Supporting Information

Directed Ortho Borylation of Phenol Derivatives Catalyzed by a Silica-Supported Iridium Complex

Kenji Yamazaki, Soichiro Kawamorita, Hirohisa Ohmiya and Masaya Sawamura*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Table of Contents

S 1
S2–S3
S3–S12
S12–S13
S14–S103

Instrumentation and Chemicals

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for ¹H NMR and 75.4 MHz for ¹³C NMR. Chemical shift values for ¹H and ¹³C are reference to Me₄Si and the residual solvent resonances respectively. Chemical shifts are reported in δ ppm. Elemental analysis was performed at the Center for Instrument Analysis, Hokkaido University. High-resolution mass spectra were recorded on a Thermo Scientific Exactive or JEOL JMS-T100GC mass spectrometer at the Center for Instrument Analysis, Hokkaido University. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. Gas chromatographic (GC) analyses were conducted on a Shimadzu GC-14B equipped with a flame ionization detector. Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, CHCl₃, 3.5 mL/min, UV and RI detectors).

All reactions were carried out under nitrogen or argon atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. Silica-SMAP was prepared according to the reported procedure.¹ All solvents for catalytic reactions were degassed via four freeze–pump–thaw cycles before use. [Ir(OMe)(cod)]₂ was prepared according to the literature.² Pinacolatoborane and bis(pinacolato)diboron were purchased from

Aldrich and AllyChem Co., Ltd, respectively.

Experimental Procedures

Typical Procedure for the Ortho-Borylation of Phenyl Diethylcarbamate (3aa) (Scheme 1).

In a glove box, Silica-SMAP (1, 0.064 mmol P g^{-1} , 40 mg, 0.0025 mmol), anhydrous, degassed hexane (1.1 mL), and [Ir(OMe)(cod)]₂ (0.8 mg, 0.00125 mmol) in hexane (0.4 mL) were placed in a 10 mL-glass tube containing a magnetic stirring bar, and the mixture was stirred for 1 min at 25 °C. **3aa** (196.5 mg, 1.0 mmol), and pinacolatoborane (**2**, 62.8 mg, 0.5 mmol) were added in the tube, which was then sealed with a screw cap. The tube was removed from the glove box. After the resulting mixture was stirred at 70 °C for 12 h, the mixture was filtered through a glass pipet equipped with a cotton filter. Solvent was removed under reduced pressure. An internal standard (1,1,2,2-tetrachloroethane) was added to the reaction mixture. The yield of the product was determined by ¹H NMR. The crude material was purified by GPC to give the borylation product **4aa** (100.5 mg, 0.32 mmol) in 64% isolated yield.

Suzuki–Miyaura Cross-Coupling/Deprotection of Carbamate (Scheme 2, upper side). 2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-diethylcarbamate (**4aa**) (96.6 mg, 0.30 mmol), 2-bromothiophene (62.9 mg, 0.36 mmol), Na₂CO₃ (256.0 mg, 2.4 mmol) and Pd(PPh₃)₄ (18.1 mg, 0.015 mmol) in a mixed solvent consisting of DME (1.0 mL) and H₂O (0.1 mL) were placed in 10 mL-glass tube containing a magnetic stirring bar. The tube was then sealed with a screw cap in argon. After being stirred at 90 °C for 24 h, the glass tube was cooled to rt. The reaction mixture was washed with water and brine, and was dried over MgSO₄. Solvent was removed under reduced pressure. The crude material was dissolved in Et₂O (10.0 mL) in a two-neck round-bottom flask equipped with a reflux condenser. After being stirred at reflux for 7 h, the flask was cooled to room temperature, and water (5.0 mL) and 1M HCl aq (5.0 mL) were in turn added to the reaction mixture at 0 °C. The mixture was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated. Flash silica gel column chromatography (hexane/EtOAc 90:10) of the crude product provided **6** (36.2 mg, 0.20 mmol) in 68% yield. Spectral data match those previously reported.³

