide a salt. The crude salt was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to provide the pure hydrazonium iodide salt that was used in next step without further purification.
iii) Preparation of Azirine: Hydrazonium salt (1 mmol) was dissolved in DMSO (2 mL). Then $\mathrm{NaH}(1.1 \mathrm{mmol})$ was added in one portion at room temperature. After 2 h , it was poured into ice cold water. The resutling mixture was extracted with hexanes $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the crude azirine that was purified by column chromatography on silica gel.

Azirines 1a ${ }^{1,2}$ and 1b. ${ }^{2}$ Azirines 1a and 1b (both are known compounds) were synthesized according to the general sequence (see the following scheme).

3-(Pent-4-en-2-yl)-2,2-diphenyl-2H-azirine (1c). To a stirred solution of azirine $\mathbf{1 b}$ (345 mg , $1.39 \mathrm{mmol})$ in THF (2.5 mL), $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.96 \mathrm{~mL}, 1.53 \mathrm{mmol})$ was added slowly at $-78{ }^{\circ} \mathrm{C}$. After 1 h , iodomethane ($0.09 \mathrm{~mL}, 1.53 \mathrm{mmol}$) was added slowly at $-78{ }^{\circ} \mathrm{C}$. Then it was allowed to warm to $-10{ }^{\circ} \mathrm{C}$ over 1 h . After quenching with water $(2 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$, the mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to obtain a crude mass that was purified by column chromatography on silica gel (20:1 hexanes:EtOAc as eluent) to afford azirine 1c (337 mg) as oil in 92% yield. IR (neat, cm^{-1}): $3065,3029,2976,2930,1750,1601,1495,1446,993,918,776 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.34-7.21 (m, 10H), 5.79-5.73 (m, 1H), 5.06-5.00 (m, 2H), 3.20-3.15 (m, 1H), 2.59-2.52 (m, 1H), $2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.2,142.2$, 142.1, 134.5, 128.3, 128.2, 128.0, 127.9, 126.9, 126.8, 117.9, 44.5, 36.9, 33.5, 15.7. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}$: C, 87.31; H, 7.33; N, 5.36. Found: C, 87.39; H, 7.40; N, 5.48.

3-(4-Bromophenyl)butan-2-one (3f). To a stirred solution of 4-bromophenyl acetone (500 mg , 2.35 mmol) in DMSO (5 mL) was added sodium hydride (60% dispersion in mineral oil, 103 $\mathrm{mg}, 2.58 \mathrm{mmol}$) in one portion at room temperature. After 1 h , iodomethane $(0.18 \mathrm{~mL}, 2.82$ mmol) was added slowly. The reaction mixture was stirred at room temperature for 12 h and then quenched by pouring into ice cold water (5 mL). The mixture was extracted with diethyl ether (3 $\times 25 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to obtain a crude mass that was purified by column chromatography on silica gel (10:1 hexanes:EtOAc) to afford ketone $\mathbf{3 f}(380 \mathrm{mg})$ as oil in 71% yield. IR (neat, cm^{-1}): 2980, 2927, 2861, 1714, 1486, 1354, $1164,1073,1010,829 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.71(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 208.1,139.5,132.0,129.5,121.1,53.0,28.3,17.2$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}: \mathrm{C}$, 52.89; H, 4.88. Found: C, 53.12; H, 4.89.

2-(3-(4-Bromophenyl)butan-2-ylidene)-1,1-dimethylhydrazine (4f). Following the general sequence (step i), hydrazone $\mathbf{4 f}(275 \mathrm{mg})$ was obtained as oil in 83% yield from ketone $\mathbf{3 f}$ (280 mg) after silica gel chromatography (15% EtOAc in hexanes as an eluent). IR (neat, cm^{-1}): 2978, 2934, 1714, 1486, 1355, 1164, 1073, 1010, 830. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.43(\mathrm{~d}, J=8.7$ Hz, 2H), 7.14 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.63(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 168.5,141.7,131.5,129.2,120.4,47.0,17.6,14.6$.

2-(4-Bromophenyl)-2,3-dimethyl-2H-azirine (1f). Following the general sequence (steps ii and iii), azirine $1 \mathbf{f}(172 \mathrm{mg})$ was obtained as white solid in 76% yield from hydrazone $\mathbf{4 f}(270 \mathrm{mg})$ after silica gel chromatography (10% EtOAc in hexanes as an eluent). m.p. $50-51^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 2958, 2921, 2860, 1764, 1485, 1399, 1313, 1079, 1006, 827, 717. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.8,143.3,131.1,127.3,120.2,35.4,21.0,12.3$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}$: C, 53.60; H, 4.50; N, 6.25. Found: C, 53.93; H, 4.55; N, 5.97.

1 g
1-Cyclopropyl-1-phenylpropan-2-one (3g). To a stirred solution of ethyl triphenyl phosphonium bromide $(6.1 \mathrm{~g}, 16.4 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, 10.3 mL) dropwise at $0^{\circ} \mathrm{C}$. After 1 h , cyclopropyl phenyl ketone ($1.00 \mathrm{~g}, 6.84 \mathrm{mmol}$) was added dropwise at the same temperature. Two hours later, the reaction mixture was quenched with $\mathrm{AcOH}(0.55 \mathrm{~mL}, 9.6 \mathrm{mmol})$ and then filtered through a silica pad. Removal of the solvent under reduced pressure provided the crude olefin that was used directly for the next step.

A solution of Oxone ${ }^{\circledR}(4.2 \mathrm{~g}, 13.68 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added dropwise to a mixture of olefin (6.84 mmol) and $\mathrm{NaHCO}_{3}(2.76 \mathrm{~g}, 32.83 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 10 minutes, it was warmed to room temperature and stirred for 6 h at that temperature. Then $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the organic layer was separated. More water (10 mL) was added to the aqueous layer to make it homogeneous. The clear aqueous layer was extracted with diethyl ether $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to obtain the crude epoxide that was used directly for the next step.

