Synthesis and Functionalization of Asymmetrical Benzo-fused BODIPY Dyes

Lijuan Jiao,* Changjiang Yu, Mingming Liu, Yangchun Wu, Kebing Cong, Ting Meng, Yuqing Wang and Erhong Hao
Laboratory of Functional Molecular Solids, Ministry of Education; and Anhui Key Laboratory of Functional Molecular-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China 241000

Fax: (+) (+86) 553-388-3517

E-mail: jiao421@mail.ahnu.edu.cn

Contents:

\qquad2. Syntheses and characterizations of compounds. .3
3. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR for all new compounds 11
4. High resolution mass spectroscopies for all new compounds. 41
5. UV-vis and Fluorescence data for all the compounds. 56

1. General methods:

Reagents were purchased as reagent-grade and used without further purification unless otherwise stated. Solvents were used as received from commercial suppliers unless noted otherwise. THF was freshly distilled from sodium benzophenone ketyl. All reactions were performed in oven-dried or flame-dried glassware unless otherwise stated, and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are obtained on a 300 MHz spectrometer at room temperature. Chemical shifts (δ) are given in ppm relative to $\mathrm{CDCl}_{3} 7.26\left({ }^{1} \mathrm{H}\right)$ and $77 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ or TMS. High-resolution mass spectra were obtained by using EI-TOF with positive mode. The isotope peaks were matched with the calculated patterns; only the most abundant peaks for each compound are listed.

UV-visible absorption spectra were recorded on a commercial spectrophotometer (190-1100 nm scan range). Fluorescence emission spectra were recorded on a commercial spectrophotometer. The slit width was 2.5 nm for excitation and 5.0 nm emission. Relative quantum efficiencies of fluorescence of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various solvent with that of methylene blue $(0.03 \text { in } \mathrm{MeOH})^{\text {1a }}$ fluorescein (0.95 in 0.1 M NaOH aqueous solution) ${ }^{\text {lb }}$ and Rhodamin B $(0.49 \text { in EtOH })^{\text {1c }}$, respectively. Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions $(0.01<\mathrm{A}<0.05)$ were used to minimize the reabsorption effects. Quantum yields were determined using the following equation ${ }^{2}$:

$$
\Phi_{\mathrm{X}}=\Phi_{\mathrm{S}}\left(\mathrm{I}_{\mathrm{X}} / \mathrm{I}_{\mathrm{S}}\right)\left(\mathrm{A}_{\mathrm{S}} / \mathrm{A}_{\mathrm{X}}\right)\left(\eta_{\mathrm{X}} / \eta_{\mathrm{S}}\right)^{2}
$$

Where Φ_{S} stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and η stands for the refractive index of the solvent being used ($\eta=1$ when the same solvent was used for both the test sample and the standard). X subscript stands for the test sample, and S subscript stands for the standard.

Fluorescence lifetimes were measured on a combined steady-state lifetime fluorescence spectrometer and the fluorescence lifetimes were obtained from deconvolution and distribution lifetime analysis ${ }^{3}$. The fluorescence lifetime was fitted in a single exponential and all fits had χ^{2} values under 1.1. The radiative rate constant was calculated using equation $\mathrm{k}_{\mathrm{r}}=\Phi / \tau$, and the non-radiative rate constant was calculated using equation $\mathrm{k}_{\mathrm{nr}}=(1-\Phi) / \tau$.

2. Syntheses and Characterizations of Compounds

BODIPY 4a: To compound $\mathbf{2 a}{ }^{4}(895 \mathrm{mg}, 5 \mathrm{mmol})$ in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added pyrrole ($138 \mu \mathrm{~L}, 2$ mmol) in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{POCl}_{3}(470 \mu \mathrm{~L}, 5 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ rescpetively, at ice-cold condition under argon. The reaction mixture was stirred at this ice-cold condition for 30 min . To the reaction mixture was added $E t_{3} \mathrm{~N}(7 \mathrm{~mL})$, and the mixture was stirred for 10 min before addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(7 \mathrm{~mL})$ through syringe. The reaction mixture was left stirring for overnight, poured into 50 mL water and extracted with $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$, v / v), the desired compound $\mathbf{4 a}$ was obtained as brown powder in 63% yield (348 mg): ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.78 (brs, 1 H), 6.32 (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.8,137.5,135.6,132.3,131.8,130.0,129.5$, 127.3, 124.9, 122.4, 120.9, 119.5, 115.7. HRMS (EI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BClF}_{2} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 276.0437$, found 276.0435 .

