Supporting Information

Sb-coated SiC Nanoparticles as Stable and High Capacity Anode Materials for Li-ion Batteries

Zhongxue Chen^a, Yuliang Cao, *^{ab} Jiangfeng Qian,^a Xinping Ai^a and Hanxi Yang *^a

*^a Hubei Key Lab. of Electrochemical Power Sources, College of Chemistry and

Molecular Science, Wuhan University, Wuhan 430072, (P. R. China). Tel:

86-027-68754526; E-mail: hxyang@whu.edu.cn

*^b Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

E-mail: ylcao@whu.edu.cn

Figure S1. SEM image of the as prepared SiC-Sb-C nanocomposite.

Figure S2. Ex situ XRD patterns of the anode at various depths of charge-discharge state

After first charge at 0.01V, most of the diffraction peaks of the Sb-phase disappeared and correspondingly several XRD peaks emerged, characterizing the formation of Li₃Sb alloy phase. After a reversed discharge at 2.0V, the XRD signals of elemental Sb phase reappeared, suggesting a superduper electrochemical reversibility of this SiC-Sb-C composite.