The crude epoxide ($1.0 \mathrm{~g}, 5.74 \mathrm{mmol}$) was dissolved in diethyl ether (30 mL) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(46.5 \%, 3.1 \mathrm{~mL}, 11.5 \mathrm{mmol})$ was added very quickly at room temperature. After 5 minutes, it was carefully quenched with saturated aqueous NaHCO_{3} solution and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$, and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to get a crude mass that was purified by silica gel chromatography (20:1 hexanes:EtOAc) to afford ketone $\mathbf{3 g}$ ($434 \mathrm{mg}, 36 \%$ overall yield from cyclopropyl phenyl ketone) as oil. IR (neat, cm^{-1}): 3080, 3029, 3003, 2922, 1713, 1599, 1494, 1454, 1353, 1209, 1162, 1021, 750, 700. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.59-0.52(\mathrm{~m}, 1 \mathrm{H}), 0.31-0.25(\mathrm{~m}, 1 \mathrm{H}), 0.18-0.11(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 208.5,138.7,128.7,128.0,127.2,64.7,28.4,12.8,5.0$, 3.8. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.72 ; \mathrm{H}, 8.10$. Found: C, $82.58 ; \mathrm{H}, 7.91$.

2-(1-Cyclopropyl-1-phenylpropan-2-ylidene)-1,1-dimethylhydrazine (4g). Following the general sequence (step i), hydrazone $\mathbf{4 g}(434 \mathrm{mg})$ was obtained as oil in 92% yield from ketone $\mathbf{3 g}(380 \mathrm{mg})$ after silica gel chromatography (gradient, 10% to $20 \% \mathrm{EtOAc}$ in hexanes as an eluent). IR (neat, cm^{-1}): 3082, 3004, 2954, 2855, 2817, 2772, 1603, 1499, 1454, 1362, 1022. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.68(\mathrm{~m}, 1 \mathrm{H}), 0.61-0.55(\mathrm{~m}$, $1 \mathrm{H}), 0.37-0.32(\mathrm{~m}, 1 \mathrm{H}), 0.28-0.23(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.0,140.9,128.3$, 127.6, 126.5, 58.3, 47.1, 13.9, 12.2, 5.6, 3.8. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 77.73; H, 9.32; N , 12.95. Found: C, 77.67; H, 7.40; N, 12.74.

2-Cyclopropyl-3-methyl-2-phenyl-2H-azirine (1g). Following the general sequence (steps ii and iii), azirine $\mathbf{1 g}(249 \mathrm{mg})$ was prepared as oil in 57% yield from hydrazone $\mathbf{~} \mathbf{g}(550 \mathrm{mg})$ after silica gel chromatography ($20: 1$ hexanes:EtOAc as an eluent). IR (neat, cm^{-1}): 3085, 3002, 2924, $2854,1760,1714,1601,1495,1448,1029,769,698 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.36-7.22$ $(\mathrm{m}, 5 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.25(\mathrm{~m}, 1 \mathrm{H}), 0.21-0.17(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.1,143.7,128.0,126.3,126.0,41.3,14.1,12.8,4.6$, 3.5. HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$194.0946, found 194.0938.

2-(2-(3,5-Dimethylphenyl)-4-methylpentan-3-ylidene)-1,1-dimethylhydrazine (4j). Ketone $\mathbf{3 j}^{5}(1.81 \mathrm{~g}, 8.86 \mathrm{mmol})$ and N, N-dimethylhydrazine $(2.0 \mathrm{~mL}, 26.3 \mathrm{mmol})$ were charged to an oven-dried disposable screw-cap test tube (PTFE/Silicone Rubber Septa) with a stir bar. The tube was sealed and a nitrogen balloon was placed over its top. Neat $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}(9.0 \mathrm{~mL}, 30.2$ mmol) was added dropwise to the test tube and then the balloon was removed. The test tube was immersed into a preheated oil bath at $100^{\circ} \mathrm{C}$. After heating at $100^{\circ} \mathrm{C}$ for 24 h , the test tube was removed from the oil bath, cooled to room temperature, and then poured into saturated NaHCO_{3} solution (40 mL). The mixture was filtered through Celite and EtOAc ($3 \times 10 \mathrm{~mL}$) was used to wash the Celite bed. The filtrate was separated and the aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure provided a residual that was
purified by silica gel chromatography (gradient, $16: 1$ to $15: 1$ hexanes:EtOAc as eluent) to provide hydrazone (1.80 g , a $1: 1$ mixture of $E: Z$ iosmers) as oil in 83% yield. Spectral data are provided for mixture of two isomers. IR (neat, cm^{-1}): 2966, 2853, 2814, 2768, 1601, 1466, 1377, 962, 849. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 0.5 \mathrm{H}), 6.81(\mathrm{~s}, 1.5 \mathrm{H}), 5.07(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.64(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.47$ (septet, $J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 0.5 \mathrm{H}), 1.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.36(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1.5 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.76$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 179.1,177.1,144.5,141.1,137.45$, $137.42,127.8,127.7,125.5,125.3,47.9,47.7,41.4,38.4,29.7,29.6,23.2,22.6,22.5,21.34$, 21.27, 20.2, 19.8, 15.6. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2}$: C, 77.99; H, 10.64; N, 11.37. Found: C, 78.13; H, 10.71; N, 11.29.

2-(3,5-Dimethylphenyl)-3-isopropyl-2-methyl-2H-azirine (1j). Following the general sequence (steps ii and iii), azirine $\mathbf{1 j}$ was obtained as oil (550 mg) in 61% yield from hydrazone $(1.78 \mathrm{~g})$ after silica gel chromatography ($20: 1$ hexanes:EtOAc as eluent). IR (neat, cm^{-1}): 2977, 2927, 2876, 1751, 1606, 1460, 1380, 1022, 850, 710. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.85(\mathrm{~s}$, $1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 3.05$ (septet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 176.2,144.5,137.5,127.7,123.4$, 37.2, 27.9, 21.8, 21.3, 18.2, 17.9. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}: \mathrm{C}, 83.53 ; \mathrm{H}, 9.51 ; \mathrm{N}, 6.96$. Found: C, 83.37; H, 9.74; N, 6.85.