Suzuki–Miyaura Cross-Coupling/Ni-Catalyzed Cross-Coupling (Scheme 2, bottom side). 2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-diethylcarbamate (4aa) (96.1 mg, 0.30 mmol), 2-bromobenzene (58.1 mg, 0.37 mmol), Na₂CO₃ (258.1 mg, 2.4 mmol), Pd(PPh₃)₄ (17.7 mg, 0.015 mmol) in a mix solvent consisting of DME (1.0 ml) and H₂O (0.1 ml) were placed in a 10

mL-glass tube containing a magnetic stirring bar. The tube was then sealed with a screw cap under argon. After being stirred at 90 °C for 24 h, the glass tube was cooled to rt. The reaction mixture was washed with water and brine, and was dried over MgSO₄. After filtration, the solvent was evaporated. Flash silica gel column chromatography (hexane/EtOAc 95:5) of the crude product provided **7** (65.4 mg, 0.24 mmol) in 81% yield. In a glove box, **7** (65.4 mg, 0.24 mmol), Ni(acac)₂ (3.4 mg, 0.013 mmol), 1-[2-(diphenylphosphino)phenyl]ethanol (3.7 mg, 0.012 mmol) in Et₂O (0.6 mL) and anhydrous, degassed Et₂O (0.9 mL) were placed sequentially in a 10 mL-glass tube containing a magnetic stirring bar, which was then sealed with a screw cap. The tube was removed from the glove box, and 4-methoxyphenylmagnesium bromide (480 μ L, 0.48 mmol, 1.0 M in Et₂O) was added to the tube. After being stirred at room temperature for 41 h, sat. NH₄Cl was added to the reaction mixture. The mixture was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated. Flash silica gel column chromatography (hexane/EtOAc 95:5) of the crude product provided **8** (50.8 mg, 0.20 mmol) in 80% yield. Spectral data match those previously reported.⁴

Compounds Characterization

The phenol derivatives **3ab**, **3ac**, **3ad**, **3ae**, **3af** and **3ah** are known compounds. The Starting materials **3aa**, ⁵ **3ag**, ⁶ **3b**, ⁷ **3c**, ⁸ **3d**, ⁸ **3g**, ⁹ **3i**⁵, **3l**¹⁰ and **3m**⁹ shown in Scheme 1 and Table 1 are known compounds. Compound **4aa** is found in the literature.¹¹ The borylation products **4aa** and **4b–4s** were purified by GPC.

2-Methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4b)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.18–1.33 (m, 6H), 1.30 (s, 12H), 2.21 (s, 3H), 3.39 (q, *J* = 7.2 Hz, 2H), 3.52 (q, *J* = 7.2 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.32, 14.05, 16.16, 24.70, 41.53, 41.90, 83.32, 124.92, 130.56, 133.84, 133.88, 154.29, 154.69. A signal for the carbon directly attached to the boron atom was not observed. **Anal.** Calcd for C₁₈H₂₈BNO₄: C, 64.88%; H, 8.47%; N, 4.20%. Found: C, 64.65; H, 8.55%; N, 4.22%.

5-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4c)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.17–1.33 (m, 6H), 1.29 (s, 12H), 2.34 (s, 3H), 3.38 (q, *J* = 6.9 Hz, 2H), 3.50 (q, *J* = 7.2 Hz, 2H), 6.90 (s, 1H), 7.01 (d, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 7.5 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.20, 13.79, 21.16, 24.60, 41.40, 41.72, 83.16, 122.87, 125.65, 136.11, 142.77, 154.87, 156.33. A signal for the carbon directly attached to the boron atom was not observed. **Anal.** Calcd for C₁₈H₂₈BNO₄: C, 64.88%; H, 8.47%; N, 4.20%. Found: C, 64.60; H, 8.54%; N, 4.21%.

5-Methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N,N*-Diethylcarbamate (4d)

Colorress oil. ¹**H** NMR (CDCl₃) δ 1.18–1.31 (m, 6H), 1.29 (s, 12H), 3.38 (q, *J* = 7.2, Hz, 2H), 3.51 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 6.63 (d, *J* = 2.4 Hz, 1H), 6.75 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.25, 13.86, 24.68, 41.48, 41.79, 55.18, 83.13, 108.02, 111.11, 137.31, 154.70, 157.92, 163.09. A signal for the carbon directly attached to the boron atom was not observed. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd for C₁₈H₂₈O₅NBNa, 372.19527; found, 372.19570.

3-Trifluoromethylphenyl *N*,*N*-Diethylcarbamate (3e)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.19–1.29 (m, 6H), 3,36–3.49 (m, 4H), 7.34 (m, 1H), 7.40 (s, 1H), 7.44–7.51 (m, 2H). ¹³**C NMR** (CDCl₃) δ 13.14, 14.06, 41.88, 42.29, 119.05 (q, *J* = 4.0 Hz), 121.87 (q, *J* = 3.4 Hz), 123.71 (q, *J* = 273.7 Hz), 125.45 (d, *J* = 1.1 Hz), 129.77, 131.73 (q, *J* = 32.6 Hz), 151.72, 153.70, 156.23. **Anal.** Calcd for C₁₂H₁₄F₃NO₂: C, 55.17%; H, 5.40%; N, 5.36%. Found: C, 55.07%; H, 5.32%; N, 5.34%.

