Supporting information for

Synthesis and Functionalization of Asymmetrical Benzo-fused BODIPY Dyes

Lijuan Jiao,* Changjiang Yu, Mingming Liu, Yangchun Wu, Kebing Cong, Ting Meng, Yuqing Wang and Erhong Hao

Laboratory of Functional Molecular Solids, Ministry of Education; and Anhui Key Laboratory of

Functional Molecular-Based Materials, School of Chemistry and Materials Science, Anhui Normal

University, Wuhu, Anhui, China 241000

Fax: (+) (+86) 553-388-3517

E-mail: jiao421@mail.ahnu.edu.cn

Contents:

1.	General methods2
2.	Syntheses and characterizations of compounds
3.	Copies of ¹ H NMR, ¹³ C NMR for all new compounds11
4.	High resolution mass spectroscopies for all new compounds41
5.	UV-vis and Fluorescence data for all the compounds56

1. General methods:

Reagents were purchased as reagent-grade and used without further purification unless otherwise stated. Solvents were used as received from commercial suppliers unless noted otherwise. THF was freshly distilled from sodium benzophenone ketyl. All reactions were performed in oven-dried or flame-dried glassware unless otherwise stated, and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). ¹H- and ¹³C-NMR are obtained on a 300 MHz spectrometer at room temperature. Chemical shifts (δ) are given in ppm relative to CDCl₃ 7.26 (¹H) and 77 ppm (¹³C) or TMS. High-resolution mass spectra were obtained by using EI-TOF with positive mode. The isotope peaks were matched with the calculated patterns; only the most abundant peaks for each compound are listed.

UV-visible absorption spectra were recorded on a commercial spectrophotometer (190-1100 nm scan range). Fluorescence emission spectra were recorded on a commercial spectrophotometer. The slit width was 2.5 nm for excitation and 5.0 nm emission. Relative quantum efficiencies of fluorescence of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various solvent with that of methylene blue (0.03 in MeOH)^{1a} fluorescein (0.95 in 0.1 M NaOH aqueous solution)^{1b} and Rhodamin B (0.49 in EtOH)^{1c}, respectively. Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions (0.01<A<0.05) were used to minimize the reabsorption effects. Quantum yields were determined using the following equation²:

$$\Phi_{\rm X} = \Phi_{\rm S} \left({\rm I}_{\rm X} / {\rm I}_{\rm S} \right) \left({\rm A}_{\rm S} / {\rm A}_{\rm X} \right) \left({\eta_{\rm X}} / {\eta_{\rm S}} \right)^2$$

Where Φ_S stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and η stands for the refractive index of the solvent being used ($\eta = 1$ when the same solvent was used for both the test sample and the standard). X subscript stands for the test sample, and S subscript stands for the standard.

Fluorescence lifetimes were measured on a combined steady-state lifetime fluorescence spectrometer and the fluorescence lifetimes were obtained from deconvolution and distribution lifetime analysis³. The fluorescence lifetime was fitted in a single exponential and all fits had χ^2 values under 1.1. The radiative rate constant was calculated using equation $k_r = \Phi/\tau$, and the non-radiative rate constant was calculated using equation $k_{rr} = (1-\Phi)/\tau$.

2. Syntheses and Characterizations of Compounds

BODIPY **4a**: To compound **2a**⁴ (895 mg, 5 mmol) in 10 mL CH₂Cl₂ was added pyrrole (138 μ L, 2 mmol) in 1 mL CH₂Cl₂, and POCl₃ (470 μ L, 5 mmol) in 1 mL CH₂Cl₂ rescpetively, at ice-cold condition under argon. The reaction mixture was stirred at this ice-cold condition for 30 min. To the reaction mixture was added Et₃N (7 mL), and the mixture was stirred for 10 min before addition of BF₃·OEt₂ (7 mL) through syringe. The reaction mixture was left stirring for overnight, poured into 50 mL water and extracted with 30 mL CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, hexane/CH₂Cl₂ = 2/1, v/v), the desired compound **4a** was obtained as brown powder in 63% yield (348 mg): ¹H NMR (300 MHz, CDCl₃): δ 7.70 (t, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 6.78 (brs, 1H), 6.32 (brs, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 147.8, 137.5, 135.6, 132.3, 131.8, 130.0, 129.5, 127.3, 124.9, 122.4, 120.9, 119.5, 115.7. HRMS (EI) Calcd. for C₁₃H₈BClF₂N₂[M]⁺: 276.0437, found 276.0435.