3-(4-Bromophenyl)-6-(tert-butyldimethylsilyloxy)hexan-2-one (3k). To a stirred solution of 4-bromophenyl acetone ($500 \mathrm{mg}, 2.35 \mathrm{mmol}$) in DMSO (5 mL) was added sodium hydride (60% dispersion in mineral oil, $113 \mathrm{mg}, 2.82 \mathrm{mmol}$) in one portion at room temperature. One hour later, a solution of 3-(tert-butyldimethylsilyloxy)-1-iodopropane ($776 \mathrm{mg}, 2.58 \mathrm{mmol}$) in DMSO $(2.5 \mathrm{~mL})$ was added slowly. After stirring at room temperature for 12 h , the reaction was quenched with ice cold water (5 mL) and then extracted with diethyl ether ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were concentrated under reduced pressure. The residual was purified by silica gel chromatography ($20: 1$ hexanes:EtOAc) to provide ketone $\mathbf{3 k}(694 \mathrm{mg}$) as oil in 77% yield. IR (neat, cm^{-1}): 2958, 2929, 2857, 1715, 1486, 1471, 1356, 1254, 1159, 1101, 1011, 836, 776. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{dd}$, $J=8.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dt}, J=1.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.015(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 207.8,137.9,132.0,130.0,121.2,62.8,58.7,30.4,29.0,28.3,25.9,18.3,-5.3$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BrO}_{2} \mathrm{Si}$: C, 56.09; H, 7.58. Found: C, 56.15; H, 7.67.

2-(3-(4-Bromophenyl)-6-(tert-butyldimethylsilyloxy)hexan-2-ylidene)-1,1-dimethyl

hydrazine (4k). Following the general sequence (step i), hydrazone $\mathbf{4 k}$ (598 mg) was obtained as oil in 78% yield from ketone $\mathbf{3 k}(694 \mathrm{mg})$ after silica gel chromatography ($10 \% \mathrm{EtOAc}$ in hexanes as an eluent). IR (neat, cm^{-1}): 2953, 2934, 2857, 1487, 1470, 1359, 1254, 1102, 1011, $836,775 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.61$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.81(\mathrm{~m}, 1 \mathrm{H})$, $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ $167.8,140.4,131.5,129.6,120.5,62.9,52.9,47.0,30.6,27.8,25.9,18.3,14.7,-5.3$.

2-(4-Bromophenyl)-2-(3-(tert-butyldimethylsilyloxy)propyl)-3-methyl-2H-azirine Following the general sequence (steps ii and iii), azirine $\mathbf{1 k}(300 \mathrm{mg})$ was obtained as oil in 63% yield from hydrazone $\mathbf{4 k}$ (534 mg) after silica gel chromatography ($20: 1$ hexanes:EtOAc as eluent). IR (neat, cm^{-1}): 2957, 2933, 2861, 1490, 1255, 1106, 1011, 838, 778. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{dd}, J=6.2,6.0 \mathrm{~Hz}$,

2H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.6,142.5,131.2,127.7,120.2,62.6,39.3,29.8,29.2,26.0,18.3,13.0,-$ 5.3. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{28}$ BrNOSi: C, 56.53 ; H, 7.38; N, 3.66. Found: C, 56.78; H, 7.55; N, 3.56.

6-(tert-Butyldimethylsilyloxy)-3-(4-fluorophenyl)hexan-2-one (31). To a stirred solution of 4fluorophenyl acetone ${ }^{6}(600 \mathrm{mg}, 3.94 \mathrm{mmol})$ in DMSO $(4 \mathrm{~mL})$ was added sodium hydride $(60 \%$ dispersion in mineral oil, $189 \mathrm{mg}, 4.73 \mathrm{mmol}$) in one portion at room temperature. One hour later, a solution of 3-(tert-butyldimethylsilyloxy)-1-iodopropane ($1.30 \mathrm{~g}, 4.33 \mathrm{mmol}$) in DMSO $(3 \mathrm{~mL})$ was added slowly. After stirring at room temperature for 12 h , the reaction was quenched with ice cold water (5 mL) and then extracted with diethyl ether ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were concentrated under reduced pressure. The residual was purified by silica gel chromatography (5% EtOAc in hexanes) to afford ketone $31(1.02 \mathrm{~g})$ as oil in 80% yield. IR (neat, cm^{-1}): 2954, 2933, 2861, 1716, 1508, 1359, 1258, 1228, 1156, 1099, 836, 775. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.19(\mathrm{dd}, J=8.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.63$ (dd, $J=7.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{td}, J=6.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 208.2,162.0(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 134.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.5$
$\mathrm{Hz}), 62.8,58.5,30.4,28.9,28.3,25.9,18.3,-5.4$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{FO}_{2} \mathrm{Si}: \mathrm{C}, 66.62 ; \mathrm{H}$, 9.01. Found: C, 66.47; H, 9.07.

2-(6-(tert-Butyldimethylsilyloxy)-3-(4-fluorophenyl)hexan-2-ylidene)-1,1-dimethylhydrazine (41). Following the general sequence (step i), hydrazone $41(535 \mathrm{mg})$ was obtained as oil in 95% yield from ketone $31(500 \mathrm{mg})$ after silica gel chromatography (gradient, 9:1 hexanes:EtOAc to 4:1 hexanes:EtOAc as an eluent). IR (neat, cm^{-1}): 2953, 2930, 2857, 2817, 2772, 1508, 1470, $1359,1154,1224,1100,835,775 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.22(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98(\mathrm{dd}, J=9.0,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $6 \mathrm{H}), 2.01-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 168.1,161.7(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 137.1,129.3(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 63.0,52.7,47.0,30.7,28.0,25.9,18.3,14.5,-5.3$. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{FN}_{2} \mathrm{OSi}$: C, 65.53; H, 9.62; N, 7.64. Found: C, 65.77; H, 9.71; N, 7.53.

2-(3-(tert-Butyldimethylsilyloxy)propyl)-2-(4-fluorophenyl)-3-methyl-2H-azirine

Following the general sequence (steps ii and iii), azirine $\mathbf{5 1}$ (224 mg) was obtained as oil in 57% yield from hydrazone 41 (450 mg) after silica gel chromatography ($20: 1$ hexanes:EtOAc as eluent). IR (neat, cm^{-1}): 2954, 2929, 2857, 1511, 1472, 1256, 1232, 1103, 836, 776. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.10(\mathrm{dd}, J=9.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.97(\mathrm{dd}, J=9.0,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.62$ (t, $J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.1,161.5(\mathrm{~d}, J=244.8 \mathrm{~Hz}$), $139.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 127.4(\mathrm{~d}, J=$ 7.8 Hz), $114.9(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 62.6,39.2,30.1,29.2,25.9,18.3,13.0,-5.3$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{28}$ FNOSi: C, 67.24; H, 8.78; N, 4.36. Found: C, 67.53; H, 9.04; N, 4.29.

