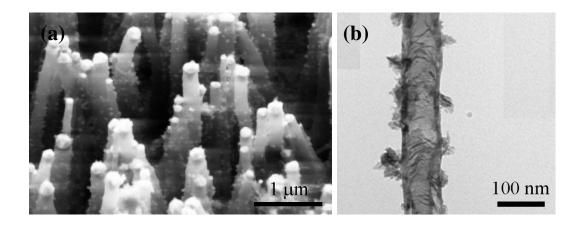
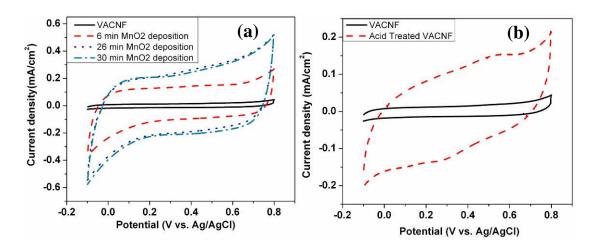

## **Supporting Information**

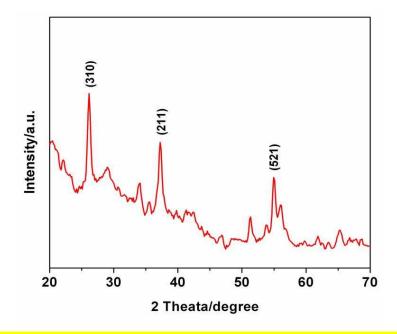
## Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays


Jianwei Liu, Jeremy Essner, and Jun Li\*

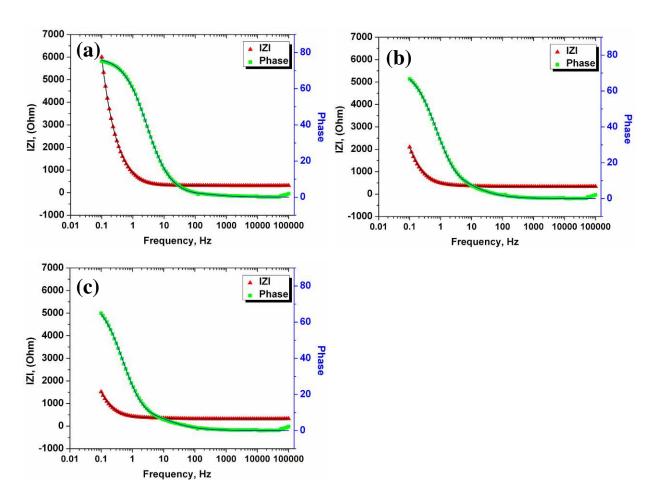
Department of Chemistry, Kansas State University, Manhattan, KS 66506


E-mail: junli@ksu.edu Fax: (785) 5326666; Tel: (785) 5320955




**Figure S1.** Histograms of the distribution of the outer diameter of carbon nanofibers in a bare acid-treated VACNF array (a) and the same sample after 20 minutes of Manganese Oxide deposition (b). Both histograms are fit with a gaussian distribution with the mean diameter and standard deviation shown in the figure.




**Figure S2**. SEM and TEM images of an as-grown VACNF array directly coated with MnO<sub>2</sub> with 26 minutes of electrodeposition time without going through the acid treatment.

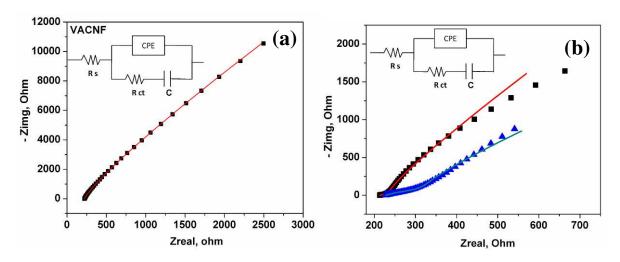


**Figure S3**. (a) Cyclic voltammograms of an as-grown VACNF arrays without subjecting to acid treatment and this sample after deposited with  $MnO_2$  at various deposition time. (b) Cyclic voltammograms of bare VACNF arrays with and without acid treatment.