BODIPY **4b**: By reacting compound **2b**⁴ (224 mg, 1 mmol) with pyrrole (28 μ L, 0.4 mmol) and POBr₃ (29 mg, 0.1 mmol) using the same procedure described above, subsequently reacting with Et₃N (1.2 mL), complexation with BF₃·OEt₂ (1.2 mL), and purification from chromatograph (silica gel, hexane/CH₂Cl₂ = 1/1, v/v), the desired compound **4b** was obtained as brown powder in 67% yield (86

mg). ¹H NMR (300 MHz, CDCl₃): δ 7.82 (t, J = 7.2 Hz, 2H), 7.66 (q, J = 6.9 Hz, 2H), 7.47 (t, J = 6.3 Hz, 2H), 6.90 (d, J = 3.9 Hz, 1H), 6.43 (q, J = 2.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 147.9, 137.5, 135.6, 132.4, 131.8, 130.0, 129.5, 127.4, 124.9, 122.5, 121.0, 119.6, 115.8. HRMS (EI) Calcd. for C₁₃H₈BF₂N₂⁷⁹Br [M]⁺: 319.9932, found 319.9931; HRMS (EI) Calcd. for C₁₃H₈BF₂N₂⁸¹Br [M]⁺: 321.9912, found 321.9922.

BODIPY **4c**: To compound **2a**⁴ (895 mg, 5 mmol) in 10 mL CH₂Cl₂ was added 2,4-dimethylpyrrole (620 μ L, 5 mmol) in 1 mL CH₂Cl₂ and POCl₃ (470 μ L, 5 mmol) in 1 mL CH₂Cl₂, respectively at ice-cold condition under argon. The reaction mixture was stirred at this ice-cold condition for 30 min, Et₃N (7 mL) was added into the reaction mixture, the mixture was stirred for 10 min, BF₃·OEt₂ (7 mL) was then added through syringe. The reaction mixture was left stirring for overnight, poured into 50 mL water and extracted with 30 mL CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, hexane/CH₂Cl₂ = 2/1, v/v) to give the desired compound **4c** as brown powder in 53% yield (800 mg): ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.3 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.10 (s, 1H), 5.88 (s, 1H), 2.39 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 154.9, 140.3, 139.8, 134.3, 132.4, 130.6, 128.5, 126.8, 126.0, 121.7, 119.1, 118.3, 117.1, 14.6, 11.3. HRMS Calcd. for C₁₅H₁₂BClF₂N₂: [M]⁺ 304.0750, found 304.0757.

BODIPY **4d**: By reacting compound **2b**⁴ (224 mg, 1 mmol) with 2,4-dimethylpyrrole (124 μ L, 1 mmol) and POBr₃(284 mg, 1 mmol) using the same procedure described above, subsequently reacting with Et₃N (1.2 mL), complexation with BF₃·OEt₂ (1.2 mL) for 2 hours, and purification from

chromatograph (silica gel, hexane/CH₂Cl₂ = 1/1, v/v), the desired compound **4d** was obtained as brown powder in 45% yield (157 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.78-7.65 (m, 2H), 7.50 (d, J = 7.0 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.31 (s, 1H), 6.02 (s, 1H), 2.55 (s, 3H), 2.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 130.6, 130.4, 125.9, 122.5, 121.6, 119.0, 118.9, 118.5, 118.3, 117.0, 116.8, 14.6, 11.3. HRMS (EI) Calcd. for C₁₅H₁₂BBrF₂N₂[M]⁺: 348.0245, found 348.0243.

General procedure for the preparation of BODIPYs **5a-e** using sonogashira coupling reaction was described in the following using compound **5a** arylacetylene as an example.