4-(2-(3-(tert-Butyldimethylsilyloxy)propyl)-2-(4-fluorophenyl)-2H-azirin-3-yl)butyl pivalate

 (11). To a stirred solution of azirine $\mathbf{5 l}(195 \mathrm{mg}, 0.61 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added $n-\mathrm{BuLi}$ (1.6 M in hexanes, $0.42 \mathrm{~mL}, 0.67 \mathrm{mmol}$) slowly at $-78{ }^{\circ} \mathrm{C}$. One hour later, a solution of 3iodopropyl pivalate ${ }^{7}(214 \mathrm{mg}, 0.79 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added slowly at $-78{ }^{\circ} \mathrm{C}$. Upon the completion of the addition, the mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ over 1 h . The reaction mixture was quenched with water $(2 \mathrm{~mL})$ and then extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and finally driedover $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were concentrated under reduced pressure. The residual was purified by silica gel chromatography (gradient, 20:1 hexanes:EtOAc to $9: 1$ hexanes:EtOAc) to afford azirine $11(71 \mathrm{mg})$ as oil in 25% yield. IR (neat, cm^{-1}): 2955, 2937, 2857, 1729, 1607, 1510, $1287,1254,1233,1157,1103,837,780 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.10(\mathrm{dd}, J=8.9,5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $7.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.18(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 178.5,173.2,161.4(\mathrm{~d}, \mathrm{~J}$ $=245.3 \mathrm{~Hz}), 139.1(\mathrm{~d}, J=2.82 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 63.5,62.6$, 39.6, 38.7, 30.4, 29.1, 28.2, 27.1, 27.0, 25.9, 21.1, 18.3, -5.3. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{FNO}_{3} \mathrm{Si}$: C, 67.34; H, 9.13; N, 3.02. Found: C, 67.44; H, 9.24; N, 2.99.

3-(4-Nitrophenyl)butan-2-one (3m). To a stirred solution of 4-nitrophenyl acetone (1.00 g , 5.58 mmol) in DMSO (6 mL) was added $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $246 \mathrm{mg}, 6.14$ mmol) in one portion at room temperature. One hour later, iodomethane ($0.38 \mathrm{~mL}, 6.14 \mathrm{mmol}$) was added slowly. After stirring at room temperature for 12 h , the reaction mixture was quenched with ice cold water (5 mL) and then extracted with diethyl ether ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water $(2 \times 5 \mathrm{~mL})$, brine (5 mL) and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were concentrated under reduced pressure. The residual was purified by silica gel chromatography (10% EtOAc in hexanes) to afford ketone $\mathbf{3 m}(870 \mathrm{mg})$ as white solid in 81% yield. m.p. $50-52{ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 2980, 2917, $2849,1715,1604,1519,1346,1163$, $1110,857 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.89(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$:
207.0, 147.7, 147.1, 128.8, 124.1, 53.3, 28.7, 17.3. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 62.17 ; \mathrm{H}$, 5.74; N, 7.25. Found: C, 62.39; H, 5.69; N, 7.21.

1,1-dimethyl-2-(3-(4-nitrophenyl)butan-2-ylidene)hydrazine (4m). Following the general sequence (step i), hydrazone $\mathbf{4 m}(550 \mathrm{mg})$ was obtained as oil in 90% yield from ketone $\mathbf{3 m}$ (503 mg) after silica gel chromatography (30% EtOAc in hexanes as eluent). IR (neat, cm^{-1}): 2954, $2858,2818,1598,1520,1347,856,702 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 167.2,150.4,146.8,128.3,123.7,47.8,47.0,17.7$, 15.0. HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 236.1339$, found 236.1390.

2,3-Dimethyl-2-(4-nitrophenyl)-2H-azirine (1m). Following the general sequence (steps ii and iii), azirine $\mathbf{1 m}(168 \mathrm{mg})$ was synthesized as white solid in 35% yield from hydrazone $\mathbf{4 m}$ (596 mg) after silica gel chromatography (15% EtOAc in hexanes as eluent). m.p. 90-92 ${ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 2918, 2852, 1775, 1599, 1514, 1344, 853. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.16(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 168.6,152.0,146.2,126.2,123.3,35.7,20.7,12.2$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 63.15 ; \mathrm{H}$, 5.30; N, 14.73. Found: C, 63.27; H, 5.28; N, 14.54.

3-(Pyridin-4-yl)pentan-2-one (3n). To a stirred solution of (4-pyridyl) acetone ($500 \mathrm{mg}, 3.70$ mmol) in DMSO (4 mL) was added NaH (60% dispersion in mineral oil, $163 \mathrm{mg}, 4.07 \mathrm{mmol}$) in
one portion at room temperature. Half an hour later, 1-bromoheptane $(0.70 \mathrm{~mL}, 4.44 \mathrm{mmol})$ was added dropwise. After stirring at room temperature for 12 h , the reaction mixture was quenched with ice cold water (5 mL) and then extracted with 10:1 EtOAc: hexanes $(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were concentrated under reduced pressure. The residual was purified by silica gel chromatography ($50 \% \mathrm{EtOAc}$ in hexanes) to afford ketone $3 \mathrm{n}(557 \mathrm{mg})$ as oil in 65% yield. IR (neat, cm^{-1}): 2959, 2926, 2859, 1717, 1598, $1561,1463,1417,1357,1161 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.56(\mathrm{dd}, J=4.5,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{dd}, J=4.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.73-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{dd}, J=7.1,6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 206.9,150.2,147.8,123.4,59.0,31.7,31.6,29.3,28.9,27.3,22.5,14.0$. GCMS (CI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right) 234$, found 234 .