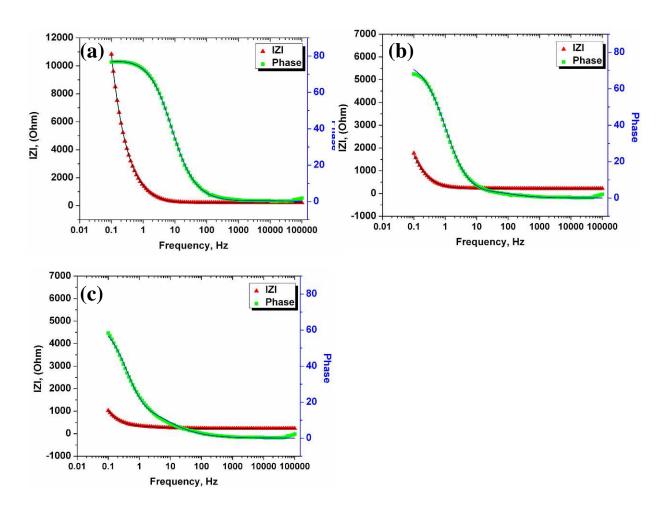


**Figure S4**. X-ray diffraction of the electrochemically deposited manganese oxide after annealing in the air at 200 °C. All reflections can be indexed as a pure tetragonal phase of α-MnO<sub>2</sub> with lattice constants a = 0.9784 nm and c = 0.2863 nm (JCPDS 44-0141).




**Figure S5**. Bode plots of an acid-treated VACNF array (a) and similar samples after 6 minutes of MnO<sub>2</sub> deposition (b) and 20 minutes of MnO<sub>2</sub> deposition (c).

**Table SI** Fitting parameters of electrochemical impedance spectra for the acid-treated VACNF arrays


| Sample conditions                        | Rs    | CPE      |        | R <sub>ct</sub> | С        |
|------------------------------------------|-------|----------|--------|-----------------|----------|
|                                          | (Ohm) | Y (Ohm)  | α      | (Ohm)           | (F)      |
| Acid-treated VACNF                       | 306.6 | 1.649E-4 | 0.8119 | 28.78           | 9.19E-5  |
| After 6 min MnO <sub>2</sub> deposition  | 333.5 | 5.501E-4 | 0.7912 | 202.6           | 2.105E-4 |
| After 20 min MnO <sub>2</sub> deposition | 319.1 | 6.591E-4 | 0.7734 | 154.6           | 4.161E-4 |

## Note:

The employed equivalent circuit is shown in Fig. 5.



**Figure S6**. Nyquist plot and fitting of electrochemical impedance spectra of samples without going through acid treatments: (a) an as-grown VACNF array, (b) a VACNF array after 6 minutes of  $MnO_2$  deposition (filled square), and (c) a VACNF array after 26 minutes of  $MnO_2$  deposition (filled triangle).



**Figure S7**. Bode plots of as-grown VACNF array (a), after 6 min MnO<sub>2</sub> deposition (b), after 26 min MnO<sub>2</sub> deposition (c).

**Table SII** Fitting parameters of electrochemical impedance spectra for the non-treated VACNF arrays

| Sample conditions                        | Rs    | CPE      |        | $R_{ct}$ | C        |
|------------------------------------------|-------|----------|--------|----------|----------|
|                                          | (Ohm) | Y (Ohm)  | α      | (Ohm)    | (F)      |
| Non-treated VACNF                        | 219.8 | 7.032E-5 | 0.745  | 4.427    | 7.156E-5 |
| After 6 min MnO <sub>2</sub> deposition  | 213.6 | 5.101E-4 | 0.656  | 38.19    | 4.13E-4  |
| After 26 min MnO <sub>2</sub> deposition | 228   | 1.047E-3 | 0.6841 | 275.7    | 5.684E-4 |

## Note:

The employed equivalent circuit is shown in Fig. S5.