BODIPY **5a**. To a 50 mL dry Schlank flask were added BODIPY **4c** (61 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (22 mg, 3 mmol%) and CuI (13 mg, 7 mmol%) in 5 mL freshly distilled THF. After freeze-thaw for three times, Et₃N (0.4 mL) and phenylacetylene (110 μ L, 1.0 mmol) in 1 mL THF were added through syringe into the mixture, respectively. The mixture was stirred at 65 °C for 3 h, cooled to room temperature, filtrated through Celite, and the cake was washed with CH₂Cl₂ (3 × 20 mL). Organic layers were combined, washed with brine, dried over anhydrous MgSO₄, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, hexane/CH₂Cl₂ = 5/2, v/v) to give the desired compound **5a** as dark blue solid in 55% yield (41 mg): ¹H NMR (300 MHz, CDCl₃): δ 8.17 (d, J = 7.8 Hz, 1H), 8.05-8.00 (m, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.75-7.69 (m, 2H), 7.51-7.15 (m, 4H), 6.92 (s, 1H), 6.03 (s, 1H), 2.58 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 139.1, 138.3, 136.5, 129.6, 129.5, 129.0, 128.4, 127.7, 126.3, 125.3, 124.5, 123.9, 119.6(3), 119.5(8), 119.4, 118.8, 117.8, 116.1, 115.3, 14.6, 11.3. HRMS (EI) Calcd. for C₂₃H₁₇BF₂N₂ [M]⁺: 370.1453, found 370.1451.

BODIPY **5b.** By reacting BODIPY **4c** (61 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (22 mg, 3 mmol%), CuI (13 mg, 7 mmol%), Et₃N (0.4 mL) and 4-florophenylacetylene (240 μ L, 2.1 mmol) in 1 mL THF following the same procedure described above, BODIPY **5b** was obtained as dark blue solid in 55% yield (43 mg) after silica gel column separation (hexane/ CH₂Cl₂ = 2/3, v/v): ¹H NMR (300 MHz, CDCl₃): δ 8.12 (d, J = 7.9 Hz, 1H), 7.90-7.65 (m, 3H), 7.50 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.31 (s, 1H), 7.14-7.09 (m, 2H), 6.02 (s, 1H), 2.57 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 165.1, 152.9, 150.1, 137.6, 135.8, 132.8, 132.6, 131.2, 129.4, 126.3, 125.3, 124.2, 123.7, 119.4, 117.8, 116.2, 115.9, 115.3, 14.6, 11.3. HRMS (EI) Calcd. for C₂₃H₁₈BF₃N₂ [M+2H]⁺: 390.1515, found 390.1517.

BODIPY **5c.** By reacting BODIPY **4c** (61 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (22 mg, 3 mmol%), CuI (13 mg, 7 mmol%), Et₃N (0.4 mL) and 4-methyloxyphenylacetylene (200 µL, 1.5 mmol) in 1 mL THF following the same procedure described above, BODIPY **5c** was obtained as dark blue solid in 61% yield (49 mg) after column separation (hexane/ CH₂Cl₂ = 2/1, v/v): ¹H NMR (300 MHz, CDCl₃): δ 8.17 (d, J = 8.0 Hz, 1H), 7.91-7.64 (m, 4H), 7.51 (q, J = 7.4 Hz, 1H), 7.42 (q, J = 8.3 Hz, 1H), 6.97 (d, J = 7.5 Hz, 2H), 6.04 (d, J = 8.1 Hz, 1H), 3.87 (s, 3H), 2.60 (d, J = 8.3 Hz, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 161.0, 155.3, 151.7, 151.3, 139.2, 135.9, 129.4, 126.3, 125.9, 124.0, 122.6, 119.4, 119.1, 118.4, 117.3, 115.9, 114.6, 114.4, 114.2, 55.4, 14.6, 11.3. HRMS (EI) Calcd. for C₂₄H₁₉BF₂N₂O [M]⁺: 400.1559, found 400.1556.

