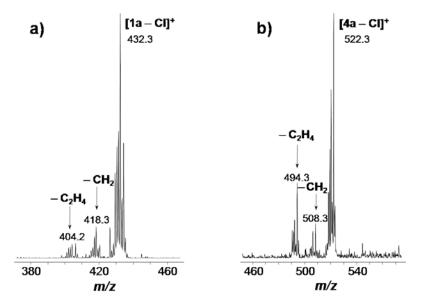
Is the Reactivity of M(II)–Arene Complexes of 3-Hydroxy-2(1*H*)-pyridones to Biomolecules the Anticancer Activity Determining Parameter?

Muhammad Hanif,^a Helena Henke,^{a,b} Samuel M. Meier,^{a,b} Sanela Martic,^c Mahmoud Labib,^c Wolfgang Kandioller,^a Michael A. Jakupec,^{a,b} Vladimir B. Arion,^{a,b} Heinz-Bernhard Kraatz,^c Bernhard K. Keppler,^{a,b} Christian G. Hartinger^{a,b, *}

^a University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria.

^b University of Vienna, Research Platform "Translational Cancer Therapy Research", Waehringer Str. 42, A-1090 Vienna, Austria.

^c Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.


Table of contents:

Mass spectra and data for hydrolysis and amino acid binding studies

Molecular structure of 5a

Concentration-effect curves of 1a, 1b and 4a in CH1 ovarian cancer cells

CDK2/Cyclin A kinase assay data

Figure S1. Electrospray ionization mass spectra for transesterification and hydrolysis of the ester moieties of (a) **1a** and (b) **4a** in presence of methanol and formic acid.

Table S1. In competitive experiments, **1a** and **4a** were incubated with Gly, His, Cys and Met at a molar ratio of 1 : 1 : 1 : 1 : 1 for 19 h and reaction mixtures were analyzed by ESI-MS (all *m/z* values contain standard deviations of ± 0.1).

Species	Relative abundance (%)		m/z	
	1 a	4 a	1a	4a
Met adduct	100	100	384.0	474.3
His adduct	66	96	390.0	480.3
Cys adduct	8	57	356.0	446.3
Gly adduct	1	0	310.0	400.2
1a	8	-	432.3	-
4a	-	0	-	522.3

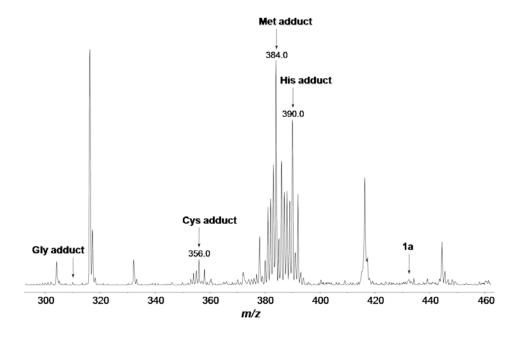


Figure S2. ESI mass spectrum for the competitive reaction of 1a with Gly, His, Met and Cys.

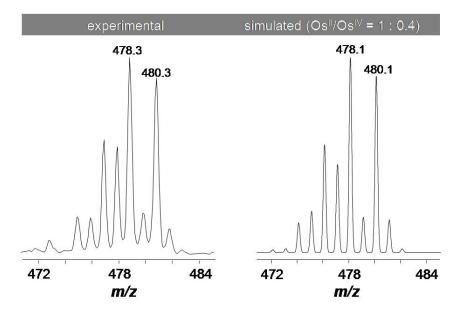


Figure S3. Redox processes observed in the mass spectrum of 4a/His.

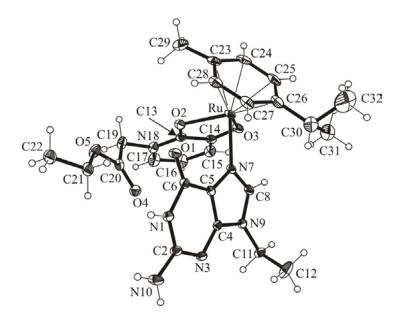


Figure S4. ORTEP plot of 5a at 50% probability level.

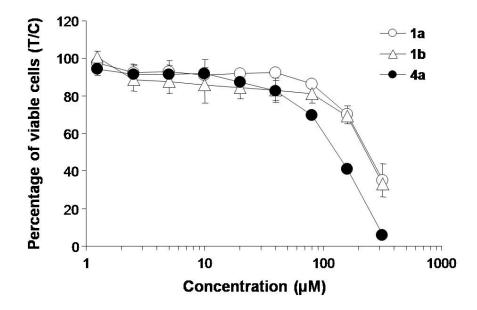
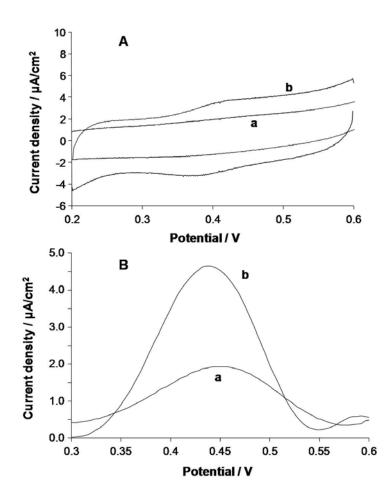



Figure S5. Concentration–effect curves of 1a, 1b and 4a in CH1 ovarian cancer cells in the MTT assay (96 h exposure). Values are the means \pm standard deviations from three independent experiments.

Figure S6. Cyclic voltammograms (A) and square-wave voltammograms (B) of 100 μ M substrate peptide-modified Au surface electrodes for detection of CDK2/Cyclin A kinase (1 μ g/ml) phosphorylation reactions. (a) in the presence of roscovitine (20 μ M) and (b) in the absence of roscovitine. Measurements were taken in 0.1 M phosphate buffer solution (pH 7.4) versus Ag/AgCl as reference electrode and Pt wire as counter electrode at 100 mV/s.

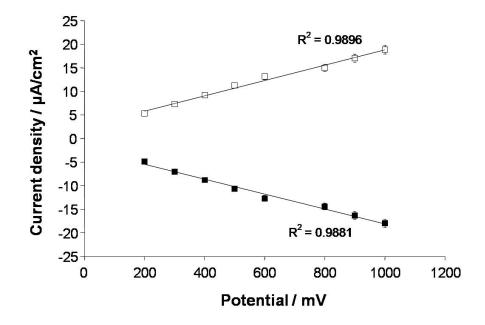
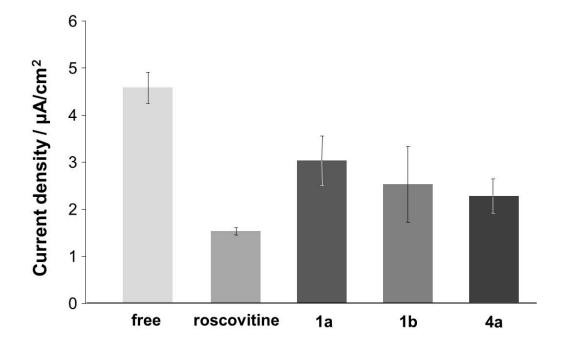



Figure S7. Plot of anodic and cathodic current density vs. scan rate in CDK2/Cyclin A kinase assay.

Figure S8. Plot for dependence of integrated current density in CDK2/Cyclin A kinase assays as a function of inhibitor type (inhibitor concentration = 20μ M in kinase buffer, 100 mV/s, 0.1 M phosphate buffer pH 7.4, triplicate measurements).