3-(Pyridin-4-yl)pentan-2-one oxime (4n). Ketone 3n (527 mg, 2.26 mmol) was dissolved in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(20: 1,21 \mathrm{~mL})$. Then $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ salt ($236 \mathrm{mg}, 3.39 \mathrm{mmol}$) was added at room temperature followed by sodium acetate $(278 \mathrm{mg}, 3.39 \mathrm{mmol})$. It was stirred for 12 h at that temperature. After the solvent was removed, the residual was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) and water (4 mL). The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were concentrated under reduced pressure. The residual was purified by silica gel chromatography (50% EtOAc in hexanes) to afford oxime $\mathbf{4 n}\left(529 \mathrm{mg}\right.$) as oil in 94% yield. IR (neat, cm^{-1}): 3198, 2934, 2859, $1601,1561,1469,1417,1371 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.54(\mathrm{dd}, J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m} 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}$, $3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{dd}, J=7.1,6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.6$, $151.1,149.4,123.4,50.6,31.7,30.8,29.4,29.0,27.3,22.5,14.0,11.8$. GCMS (CI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right) 249$, found 249.

4-(2-Ethyl-3-methyl-2H-azirin-2-yl)pyridine (1n). To a stirred solution of oxime $\mathbf{4 n} \mathbf{~ (8 0 ~} \mathrm{mg}$, $0.32 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(34 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ followed by methane sulfonyl chloride $(62 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ at room temperature. After $0.5 \mathrm{~h}, \mathrm{DBU}(0.13 \mathrm{~mL}, 0.89 \mathrm{mmol})$ was added at room temperature and then it was heated to $40^{\circ} \mathrm{C}$ for 12 h . After that, it was filtered through a silica pad and washed with EtOAc. Solvent was evaporated to obtain a crude mass
that was purified by silica gel chromatography (EtOAc) to afford pure azirine $\mathbf{1 n}(62 \mathrm{mg})$ as an oil in 84% yield. IR (neat, cm^{-1}): 2959, 2928, 2862, 1596, 1463, 1411. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.50(\mathrm{dd}, J=4.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=4.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.97$ $(\mathrm{m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.7$, $152.6,149.4,120.7,38.9,32.3,31.7,29.4,29.1,25.8,22.6,14.0,12.8$. GCMS (CI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 231$, found 231.

General procedure for $\mathbf{F e}(\mathrm{II})$ Chloride Catalyzed Rearrangement of Azirines to Indoles:

Azirine (1 mmol) was transferred to a disposable test tube with a stir bar and carefully dried under high vacuum for ca. 10 min (until no air bubble was seen escaping from the azirine). The test tube was refilled with nitrogen and then taken into a nitrogen-filled glove box where $\mathrm{FeCl}_{2}(0.1$ or 0.2 mmol$)$ was added. After removing from the glove box, a nitrogen balloon was placed on the top of the test tube and THF (1 mL) was added. The nitrogen balloon was detached from the test tube and the nitrogen filled test tube was then placed into a preheated oil bath $\left(70{ }^{\circ} \mathrm{C}\right)$ for 24 h . After removing from the oil bath, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or EtOAc. The diluted reaction mixture was washed with water (2 mL) and brine (2 mL) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to obtain a crude mass that was purified by column chromatography on silica gel.

Optimization of Catalytic Conditions

Following the general procedure, a mixture of azirine 1 a (1 mmol), catalyst ($5-100 \mathrm{~mol} \%$) in THF ($1 \mathrm{~mL}, 1 \mathrm{M}$) was stirred at room temperature to $70{ }^{\circ} \mathrm{C}$ for $1-24 \mathrm{~h}$. A crude mass was obtained after aqueous workup. Hexamethylbenzene ($5-10 \mathrm{mg}$) was added as an internal standard. Then the crude mass was analyzed by ${ }^{1} \mathrm{H}$ NMR. For some of the runs, the crude mass was purified by silica gel chromatography. Twelve entries from the following table are selected for Table 1 in the manuscript.

Complete Optimization Table

			reaction	dition		$-\mathrm{Me}$	
Entry	Catalyst (mol\%)	Reaction Conditions 2a	2a,Yield(\%)	Entry	Catalyst (mol\%)	Reaction Conditions	2a,Yield(\%)
1	FeCl ${ }_{2}$ (5)	THF, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$	77^{a}	12	FeCl 2 (5)	THF, $70{ }^{\circ} \mathrm{C}, \mathrm{MW}, 1 \mathrm{~h}$	$74^{\text {a }}$
2	None	THF, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$	0	13	FeCl_{2} (10)	THF, $70{ }^{\circ} \mathrm{C}, \mathrm{MW}, 1 \mathrm{~h}$	$74{ }^{\text {b }}$
3	$\mathrm{FeCl}_{2}(5)$	THF, rt, 24 h	$75^{\text {a }}$	14	$\mathrm{FeCl}_{2}(10)$	THF, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$58^{\text {a }}$
4	$\mathrm{FeCl}_{2}(5)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}$	0	15	$\mathrm{FeCl}_{2}(5)$	THF, TMEDA, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$76^{\text {b }}$
5	$\mathrm{FeCl}_{2}(5)$	Toluene, rt, 12 h	0	16	FeCl 2 (5)	Toluene, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	0
6	$\mathrm{FeCl}_{2}(5)$	DME, rt, 12 h	0	17	FeCl 2 (5)	DME, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	trace
7	FeCl_{2} (5)	1,2-Dichloroethane, rt, 12 h	h 0	18	$\mathrm{FeCl}_{2}(5)$	1,2-DCE, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$40^{\text {b }}$
8	$\mathrm{FeBr}_{2}(5)$	THF, rt, 12 h	$69^{\text {a }}$	19	$\mathrm{CuCl}(5)$	THF, rt, 12 h	$27^{\text {b,c }}$
9	Fel 2 (5)	THF, rt, 12 h	$60^{\text {a }}$	20	$\mathrm{CuCl}_{2}(5)$	THF, rt, 12 h	trace ${ }^{\text {b,d }}$
10	$\mathrm{Fe}(\mathrm{OAc})_{2}(5)$	THF, rt, 12 h	0	21	$\mathrm{AlCl}_{3}(100)$	THF, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$0^{\text {d }}$
11	$\mathrm{FeCl}_{3}(5)$	THF, rt, 12 h	0	22	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(100)$	THF, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$0^{\text {d }}$
	$\mathrm{FeCl}_{3}(5)$	THF, r, 12 h		23	$\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}(100)$	THF, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$0^{\text {d }}$

${ }^{\text {a }}$ Yield after chromatography; ${ }^{\text {b }}$ NMR yield using hexamethyl benzene as internal standard. ${ }^{\mathrm{c}} 1 \mathbf{1 a}$ (40\%) was recovered. ${ }^{\mathrm{d}}$ None of $1 \mathbf{1 a}$ was recovered.