BODIPY **5d**. By reacting BODIPY **4c** (61 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (22 mg, 3 mmol%), CuI (13 mg, 7 mmol%), Et₃N (0.4 mL) and 2-ethylenethiophene (216 μ L, 2.2 mmol) in 1 mL THF following the same procedure described above, BODIPY **5d** was obtained as dark blue solid in 53% yield (40 mg) after column separation (hexane/ CH₂Cl₂ = 2/1, v/v): ¹H NMR (300 MHz, CDCl₃): δ 8.06 (d, J = 8.0 Hz, 1H), 7.82-7.75 (m, 2H), 7.53-7.34 (m, 4H), 7.09 (brs, 1H), 6.00 (s, 1H), 2.56 (s, 3H), 2.25 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.8, 149.9, 142.5, 137.4, 135.7, 132.6, 131.6, 131.0, 129.8, 129.5, 129.1, 128.2, 127.9, 126.3, 123.6, 119.4, 118.6, 117.7, 114.9, 14.6, 11.3. HRMS (EI) Calcd. for C₂₁H₁₇BSF₂N₂ [M+2H]⁺: 378.1174, found 378.1176. HRMS (EI) Calcd. for C₂₁H₁₅BF₂N₂S m/z: 376.1017, found 376.1047.

BODIPY **5e**. By reacting BODIPY **4c** (61 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (22 mg, 3 mmol%), CuI (13 mg, 7 mmol%), NEt₃ (0.4 mL) and 3-ethylenethiophene (216 μ L, 2.2 mmol) in 1 mL THF following the same procedure described above, BODIPY **5e** was obtained as dark blue solid in 64% yield (48 mg) after column separation (hexane/ CH₂Cl₂ = 2/1, v/v): ¹H NMR (300 MHz, CDCl₃): δ 8.14 (d, J = 7.9 Hz, 1H), 7.82 (brs, 2H), 7.56-7.49 (m, 2H), 7.39 (brs, 2H), 7.31 (brs, 1H), 6.03 (s, 1H), 2.57 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.5, 150.8, 139.9, 133.0, 132.0, 129.4, 128.6, 128.5, 127.7, 126.8, 126.3, 125.5, 125.4, 123.8, 119.5, 117.6, 115.0, 111.0, 14.6, 11.3. HRMS (EI) Calcd. for C₂₁H₁₇BF₂N₂S [M+2H]⁺: 378.1174, found 378.1170.

BODIPY **6a**. To a 50 mL dry Schlank flask were added BODIPY **4c** (40 mg, 0.13 mmol) and phenol (61 mg, 0.65 mmol) in 10 mL CH₂Cl₂. Then K₂CO₃ (138 mg, 1 mmol) was added and the reaction mixture was stirred at room temperature for 10 min, poured into water and extracted with CH₂Cl₂ (3 × 20 mL). Organic layers were combined, solvent was removed under vacuum, the crude product was purified from chromatograph (silica gel, hexane/CH₂Cl₂ = 2/1, v/v), and the desired compound **6a** was obtained as powder in 85% yield (41 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.70 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 6.6 Hz, 2H), 7.28 (d, J = 7.8 Hz, 3H), 7.19 (s, 1H), 6.94 (t, J = 7.5 Hz, 2H), 6.50 (d, J = 8.1 Hz, 1H), 5.89 (s, 1H), 2.45 (s, 3H), 2.20 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 154.6, 149.1, 136.7, 134.7, 130.8, 130.2, 126.5, 125.4, 123.5, 123.2, 120.2, 120.0, 119.5, 116.2, 114.9, 14.2, 11.2. HRMS (EI) Calcd. for C₂₁H₁₇BF₂N₂O [M]⁺: 362.1402, found 362.1406.

Compound **6b**. To a 50 mL dry Schlank flask were added BODIPY 4c (40 mg, 0.13 mmol), and 100 equiv of 2-hydroxy-1-ethanethiol (0.9 mL, 13 mmol) in 10 mL CH₂Cl₂. Then 0.5 mL NEt₃ was added and the reaction mixture was stirred at room temperature for 24 h, poured into water and extracted CH₂Cl₂ (3 × 20 mL). Organic layers were combined, solvent was removed under vacuum, the crude product was purified from chromatograph (silica gel, hexane/ CH₂Cl₂ = 1/2, v/v), and the desired compound **6b** was obtained as powder in 60% yield (27 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.86 (t, J = 8.8 Hz, 2H), 7.52 (t, J = 7.0 Hz, 1H), 7.38 (t, J = 7.8 Hz, 2H), 6.07 (s, 1H), 3.66 (s, 2H), 3.37 (s, 2H), 2.57 (s, 3H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 156.7, 147.6, 140.2, 134.6, 133.1, 129.8, 128.9, 125.8, 122.5, 119.4, 118.8, 117.0, 116.6, 61.2, 40.3, 14.8, 11.4. HRMS (EI) Calcd. for C₁₇H₁₇BF₂N₂OS [M-HF]⁺: 326.1064, found 326.1060.