BODIPY 4b: By reacting compound $\mathbf{2 b}^{4}(224 \mathrm{mg}, 1 \mathrm{mmol})$ with pyrrole ($28 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) and $\mathrm{POBr}_{3}(29 \mathrm{mg}, 0.1 \mathrm{mmol})$ using the same procedure described above, subsequently reacting with $\mathrm{Et}_{3} \mathrm{~N}$ $(1.2 \mathrm{~mL})$, complexation with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.2 \mathrm{~mL})$, and purification from chromatograph (silica gel, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1, \mathrm{v} / \mathrm{v}$), the desired compound $\mathbf{4 b}$ was obtained as brown powder in 67% yield (86
$\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.9$, 137.5, 135.6, 132.4, 131.8, 130.0, 129.5, 127.4, 124.9, 122.5, 121.0, 119.6, 115.8. HRMS (EI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BF}_{2} \mathrm{~N}_{2}{ }^{79} \mathrm{Br}[\mathrm{M}]^{+}: 319.9932$, found 319.9931; HRMS (EI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BF}_{2} \mathrm{~N}_{2}{ }^{81} \mathrm{Br}[\mathrm{M}]^{+}$: 321.9912 , found 321.9922 .

BODIPY 4c: To compound $\mathbf{2 a}{ }^{4}$ ($895 \mathrm{mg}, 5 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2,4-dimethylpyrrole ($620 \mu \mathrm{~L}, 5 \mathrm{mmol}$) in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{POCl}_{3}(470 \mu \mathrm{~L}, 5 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, respectively at icecold condition under argon. The reaction mixture was stirred at this ice-cold condition for 30 min , $\mathrm{Et}_{3} \mathrm{~N}(7 \mathrm{~mL})$ was added into the reaction mixture, the mixture was stirred for $10 \mathrm{~min}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(7 \mathrm{~mL})$ was then added through syringe. The reaction mixture was left stirring for overnight, poured into 50 mL water and extracted with $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$, v / v) to give the desired compound $\mathbf{4 c}$ as brown powder in 53% yield $(800 \mathrm{mg})$: ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9$, $140.3,139.8,134.3,132.4,130.6,128.5,126.8,126.0,121.7,119.1,118.3,117.1,14.6,11.3$. HRMS Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BClF}_{2} \mathrm{~N}_{2}:[\mathrm{M}]^{+} 304.0750$, found 304.0757.

BODIPY 4d: By reacting compound $\mathbf{2 b}^{4}(224 \mathrm{mg}, 1 \mathrm{mmol})$ with 2,4-dimethylpyrrole ($124 \mu \mathrm{~L}, 1$ $\mathrm{mmol})$ and $\mathrm{POBr}_{3}(284 \mathrm{mg}, 1 \mathrm{mmol})$ using the same procedure described above, subsequently reacting with $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL})$, complexation with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.2 \mathrm{~mL})$ for 2 hours, and purification from
chromatograph (silica gel, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1, \mathrm{v} / \mathrm{v}$), the desired compound $\mathbf{4 d}$ was obtained as brown powder in 45% yield $(157 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 130.6,130.4,125.9,122.5,121.6,119.0,118.9,118.5,118.3,117.0,116.8,14.6$, 11.3. HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BBrF}_{2} \mathrm{~N}_{2}\left[\mathrm{M}^{+}: 348.0245\right.$, found 348.0243.

General procedure for the preparation of BODIPYs 5a-e using sonogashira coupling reaction was described in the following using compound $\mathbf{5 a}$ arylacetylene as an example.

BODIPY 5a. To a 50 mL dry Schlank flask were added BODIPY 4c ($61 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($22 \mathrm{mg}, 3 \mathrm{mmol} \%$) and $\mathrm{CuI}(13 \mathrm{mg}, 7 \mathrm{mmol} \%)$ in 5 mL freshly distilled THF. After freeze-thaw for three times, $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL})$ and phenylacetylene ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) in 1 mL THF were added through syringe into the mixture, respectively. The mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature, filtrated through Celite, and the cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5 / 2$, v / v) to give the desired compound $\mathbf{5 a}$ as dark blue solid in 55% yield (41 mg): ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.15 (m, 4H), $6.92(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.1,138.3,136.5,129.6,129.5,129.0,128.4,127.7,126.3,125.3,124.5,123.9,119.6(3), 119.5(8)$, 119.4, 118.8, 117.8, 116.1, 115.3, 14.6, 11.3. HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{2}\left[\mathrm{M}^{+}: 370.1453\right.$, found 370.1451 .