2-Methyl-3-phenyl-1H-indole (2a). ${ }^{1}$ Following the general procedure, indole 2a (61 mg) was obtained as oil in 77% yield from azirine $\mathbf{1 a}(80 \mathrm{mg})$ after silica gel chromatography (20:1 hexanes: EtOAc as eluent). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.96$ (brs, 1 H), 7.67 (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H})$, 7.54-7.45 (m, 4H), 7.35-7.29 (m, 2H), 7.19-7.10 (m, 2H), 2.52 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 135.4,135.1,131.4,129.4,128.5,127.7,125.7,121.4,119.9,118.7,114.3$, 110.3, 12.4 .

2-(But-3-enyl)-3-phenyl-1H-indole (2b). ${ }^{2}$ Following the general procedure, indole $\mathbf{2 b}$ (72 mg) was obtained as oil in 79% yield starting from the azirine $\mathbf{1 b}(91 \mathrm{mg})$ after silica gel chromatography ($10: 1$ hexanes: EtOAc as eluent). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.08$ (brs, $1 \mathrm{H}), 7.64(\mathrm{~d}, ~ J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.04(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=7.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.44(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.6,135.25,135.23,135.15,129.6,128.5,127.7,125.9$, $121.6,119.9,118.9,115.9,114.6,110.4,33.7,25.7$.

2-(Pent-4-en-2-yl)-3-phenyl-1H-indole (2c). Following the general procedure, indole 2c (93 mg) was obtained as oil in 93% yield starting from the azirine 1c (100 mg) after silica gel chromatography ($20: 1$ hexanes: EtOAc as eluent). IR (neat, cm^{-1}): 3415, 3060, 2974, 2924, $1641,1603,1496,1463,1308,921,755 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.02$ (brs, 1 H), $7.60(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, $1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.36$ (sextet, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 139.6,136.0$, $135.3,135.1,129.9,128.4,127.9,126.0,121.6,119.8,119.0,116.9,114.0,110.5,41.3,30.5$, 20.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}\left(\mathrm{M}^{+}\right)$261.1517, found 261.1520.

3-Methyl-2-phenyl-1H-indole (2d). ${ }^{4}$ Following the general procedure, indole 2d (35 mg) was obtained as oil in 52% yield starting from azirine 1 d $(67 \mathrm{mg})$ after silica gel chromatography (20:1 hexanes: EtOAc as eluent). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.02$ (brs, 1H), 7.62-7.58 (m, $3 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}) 2.49(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 135.8,134.0,133.3,130.0,128.8,127.7,127.3,122.3,119.5$, 119.0, 110.6, 108.7, 9.6.

(2-Methyl-1H-indol-3-yl)(morpholino)methanone (2e). ${ }^{2}$ Following the general procedure, indole $\mathbf{2 e}(44 \mathrm{mg})$ was obtained as oil in 46% yield starting from the azirine $\mathbf{1 e}(95 \mathrm{mg})$ after silica gel chromatography ($3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 8.47$ (brs, 1H), 7.50-7.48 (m, 1H), 7.29-7.26 (m, 1H), 7.17-7.14 (m, 2H), 3.73 (br, 8H), 2.48 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 168.1,138.2,134.8,125.9,121.5,120.4,118.4,111.1,107.1$, 67.2, 12.2.

6-Bromo-2,3-dimethyl-1H-indole (2f). Following the general procedure, indole $\mathbf{2 f}$ (111 mg) was obtained as light yellow solid in 66% yield starting from the azirine $\mathbf{1 f}(169 \mathrm{mg})$ after silica gel chromatography ($9: 1$ hexanes:EtOAc as eluent). m.p. $151-152{ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 3399, 2919, 2857, 1417, 1322, 1239, 851, 807, 638. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.67$ (brs, 1H), 7.39 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (s, 3H), $2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 135.9,131.4,128.3,122.1,119.1,114.2,112.9$, 107.3, 11.5, 8.3. HRMS (ESI) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}\left(\mathrm{M}-\mathrm{H}^{+}\right)$221.9918, found 221.9924.

$2 g$

$2 \mathrm{~g}^{\prime}$

3-Cyclopropyl-2-methyl-indoline ($\mathbf{2 g}^{\prime}$). Following the general procedure, azirine $\mathbf{1 g}(50 \mathrm{mg})$ was converted to indole $\mathbf{2 g}$. Because of its instability upon exposure to air, the crude indole obtained after workup was immediately treated with $\mathrm{NaBH}_{3}(\mathrm{CN})(54.7 \mathrm{mg})$ in $\mathrm{AcOH}(0.5 \mathrm{~mL})$ at $15{ }^{\circ} \mathrm{C}$ for 2 h . Then it was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $10 \% \mathrm{NaHCO}_{3}$ solution, water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was
removed under reduced pressure to provide the crude product containing a mixture of two diastereomers in $2: 1$ ratio based on ${ }^{1} \mathrm{H}$ NMR. After silica gel chromatography ($5 \% \mathrm{EtOAc}$ in hexanes), indoline $\mathbf{2 g}^{\prime}$ ($32 \mathrm{mg}, 63 \%$) was obtained as oil containing a $2: 1$ mixture of two diastereomers. IR (neat, cm^{-1}): 3370, 3077, 3005, 2961, 2922, 2849, 1608, 1482, 1464, 1376, 1246, 1017, 747. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{dt}$, $J=1.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 3.99$3.92(\mathrm{~m}, 1 \mathrm{H}$, minor isomer), $3.81(\mathrm{brs}, \mathrm{NH}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (dd, $J=9.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, major isomer), $1.29(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-$ $0.86(\mathrm{~m}, 2 \times 1 \mathrm{H}$, major and minor isomer), 0.69-0.62 ($\mathrm{m}, 1 \mathrm{H}$, major isomer), 0.53-0.46 $9 \mathrm{~m}, 1 \mathrm{H}$, major isomer), 0.41-0.34 ($\mathrm{m}, 1 \mathrm{H}$, major isomer), 0.33-0.26 ($\mathrm{m}, 1 \mathrm{H}$, major isomer), 0.24-0.18 (m, 1 H , minor isomer). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of mixture of isomers $\delta: 150.3,132.9,132.5$, $128.8,127.53,127.50,124.4,124.0,118.5,109.4,109.2,62.4,58.6,54.7,50.7,21.6,17.2,14.2$, 10.3, 3.5, 3.1, 2.7, 1.9. HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}\left(\mathrm{M}^{+}\right)$173.1204, found 173.1203.