BODIPY **6c**: To a 50 mL dry Schlank flask were added BODIPY **4c** (61 mg, 0.2 mmol) and butanethiol (214 μ L, 2 mmol) in 10 mL CH₂Cl₂. Then 0.5 mL NEt₃ was added and the reaction mixture was stirred at room temperature for 6 h, poured into water and extracted with CH₂Cl₂ (3 × 20 mL). Organic layers were combined, solvent was removed under vacuum, the crude product was purified from chromatograph (silica gel, hexane/ CH₂Cl₂ = 2/1, v/v), and the desired compound **6c** was obtained as powder in 87% yield (62 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (s, 1H), 6.01 (s, 1H), 3.39 (t, J = 7.4 Hz, 2H), 2.55 (s, 3H), 2.27 (s, 3H), 1.74 (t, J = 7.3 Hz, 2H), 1.52 (t, J = 7.3 Hz, 2H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 153.5, 151.7, 138.0, 134.8, 133.0, 132.2, 129.7, 129.5, 125.6, 123.0, 119.2, 117.8, 115.3, 35.4, 32.3, 21.8, 14.6, 13.6, 11.3. HRMS (EI) Calcd. for C₁₉H₂₁BF₂N₂S [M]⁺: 358.1487, found 358.1481.

BODIPY **6d**: By reacting BODIPY **4c** (40 mg, 0.13 mmol) and aniline (59 μ L, 0.65 mmol) using the procedure described above for 10 min at room temperature and purified using chromatograph (silica gel, hexane/ CH₂Cl₂ = 2/1, v/v), the desired compound **6d** was obtained as powder in 91% yield (43 mg). ¹H NMR (300 MHz, CDCl₃): δ 8.39 (brs, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.47-7.44 (m, 6H), 7.04-7.00 (m, 2H), 6.79 (d, J = 8.2 Hz, 1H), 5.92 (s, 1H), 2.49 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 131.1, 129.8, 128.4, 128.1, 126.4, 125.6, 124.7, 119.6, 114.2, 108.4, 13.8, 11.0. HRMS (EI) Calcd. for C₂₁H₁₈BF₂N₃ [M]⁺: 361.1562, found 361.1570.

BODIPY **6e**: By reacting BODIPY **4c** (40 mg, 0.13 mmol) and di(2-pyridylmethyl)amine (DPA) (40 mg, 0.20 mmol) using the procedure described above for 10 min at room temperature and purified using chromatograph (silica gel, CH₂Cl₂), the desired compound **6e** was obtained as powder in 95% yield (58 mg). ¹H NMR (300 MHz, CDCl₃): δ 8.53 (brs, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.71 (t, J = 7.2 Hz, 2H), 7.48 (d, J = 6.4 Hz, 3H), 7.21 (brs, 3H), 7.10 (s, 1H), 5.95 (s, 1H), 5.32 (s, 4H), 2.52 (s, 3H), 2.25 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 160.4, 156.5, 149.1, 144.1, 137.4, 137.3, 130.6, 129.3, 128.6, 128.2, 126.9, 125.9, 125.0, 122.7, 122.6, 119.2, 114.8, 109.9, 58.2, 14.1, 11.0. HRMS (EI) Calcd. for C₂₇H₂₄BF₂N₅[M]⁺: 467.2093, found 467.2099.

BODIPY **6f**: By reacting BODIPY **4c** (61 mg, 0.2 mmol) and 6-aminocaproic acid (132 mg, 1.0 mmol) using the procedure described above for 10 h at room temperature and purified using chromatograph (silica gel, hexane/EtOAc = 2/1, v/v), the desired compound **6f** was obtained as powder in 63% yield (50 mg). ¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 6.87 (s, 1H), 6.81 (brs, 1H), 5.88 (s, 1H), 3.85 (d, J = 5.5 Hz, 2H), 2.45 (s, 3 H), 2.42 (s, 2H), 2.21 (s, 3H), 1.87 (d, J = 6.3 Hz, 2H), 1.74 (d, J= 6.8 Hz, 2H), 1.57 (s, 2H), 1.26 (brs, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 179.0, 156.8, 140.5, 137.8, 131.3, 128.5, 127.3, 126.4, 126.1, 124.6, 123.9, 119.9, 113.6, 106.3, 44.4, 34.1, 29.6, 25.9, 24.2, 13.8, 11.0. HRMS (EI) Calcd. for C₂₁H₂₄BF₂N₃O₂ [M- HF]⁺: 379.1867, found 379.1858.