BODIPY 5b. By reacting BODIPY $\mathbf{4 c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(22 \mathrm{mg}, 3 \mathrm{mmol} \%)$, $\mathrm{CuI}(13$ $\mathrm{mg}, 7 \mathrm{mmol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL})$ and 4-florophenylacetylene ($240 \mu \mathrm{~L}, 2.1 \mathrm{mmol}$) in 1 mL THF following the same procedure described above, BODIPY 5b was obtained as dark blue solid in 55% yield (43 mg) after silica gel column separation (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 3$, v/v): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 165.1,152.9,150.1,137.6,135.8,132.8,132.6,131.2,129.4,126.3,125.3,124.2,123.7$, $119.4,117.8,116.2,115.9,115.3,14.6,11.3$. HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BF}_{3} \mathrm{~N}_{2}[\mathrm{M}+2 \mathrm{H}]^{+}: 390.1515$, found 390.1517 .

BODIPY 5c. By reacting BODIPY $4 \mathbf{c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(22 \mathrm{mg}, 3 \mathrm{mmol} \%)$, $\mathrm{CuI}(13$ $\mathrm{mg}, 7 \mathrm{mmol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL})$ and 4-methyloxyphenylacetylene ($200 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) in 1 mL THF following the same procedure described above, BODIPY 5c was obtained as dark blue solid in 61% yield (49 mg) after column separation (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$, v/v): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.17(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{q}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,155.3,151.7,151.3,139.2,135.9,129.4,126.3,125.9,124.0,122.6$, 119.4, 119.1, 118.4, 117.3, 115.9, 114.6, 114.4, 114.2, 55.4, 14.6, 11.3. HRMS (EI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}: 400.1559$, found 400.1556 .

BODIPY 5d. By reacting BODIPY 4c ($61 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(22 \mathrm{mg}, 3 \mathrm{mmol} \%)$, CuI (13 $\mathrm{mg}, 7 \mathrm{mmol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL})$ and 2-ethylenethiophene ($216 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) in 1 mL THF following the same procedure described above, BODIPY 5d was obtained as dark blue solid in 53% yield (40 mg) after column separation (hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1, \mathrm{v} / \mathrm{v}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{brs}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.8,149.9,142.5,137.4,135.7,132.6,131.6,131.0,129.8$, 129.5, 129.1, 128.2, 127.9, 126.3, 123.6, 119.4, 118.6, 117.7, 114.9, 14.6, 11.3. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BSF}_{2} \mathrm{~N}_{2}[\mathrm{M}+2 \mathrm{H}]^{+}: 378.1174$, found 378.1176. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}$: 376.1017, found 376.1047.

BODIPY 5e. By reacting BODIPY $\mathbf{4 c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(22 \mathrm{mg}, 3 \mathrm{mmol} \%)$, $\mathrm{CuI}(13$ $\mathrm{mg}, 7 \mathrm{mmol} \%), \mathrm{NEt}_{3}(0.4 \mathrm{~mL})$ and 3-ethylenethiophene ($216 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) in 1 mL THF following the same procedure described above, BODIPY 5e was obtained as dark blue solid in 64% yield (48 mg) after column separation (hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1, \mathrm{v} / \mathrm{v}\right)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{brs}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{brs}, 2 \mathrm{H}), 7.31(\mathrm{brs}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,150.8,139.9,133.0,132.0,129.4,128.6$, $128.5,127.7,126.8,126.3,125.5,125.4,123.8,119.5,117.6,115.0,111.0,14.6,11.3$. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+2 \mathrm{H}]^{+}: 378.1174$, found 378.1170.