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-5-trifluoromethylphenyl *N*,*N*-Diethylcarbamate (4e)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.18–1.31 (m, 6H), 1.31 (s, 12H), 3.39 (q, *J* = 7.2 Hz, 2H), 3.49 (q, *J* = 7.2 Hz, 2H), 7.33 (s, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.20, 13.84, 24.70, 41.59, 41.97, 83.92, 119.23 (q, *J* = 4.0 Hz), 121.36 (q, *J* = 3.4 Hz), 123.65 (q, *J* = 273.1 Hz), 133.89 (q, *J* = 33.2 Hz), 136.68, 154.41, 156.23. A signal for the carbon directly attached to the boron atom was not observed. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd for C₁₈H₂₅ O₄BF₃NNa, 410.17209; found, 410.17247. The regioselectivity was assigned on the basis of the *J*_{C–F} values in the ¹³C NMR spectrum.

(1,1'-Biphenyl)-3-yl N,N-Diethylcarbamate (3f)

Coloress oil. ¹H NMR (CDCl₃) δ 1.20–1.30 (m, 6H), 3.38–3.50 (m, 4H), 7.12 (m, 1H), 7.31–7.37 (m, 2H), 7.40–7.45 (m, 4H), 7.58–7.61 (m, 2H). ¹³C NMR (CDCl₃) δ 13.16, 14.03, 41.72, 42.07, 120.51, 120.55, 123.79, 127.16, 127.46, 128.69, 129.44, 140.43, 142.57, 151.94, 154.20. Anal. Calcd for C₁₇H₁₉NO₂: C, 75.81%; H, 7.11%; N, 5.20%. Found: C, 75.85%; H, 7.17%; N, 5.21%.

5-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4f)

Colorress oil. ¹**H** NMR (CDCl₃) δ 1.19–1.32 (m, 6H), 1.32 (s, 12H), 3.40 (q, *J* = 6.9, Hz, 2H), 3.53 (q, *J* = 7.2 Hz, 2H), 7.31 (d, *J* = 1.8 Hz, 1H), 7.36 (dm, *J* = 7.2 Hz, 1H), 7.40 (m, 1H), 7.61 (dm, *J* = 7.2 Hz, 2H), 7.84 (d, *J* = 7.8 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.26, 13.88, 24.69, 41.51, 41.82, 83.41, 120.90, 123.44, 127.19, 127.73, 128.70, 136.64, 140.22, 145.28, 154.82, 156.72. A signal for the carbon directly attached to the boron atom was not observed. HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₃H₃₀O₄NBNa, 418.21601; found, 418.21634.

5-Chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4g)

Colorress oil. ¹**H** NMR (CDCl₃) δ 1.17–1.33 (m, 6H), 1.30 (s, 12H), 3.38 (q, *J* = 7.2, Hz, 2H), 3.49 (q, *J* = 7.2 Hz, 2H), 7.11 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.18, 13.81, 24.65, 41.52, 41.89, 83.59, 122.85, 125.11, 137.00, 137.49, 154.33, 156.79. A signal for the carbon directly attached to the boron atom was not observed. Anal. Calcd for C₁₇H₂₅BClNO₄: C, 57.74%; H, 7.13%; N, 3.96%. Found: C, 57.49; H, 7.10%; N, 3.88%. The synthesis of known compound 4-chloro-4'-methoxy-[1,1'-biphenyl]-2-ol¹³ from 4g by Suzuki-Miyaura coupling followed by deprotection of the carbamate moiety confirmed the assignment for 4g.

4-Methylphenyl Diethylcarbamate (3h)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.20–1.24 (m, 6H), 2.33 (s, 3H), 3.37–3.44 (m, 4H), 6.99 (dm, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H). ¹³**C NMR** (CDCl₃) δ 13.13, 13.93, 20.52, 41.58, 41.93, 121.37, 129.60, 134.45, 149.27, 154.42. **Anal.** Calcd for C₁₂H₁₇NO₂: C, 69.54%; H, 8.27%; N, 6.76%. Found: C, 69.52%; H, 8.40%; N, 6.75%.