3. Copies of ¹H NMR and ¹³C NMR spectra for all new compounds

¹H NMR compound **4a** in CDCl₃

 ^{13}C NMR of compound 4a in CDCl_3

¹H NMR compound **4b** in CDCl₃

¹³C NMR of compound **4b** in CDCl₃

¹H NMR compound **4c** in CDCl₃

 ^{13}C NMR of compound 4c in CDCl_3

¹H NMR compound **4d** in CDCl₃

 ^{13}C NMR of compound 4d in CDCl_3

¹H NMR compound **5a** in CDCl₃

¹³C NMR of compound **5a** in CDCl₃

20

¹H NMR compound **5b** in CDCl₃

¹³C NMR of compound **5b** in CDCl₃

¹H NMR compound **5c** in CDCl₃

¹³C NMR of compound **5c** in CDCl₃

¹H NMR compound **5d** in CDCl₃

¹³C NMR of compound **5d** in CDCl₃

¹H NMR compound **5e** in CDCl₃

¹³C NMR of compound **5e** in CDCl₃

 1 H NMR of compound **6a** in CDCl₃

¹³C NMR of compound **6a** in CDCl₃

¹H NMR of compound **6b** in CDCl₃

¹³C NMR of compound **6b** in CDCl₃

¹H NMR of compound **6c** in CDCl₃

¹³C NMR of compound **6c** in CDCl₃

 ^1H NMR of compound **6d** in CDCl_3

 ^{13}C NMR of compound **6d** in CDCl_3

¹H NMR of compound **6e** in CDCl₃

¹³C NMR of compound **6e** in CDCl₃

38

- 8

40

- 9

- 08

100

120

140

160

180

шdd

5. UV-vis and Fluorescence data for all the new compounds

Figure S1. Normalized UV-vis (a) and Fluorescence (b, $\lambda_{ex} = 520$ nm) spectra of BODIPYs **4a** (black), **4b** (red), **4c** (green) and **4d** (blue) in dichloromethane at 25 °C.

Table S1. UV-vis and fluorescence properties of compounds 4a-d in various solvent at room temperature.

BODIPYs		λ_{max}	Loge	λ_{em}	ϕ^{a}	Stokes shift
		(nm)		(nm)	·	(cm^{-1})
	MeOH	536	4.73	558	0.85	736
4a	DMSO	542	4.48	566	0.59	782
	Toluene	544	4.76	564	0.69	652
	MeCN	532	4.81	558	0.68	876
	Hexane	540	4.91	554	0.72	468
	MeOH	536	4.84	559	0.66	768
4 b	DMSO	542	4.78	566	0.42	782
•••	Toluene	544	4.90	564	0.66	652
	MeCN	534	4.75	559	0.69	838
	Hexane	540	4.76	554	1.00	468
	MeOH	554	4.87	566	0.81	383
	DMSO	560	4.75	572	0.69	375
4 c	Toluene	562	4.95	574	0.63	372
	MeCN	554	4.92	566	0.67	383
	Hexane	556	5.15	566	0.73	318
4d	MeOH	556	4.61	572	0.61	503
	DMSO	560	4.38	573	0.59	405
	Toluene	562	5.05	575	0.48	402
	MeCN	554	4.95	567	0.64	414
	Hexane	558	5.17	567	0.59	284

^aFluorescence quantum yields for BODIPYs **4a-d** ($\lambda_{ex} = 520$ nm) were calculated using Rhodamin B (0.49 in EtOH)^{1c} as the reference.