BODIPY 6a. To a 50 mL dry Schlank flask were added BODIPY 4c ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) and phenol ($61 \mathrm{mg}, 0.65 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. Then $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for 10 min , poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 20 mL). Organic layers were combined, solvent was removed under vacuum, the crude product was purified from chromatograph (silica gel, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1, \mathrm{v} / \mathrm{v}$), and the desired compound $\mathbf{6 a}$ was obtained as powder in 85% yield (41 mg). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (d, J = $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.6, 149.1, 136.7, 134.7, 130.8, 130.2, 126.5, 125.4, 123.5, 123.2, 120.2, 120.0, 119.5, 116.2, 114.9, 14.2, 11.2. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}: 362.1402$, found 362.1406.

Compound 6b. To a 50 mL dry Schlank flask were added BODIPY $4 \mathbf{c}(40 \mathrm{mg}, 0.13 \mathrm{mmol})$, and 100 equiv of 2-hydroxy-1-ethanethiol ($0.9 \mathrm{~mL}, 13 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then $0.5 \mathrm{~mL} \mathrm{NEt}_{3}$ was added and the reaction mixture was stirred at room temperature for 24 h , poured into water and extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Organic layers were combined, solvent was removed under vacuum, the crude product was purified from chromatograph (silica gel, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 2$, v/v), and the desired compound $\mathbf{6 b}$ was obtained as powder in 60% yield (27 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{t}, \mathrm{J}$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.7$, 147.6, 140.2, 134.6, 133.1, 129.8, 128.9, 125.8, 122.5, 119.4, 118.8, 117.0, 116.6, 61.2, 40.3, 14.8, 11.4. HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}-\mathrm{HF}]^{+}: 326.1064$, found 326.1060.

BODIPY 6c: To a 50 mL dry Schlank flask were added BODIPY 4c ($61 \mathrm{mg}, 0.2 \mathrm{mmol}$) and butanethiol $(214 \mu \mathrm{~L}, 2 \mathrm{mmol})$ in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then $0.5 \mathrm{~mL} \mathrm{NEt}_{3}$ was added and the reaction mixture was stirred at room temperature for 6 h , poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Organic layers were combined, solvent was removed under vacuum, the crude product was purified from chromatograph (silica gel, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$, v/v), and the desired compound $\mathbf{6 c}$ was obtained as powder in 87% yield $(62 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H})$, $3.39(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 153.5,151.7,138.0,134.8,133.0,132.2,129.7$, $129.5,125.6,123.0,119.2,117.8,115.3,35.4,32.3,21.8,14.6,13.6,11.3$. HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}]^{+}: 358.1487$, found 358.1481.

BODIPY 6d: By reacting BODIPY 4c ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) and aniline ($59 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$) using the procedure described above for 10 min at room temperature and purified using chromatograph (silica gel, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$, v/v), the desired compound $\mathbf{6 d}$ was obtained as powder in 91% yield (43 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{brs}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 6 \mathrm{H})$, 7.04$7.00(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 131.1,129.8,128.4,128.1,126.4,125.6,124.7,119.6,114.2,108.4,13.8,11.0$. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BF}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}$: 361.1562, found 361.1570.

BODIPY 6e: By reacting BODIPY $\mathbf{4 c}(40 \mathrm{mg}, 0.13 \mathrm{mmol}$) and di(2-pyridylmethyl)amine (DPA) (40 $\mathrm{mg}, 0.20 \mathrm{mmol}$) using the procedure described above for 10 min at room temperature and purified using chromatograph (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), the desired compound $\mathbf{6 e}$ was obtained as powder in 95% yield (58 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53$ (brs, 2H), $7.89(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.71 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.21$ (brs, 3 H), $7.10(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H})$, $5.32(\mathrm{~s}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4,156.5,149.1,144.1$, $137.4,137.3,130.6,129.3,128.6,128.2,126.9,125.9,125.0,122.7,122.6,119.2,114.8,109.9,58.2$, 14.1, 11.0. HRMS (EI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{5}[\mathrm{M}]^{+}: 467.2093$, found 467.2099.