6-Methoxy-2-methyl-3-phenyl-1H-indole (2h). ${ }^{1}$ Following the general procedure, indole $\mathbf{2 h}$ (12 mg) was obtained as white solid in 60% yield starting from azirine $\mathbf{1 h}(20 \mathrm{mg})$ after silica gel chromatography (9:1 hexanes:EtOAc as eluent). m.p. $145-146{ }^{\circ} \mathrm{C}$ (Lit. $155-156{ }^{\circ} \mathrm{C}^{1 \mathrm{a}}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone-d d_{6}) $\delta: 9.98$ (brs, 1 H), 7.48-7.40 (m, 5H), 7.25-7.20 (m, 1H), 6.87 (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Acetone- d_{6}) $\delta: 157.5,138.1,137.7,131.9,130.5,129.9,126.8,123.5,120.1,114.7,110.4,95.8$, 56.3, 13.1.

2-Methyl-3-phenyl-6-(trifluoromethyl)- $\mathbf{H} \boldsymbol{H}$-indole (2i). ${ }^{2}$ Following the general procedure, indoles $\mathbf{2 i}$ and $\mathbf{2} \mathbf{i}^{\prime}$ (56 mg total) were obtained as a mixture of two regioisomers ($\mathbf{2 i} \mathbf{i} \mathbf{2 i}^{\prime}=1: 1.8$, as determined by GC) in 80% yield starting from azirine $\mathbf{1 i}(70 \mathrm{mg})$ after silica gel chromatography ($20: 1$ hexanes:EtOAc as eluent). The two isomers were separated by preparative TLC $(20 \%$ EtOAc in hexanes). Spectral data of 2i: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.16$ (brs, 1 H), $7.70(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 134.5,134.3,134.1,130.2,129.4,128.7,126.3,123.6(\mathrm{q}, J=31.6 \mathrm{~Hz})$, $119.0,116.7(\mathrm{q}, J=3.6 \mathrm{~Hz}), 115.0,107.7(\mathrm{q}, J=4.2 \mathrm{~Hz}), 12.6$. (The quaternary carbon of the CF_{3} group was not obtained).

2-Methyl-3-(4-(trifluoromethyl)phenyl)-1H-indole (2i'). ${ }^{2}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.04$ (brs, 1H), 7.71 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dt}, J$ $=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 139.3,135.2,132.1,129.4,127.7(\mathrm{q}, J=32.0 \mathrm{~Hz}), 127.4,125.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.5$ (q, $J=271.0 \mathrm{~Hz}), 121.9,120.4,118.5,113.4,110.5,12.6$.

2-Isopropyl-3,5,7-trimethyl-1H-indole (2j). Following the general procedure, azirine $\mathbf{1 j}$ (153 mg) was converted to indole $\mathbf{2} \mathbf{j}$. Because of its instability upon exposure to air, the crude indole obtained after workup was immediately converted to amide $\mathbf{2} \mathbf{j}$ ' upon treatment with oxygen for 1 h. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{2} \mathbf{j}$ are given below. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.49$ (brs, 1H), $7.13(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.25($ septet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22$
$(\mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 140.0,132.5,129.2,128.4$, 123.2, 119.0, 115.4, 105.3, 25.7, 22.3, 21.4, 16.5, 8.5.

\boldsymbol{N}-(2-Acetyl-4,6-dimethylphenyl)isobutyramide (2j'). Amide 2j' (85 mg) was obtained in 48\% yield as a white solid from azirine $\mathbf{1 j}$ after trituration with $\mathrm{Et}_{2} \mathrm{O}$ and hexanes. m.p. 110-112 ${ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): $3288,2967,2918,2849,1682,1661,1505,1354,1307,1257,1191 .{ }^{1} \mathrm{H}$ NMR (400 MHz, Acetone-d ${ }_{6}$) $\delta: 9.00(\mathrm{brs}, 1 \mathrm{H}$), 7.41 ($\mathrm{s}, 1 \mathrm{H}$), 7.21 (s, 1H), 2.63 (septate, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone- d_{6}) $\delta: 200.7,174.7,135.3,134.9,134.8,134.3,132.1,126.9,35.3,28.3,19.9,18.9$, 17.7. HRMS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 256.1313$, found 256.1305 .

6-Bromo-3-(3-(tert-butyldimethylsilyloxy)propyl)-2-methyl-1H-indole (2k). Following the general procedure, indole $\mathbf{2 k}(56 \mathrm{mg})$ was obtained as oil in 70% yield starting from azirine $\mathbf{1 k}$ (80 mg) after silica gel chromatography ($9: 1$ hexanes:EtOAc as eluent). IR (neat, cm^{-1}): 3413, 2955, 2928, 2856, 1463, 1254, 1099, 835, 776. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.68$ (brs, 1H), $7.39(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=7.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.0,131.6,127.7,122.1,119.3,114.1,113.0,111.9$, $62.3,33.5,25.9,19.9,18.3,11.5,-5.3$. HRMS (EI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BrNOSi}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 382.1202, found 382.1191 .

4-(3-(3-(tert-Butyldimethylsilyloxy)propyl)-6-fluoro-1H-indol-2-yl)butyl pivalate (21).

Following the general procedure, indole $\mathbf{2 l}(53 \mathrm{mg})$ was obtained as oil in 75% yield starting from azirine $\mathbf{1 1}(\mathbf{7 1 m g})$ after silica gel chromatography ($9: 1$ hexanes:EtOAc as eluent). IR (neat, $\left.\mathrm{cm}^{-1}\right): 3385,2955,2928,2860,1728,1713,1464,1286,1254,1158,1098,835,775 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.86(\mathrm{brs}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=9.7,2.3 \mathrm{~Hz}$, 1H), 6.85-6.79 (m, 1H), 4.11 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.77-2.71 (m, 4H), 1.83-1.76 (m, 2H), 1.71-1.68 (m, 4H), $1.20(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 178.9,159.4(\mathrm{~d}, J=241.6 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 134.9(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $125.2,118.8(\mathrm{~d}, ~ J=10.0 \mathrm{~Hz}$), 111.7, 107.3 (d, $J=24.6 \mathrm{~Hz}$), 96.7 (d, $J=25.9 \mathrm{~Hz}$), 63.8, 62.4, $38.8,34.0,28.3,27.2,26.0,25.9,25.4,20.1,18.3,-5.3$. HRMS (EI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{FNO}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right) 463.2918$, found 463.2937.