BODIPYs		λ_{max}	Logemax	λ_{em}	ϕ^{a}	Stokes shift
		(nm)		(nm)		(cm^{-1})
	DMSO	614	4.62	632	0.61	464
5a	MeOH	606	4.69	622	0.84	424
Uu	Toluene	616	4.73	631	0.63	386
	MeCN	606	4.68	622	1.00	424
	Hexane	608	4.60	620	1.00	318
	DMSO	614	4.77	627	0.64	338
5b	MeOH	606	4.77	617	1.00	294
20	Toluene	614	4.81	627	0.68	338
	MeCN	604	4.74	618	1.00	375
	Hexane	608	4.87	617	1.00	240
	DMSO	618	4.32	636	0.47	458
5c	MeOH	610	4.58	625	0.68	393
20	Toluene	618	4.62	635	0.52	433
	MeCN	608	4.56	626	0.83	473
	Hexane	610	4.55	624	0.91	368
	DMSO	618	4.21	632	0.61	358
5d	MeOH	610	4.15	624	0.39	368
Su	Toluene	618	4.15	633	0.33	383
	MeCN	608	4.14	623	0.51	396
	Hexane	610	4.42	622	0.49	316
5e	DMSO	614	4.82	631	0.32	439
	MeOH	606	5.00	621	0.90	399
	Toluene	614	5.09	630	0.65	414
	MeCN	606	5.01	621	1.00	399
	Hexane	608	4.40	619	1.00	292
luorescence o ue (0.03 in M	quantum yields eOH) ^{1a} as the re	for BODI eference.	PYs 5a-e (λ	$e_{x} = 580 \text{ nm}$) were calculated	using methyler

Table S2. UV-vis and fluorescence properties of compounds 5a-e in various solvent at room temperature.

BOD	BODIPYs		Loge	λ_{em}	ϕ^{a}	Stokes shift
		λ_{max} (nm)		(nm)		(cm^{-1})
	DMSO	544	4.96	564	0.56	652
6a	MeOH	540	4.92	559	0.24	629
	Toluene	550	5.07	566	0.63	514
	MeCN	538	5.01	559	0.66	698
	Hexane	546	5.23	557	0.70	362
	DMSO	574	4.37	589	0.38	444
6b	MeOH	570	4.92	584	0.57	421
	Toluene	578	4.48	592	0.37	409
	MeCN	568	5.01	583	0.45	453
	Hexane	572	5.23	584	0.44	359
	DMSO	574	4.77	591	0.52	501
6c	MeOH	570	4.58	585	0.73	450
	Toluene	578	4.54	594	0.50	466
	MeCN	568	4.55	584	0.56	482
	Hexane	572	4.55	588	0.56	476
	DMSO	516	4.75	585	0.19	2286
6d	MeOH	518	4.53	576	0.51	1944
	Toluene	540	4.66	583	0.55	1366
	MeCN	512	4.49	578	0.57	2230
	Hexane	540	4.51	573	0.56	1067
	DMSO	534	4.49	586	0.56	1662
	MeOH	548	4.50	581	0.63	1036
6e	Toluene	558	4.61	587	0.54	1585
	MeCN	532	4.51	581	0.51	1585
	Hexane	558	4.75	579	0.61	650
	MeOH	510	4.28	551	0.24	1459
6f	Toluene	532	4.34	564	0.14	1066
VI.	MeCN	504	4.28	554	0.20	1791
	Hexane	534	4.03	554	0.17	676

Table S3. UV-vis and fluorescence properties of compounds 6a-f in various solvent at room temperature.

^aFluorescence quantum yields for BODIPYs **6a-e** ($\lambda_{ex} = 520 \text{ nm}$) were calculated using Rhodamin B (0.49 in EtOH)^{1c} as the reference, while fluorescein (0.95 in 0.1 M NaOH)^{1b} was used as the standard for BODIPY **6f** ($\lambda_{ex} = 490 \text{ nm}$).

References:

- (a) Olmsted, J. J. Phys. Chem. 1979, 83, 2581. (b) Fery-Forgues, S.; Lavabre, D. J. Chem. Educ. 1999, 76, 1260. (c) Casey, K. G.; Quitevis, E. L. J. Phys. Chem. 1988, 92, 6590.
- 2. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.
- Valeur B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2002.
- 4. Bonnett, R.; McManus, K. A. J. Chem. Soc., Perkin Trans. 1, 1996, 2461.