BODIPY 6f: By reacting BODIPY 4c ($61 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 6-aminocaproic acid ($132 \mathrm{mg}, 1.0 \mathrm{mmol}$) using the procedure described above for 10 h at room temperature and purified using chromatograph (silica gel, hexane/EtOAc $=2 / 1, \mathrm{v} / \mathrm{v}$), the desired compound $\mathbf{6 f}$ was obtained as powder in 63% yield (50 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{brs}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}$, 2 H), 1.26 (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.0,156.8,140.5,137.8,131.3,128.5,127.3$, 126.4, 126.1, 124.6, 123.9, 119.9, 113.6, 106.3, 44.4, 34.1, 29.6, 25.9, 24.2, 13.8, 11.0. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{HF}^{+}: 379.1867\right.$, found 379.1858.
3. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{4 a}$ in CDCl_{3}

$690 \cdot 3-$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a}$ in CDCl_{3}

$$
\begin{aligned}
& 929 \cdot 9 L \\
& 090 \cdot \angle L \\
& \mathrm{ELD} \cdot \angle L
\end{aligned}
$$

ع己L G G L
299.6 t

296．025－
と6と＇ट己た
ع96．ค己ゃ－
カロE L己すー
098 टを
66t $\angle \varepsilon$ に

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{4 b}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR of compound $\mathbf{4 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{4 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{4 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{5 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{5 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{5 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{5 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR compound $\mathbf{5 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6}$ a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 b}$ in CDCl_{3}

\bar{j}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 d}$ in CDCl_{3}


```
LटO`! 
```

$009^{\circ} 9 \angle$
$E 20^{\circ} \angle L$
$\angle O^{\circ} \angle L$

udd

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 e}$ in CDCl_{3}

OHOO

998 C ！

हLIG E ——
$\stackrel{y}{2}$
垉

> をカで 5
> $0<165$
ucd

${ }^{13} \mathrm{C}$ NMR of compound $6 \mathbf{e}$ in CDCl_{3}

$$
\begin{aligned}
& \text { E86 or }=
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6} \mathbf{f}$ in CDCl_{3}

4. MS for all new compounds:

Micromass GCT-MS
20100419-B-1BR-1-eit 182 (3.033) Cm (177:182-868:939)

5. UV-vis and Fluorescence data for all the new compounds

Figure S1. Normalized UV-vis (a) and Fluorescence (b, $\lambda_{\text {ex }}=520 \mathrm{~nm}$) spectra of BODIPYs 4a (black), 4b (red), $\mathbf{4 c}$ (green) and $\mathbf{4 d}$ (blue) in dichloromethane at $25^{\circ} \mathrm{C}$.

Table S1. UV-vis and fluorescence properties of compounds $\mathbf{4 a - d}$ in various solvent at room temperature

BODIPYs		$\lambda_{\text {max }}$ (nm)	Log ε	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	$\phi^{\text {a }}$	Stokes shift $\left(\mathrm{cm}^{-1}\right)$
4a	MeOH	536	4.73	558	0.85	736
	DMSO	542	4.48	566	0.59	782
	Toluene	544	4.76	564	0.69	652
	MeCN	532	4.81	558	0.68	876
	Hexane	540	4.91	554	0.72	468
4b	MeOH	536	4.84	559	0.66	768
	DMSO	542	4.78	566	0.42	782
	Toluene	544	4.90	564	0.66	652
	MeCN	534	4.75	559	0.69	838
	Hexane	540	4.76	554	1.00	468
4 c	MeOH	554	4.87	566	0.81	383
	DMSO	560	4.75	572	0.69	375
	Toluene	562	4.95	574	0.63	372
	MeCN	554	4.92	566	0.67	383
	Hexane	556	5.15	566	0.73	318
4d	MeOH	556	4.61	572	0.61	503
	DMSO	560	4.38	573	0.59	405
	Toluene	562	5.05	575	0.48	402
	MeCN	554	4.95	567	0.64	414
	Hexane	558	5.17	567	0.59	284

${ }^{\bar{a}}$ Fluorescence quantum yields for BODIPYs 4a-d ($\lambda_{\mathrm{ex}}=520 \mathrm{~nm}$) were calculated using Rhodamin B $(0.49 \mathrm{in} \mathrm{EtOH})^{\text {1c }}$ as the reference.

Table S2. UV-vis and fluorescence properties of compounds 5a-e in various solvent at room temperature.