2,3-Dimethyl-6-nitro-1H-indole (2m). Following the general procedure, indole $\mathbf{2 m}$ (45 mg) was obtained in 94% yield as orange solid from azirine $\mathbf{1 m}(48 \mathrm{mg})$ after silica gel chromatography (9:1 hexanes:EtOAc as eluent). m.p. $144-145{ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 3367, 2924, 2861, 1503, $1338,1314,1077,1055 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.22(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (brs, 1H), $8.00(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.0,138.3,134.2,133.4,117.4,114.8,108.8,107.1,12.0,8.3$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 63.15; H, 5.30; N, 14.73. Found: C, 63.05 ; H, 5.17; N, 14.59.

3-Heptyl-2-methyl-1H-pyrrolo[2,3-c]pyridine (2n). Azirine 1n (33 mg, 0.14 mmol) was transferred to a disposable test tube with a stir bar and carefully dried under high vacuum for ca. 10 min (until no air bubble was seen escaping from the azirine). The test tube was refilled with nitrogen and then taken into a nitrogen-filled glove box where $\mathrm{FeCl}_{2}(9.1 \mathrm{mg}, 0.07 \mathrm{mmol})$ was added. After removing from the glove box, a nitrogen balloon was placed on the top of the test tube and THF $(0.5 \mathrm{~mL})$ was added. The nitrogen balloon was detached from the test tube and the nitrogen filled test tube was then placed into a preheated oil bath $\left(70{ }^{\circ} \mathrm{C}\right)$ for 24 h . After removing from the oil bath, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 N NaOH solution was added to make the pH around 10. The mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to obtain a crude mass that was purified by column chromatography on silica gel ($10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent) to afford indole $2 \mathrm{n}(18 \mathrm{mg})$ in 55% yield as oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 11.99$ (brs, 1 H), $9.08(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=7.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.31-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. The purified compound 2 n was contaminated with trace amount of impurities so it was converted to $\mathbf{2} \mathbf{n}$ ' in order to get rid of the impurities.

Ethyl 3-heptyl-2-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2n'). A solution of NaHMDS ($42 \mathrm{mg}, 0.23 \mathrm{mmol}$) in THF (0.4 mL) was slowly added to compound $\mathbf{2 n}(44 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 0.5 h , ethylchloroformate $(22 \mu \mathrm{~L})$ was added and the resulting mixture was left at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction mixture was warmed to room
temperature, stirred for 12 h , and then quenched with water. The mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water $(5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$ and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to obtain a crude mass that was purified by column chromatography on silica gel ($30 \% \mathrm{EtOAc}$ in hexanes) to afford pure compound $\mathbf{2 n}^{\prime}(33 \mathrm{mg})$ as oil in 57% yield. IR (neat, cm^{-1}): 2954, 2904, 2859, 1745, 1590, 1472, 1440, 1377, 1342, 1224, 1144. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.31(\mathrm{~s}, 1 \mathrm{H})$, $8.38(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 151.6,142.0,137.2,137.0,135.9,132.6,118.7,112.7$, 63.4, 31.8, 29.9, 29.4, 29.1, 23.7, 22.6, 14.3, 14.1, 13.6. HRMS (EI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{2} 7 \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$303.2067, found 303.2070.

2-Methyl-3-phenyl- \mathbf{H}-indole-4,5,6,7-d $\mathbf{d}_{4}\left(\mathbf{2 o)}\right.$ and 2-methyl-3-(phenyl-d \mathbf{d}_{5} - $\mathbf{1 H}$-indole ($\mathbf{2 o}^{\prime}$). ${ }^{1}$ Following the general procedure, indoles $\mathbf{2 0}$ and $\mathbf{2 o}^{\prime}(47 \mathrm{mg})$ were obtained as oil and an inseparable mixture of two indoles $\left(\mathbf{2 0}: \mathbf{2 o}^{\prime}=1: 1.3\right.$, as determined by $\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right)$ in 63% yield from azirine $\mathbf{1 0}(75 \mathrm{mg})$ after silica gel column chromatography ($10: 1$ hexanes:EtOAc as eluent). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.97$ (brs, 2H), 7.67 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53-7.45 (m, 4H), 7.35$7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 135.4,135.2$, $131.4,129.3,128.5,127.7,125.7,121.4,119.9,118.7,114.3,110.3,12.4$.

References:

1) a) Taber, D. F.; Tian, W. J. Am. Chem. Soc. 2005, 128, 1058. b) Alper, H.; Prickett, J. E. J. Chem. Soc., Chem. Commun. 1976, 483.
2) Chiba, S.; Hattoti, G.; Narasaka, K. Chem. Lett. 2007, 36, 52.
3) Padwa, A.; Rosenthal, R. J.; Dent, W.; Filho, P. J. Org. Chem. 1984, 49, 3174.
4) a) Kraus, G. A.; Guo, H. J. Org. Chem. 2009, 74, 5337. b) Cui, X.; Li, J.; Fu, Y.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2008, 49, 3458. c) Fang, Y. Q.; Lautens , M. J. Org. Chem. 2008, 73, 538.
5) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722.
6) 4-fluorophenyl acetone is commercially available. But we have made it using the following sequence.

7) Ostwald, R.; Chavant, P.-Y.; Stadtmüller, H.; Knochel, P. J. Org. Chem. 1994, 59, 4143.

-33.70
-25.63

-41.32

-20.56

168.11
-138.22
-134.82

- 125.88
$\begin{array}{r}125.88 \\ -121.49 \\ -120.44 \\ \hline\end{array}$
- 118.37
- 111.08
67.19

udd oz-

- 178.83

$\begin{array}{r} 38.975 \\ \Gamma \\ \hline \end{array}$
-31.689
29.445
29.115
-25.755
22.555
-14.013

- 206.87

-59.01

-13.98