BODIPYs		$\lambda_{\text {max }}$	$\log \varepsilon_{\text {max }}$	$\lambda_{\text {em }}$	$\phi^{\text {a }}$	Stokes shift
5a	DMSO	614	4.62	632	0.61	464
	MeOH	606	4.69	622	0.84	424
	Toluene	616	4.73	631	0.63	386
	MeCN	606	4.68	622	1.00	424
	Hexane	608	4.60	620	1.00	318
5b	DMSO	614	4.77	627	0.64	338
	MeOH	606	4.77	617	1.00	294
	Toluene	614	4.81	627	0.68	338
	MeCN	604	4.74	618	1.00	375
	Hexane	608	4.87	617	1.00	240
5c	DMSO	618	4.32	636	0.47	458
	MeOH	610	4.58	625	0.68	393
	Toluene	618	4.62	635	0.52	433
	MeCN	608	4.56	626	0.83	473
	Hexane	610	4.55	624	0.91	368
5d	DMSO	618	4.21	632	0.61	358
	MeOH	610	4.15	624	0.39	368
	Toluene	618	4.15	633	0.33	383
	MeCN	608	4.14	623	0.51	396
	Hexane	610	4.42	622	0.49	316
5 e	DMSO	614	4.82	631	0.32	439
	MeOH	606	5.00	621	0.90	399
	Toluene	614	5.09	630	0.65	414
	MeCN	606	5.01	621	1.00	399
	Hexane	608	4.40	619	1.00	292

${ }^{\text {a }}$ Fluorescence quantum yields for BODIPYs 5a-e $\left(\lambda_{\text {ex }}=580 \mathrm{~nm}\right.$) were calculated using methylene blue $(0.03 \text { in } \mathrm{MeOH})^{1 \mathrm{a}}$ as the reference.

Table S3. UV-vis and fluorescence properties of compounds 6a-f in various solvent at room temperature.

BODIPYs		$\lambda_{\text {max }}$	Log ε	$\lambda_{\text {em }}$	$\phi^{\text {a }}$	Stokes shift
6 a	DMSO	544	4.96	564	0.56	652
	MeOH	540	4.92	559	0.24	629
	Toluene	550	5.07	566	0.63	514
	MeCN	538	5.01	559	0.66	698
	Hexane	546	5.23	557	0.70	362
6b	DMSO	574	4.37	589	0.38	444
	MeOH	570	4.92	584	0.57	421
	Toluene	578	4.48	592	0.37	409
	MeCN	568	5.01	583	0.45	453
	Hexane	572	5.23	584	0.44	359
6 c	DMSO	574	4.77	591	0.52	501
	MeOH	570	4.58	585	0.73	450
	Toluene	578	4.54	594	0.50	466
	MeCN	568	4.55	584	0.56	482
	Hexane	572	4.55	588	0.56	476
6d	DMSO	516	4.75	585	0.19	2286
	MeOH	518	4.53	576	0.51	1944
	Toluene	540	4.66	583	0.55	1366
	MeCN	512	4.49	578	0.57	2230
	Hexane	540	4.51	573	0.56	1067
6 e	DMSO	534	4.49	586	0.56	1662
	MeOH	548	4.50	581	0.63	1036
	Toluene	558	4.61	587	0.54	1585
	MeCN	532	4.51	581	0.51	1585
	Hexane	558	4.75	579	0.61	650
6	MeOH	510	4.28	551	0.24	1459
	Toluene	532	4.34	564	0.14	1066
	MeCN	504	4.28	554	0.20	1791
	Hexane	534	4.03	554	0.17	676

${ }^{a}$ Fluorescence quantum yields for BODIPYs 6a-e ($\lambda_{\mathrm{ex}}=520 \mathrm{~nm}$) were calculated using Rhodamin B $(0.49 \text { in } \mathrm{EtOH})^{\text {1c }}$ as the reference, while fluorescein $(0.95 \text { in } 0.1 \mathrm{M} \mathrm{NaOH})^{1 \mathrm{~b}}$ was used as the standard for BODIPY $6 \mathbf{f}\left(\lambda_{\mathrm{ex}}=490 \mathrm{~nm}\right)$.

References:

1. (a) Olmsted, J. J. Phys. Chem. 1979, 83, 2581. (b) Fery-Forgues, S.; Lavabre, D. J. Chem. Educ. 1999, 76, 1260. (c) Casey, K. G.; Quitevis, E. L. J. Phys. Chem. 1988, 92, 6590.
2. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.
3. Valeur B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2002.
4. Bonnett, R.; McManus, K. A. J. Chem. Soc., Perkin Trans. 1, 1996, 2461.