4-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4h)

Colorress oil. ¹**H NMR** (CDCl₃) δ 1.17–1.30 (m, 6H), 1.30 (s, 12H), 2.32 (s, 3H), 3.37 (q, *J* = 7.2, Hz, 2H), 3.50 (q, *J* = 7.2 Hz, 2H), 6.95 (d, *J* = 8.1 Hz, 1H), 7.23 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.57 (d, *J* = 2.4 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.18, 13.79, 20.37, 24.59, 41.34, 41.66, 83.25, 121.90, 132.71, 134.01, 136.48, 154.07, 154.95. A signal for the carbon directly attached to the boron atom was not observed. **HRMS–ESI** (*m*/*z*): [M+H]⁺ calcd for C₁₈H₂₉BNO₄, 334.21896; found, 334.21924.

4-Methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-Diethylcarbamate (4i)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.17–1.30 (m, 6H), 1.30 (s, 12H), 3.37 (q, *J* = 6.9 Hz, 2H), 3.49 (q, *J* = 6.9 Hz, 2H), 3.81 (s, 3H), 6.96-6.97 (m, 2H), 7.27 (m, 1H). ¹³**C NMR** (CDCl₃) δ 13.27, 13.87, 24.69, 41.42, 41.78, 55.55, 83.47, 118.23, 119.75, 123.19, 149.90, 155.24, 156.44. A signal for the carbon directly attached to the boron atom was not observed. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd for C₁₈H₂₈BNO₅Na, 372.19527; found, 372.19552.

4-Trifluoromethylphenyl N,N-Diethylcarbamate (3j)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.19–1.29 (m, 6H), 3.36–3.49 (m, 4H), 7.25 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H). ¹³**C NMR** (CDCl₃) δ 12.72, 13.63, 41.62, 42.01, 121.94, 123.94 (q, J = 272.0 Hz), 126.24 (q, J = 4.0 Hz), 126.89 (q, J = 32.6 Hz), 153.25, 154.14 (d, J = 1.1 Hz). **Anal.** Calcd for C₁₂H₁₄F₃NO₂: C, 55.17%; H, 5.40%; N, 5.36%. Found: C, 55.13%; H, 5.36%; N, 5.36%.

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-4-trifluoromethylphenyl *N*,*N*-Diethylcarbamate (4j)

White solid. ¹**H** NMR (CDCl₃) δ 1.18–1.32 (m, 6H), 1.30 (s, 12H), 3.39 (q, J = 7.2, Hz, 2H), 3.51 (q, J = 7.2 Hz, 2H), 7.19 (d, J = 8.4 Hz, 1H), 7.68 (dd, J = 8.4, 2.1 Hz, 1H), 8.04 (d, J = 2.1 Hz, 1H). ¹³C NMR (CDCl₃) δ 13.18, 13.84, 24.70, 41.59, 41.95, 83.93, 122.70, 124.20 (q, J = 272.6 Hz), 127.06 (q, J = 32.6 Hz), 129.09 (q, J = 3.4 Hz), 133.38 (q, J = 4.0 Hz), 154.24, 158.76 (q, J = 1.7 Hz). A signal for the carbon directly attached to the boron atom was not observed. Anal. Calcd for C₁₈H₂₅F₃NO₄: C, 55.83%; H, 6.51%; N, 3.62%. Found: C, 55.47%; H, 6.43%; N, 3.57%. m.p. 63.5–64.5 °C. The regioselectivity was assigned on the basis of the J_{C-F} values in the ¹³C NMR spectrum.

(1,1'-Biphenyl)-4-yl N,N-Diethylcarbamate (3k)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.20–1.30 (m, 6H), 3.40–3.48 (m, 4H), 7.26 (dm, J = 8.4 Hz, 2H), 7.34 (tt, J = 7.2, 1.5 Hz, 1H), 7.44 (tm, J = 7.2 Hz, 2H), 7.55–7.59 (m, 4H). ¹³**C NMR** (CDCl₃) δ 13.16, 14.01, 41.72, 42.08, 121.99, 127.05, 127.12, 127.91, 128.71, 138.15, 140.60, 151.02, 154.22. **Anal.** Calcd for C₁₇H₁₉NO₂: C, 75.81%; H, 7.11%; N, 5.20%. Found: C, 75.63; H, 7.15%; N, 5.22%.

4-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4k)

White solid. ¹**H** NMR (CDCl₃) δ 1.19–1.32 (m, 6H), 1.32 (s, 12H), 3.40 (q, J = 7.2, Hz, 2H), 3.53 (q, J = 7.2 Hz, 2H), 7.15 (d, J = 8.4 Hz, 1H) , 7.32 (tt, J = 7.5, 1.8 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.60 (dd, J = 7.5, 1.8 Hz, 2H), 7.64 (dd, J = 8.4, 2.4 Hz, 1H), 7.99 (d, J = 2.4 Hz, 1H). ¹³C NMR (CDCl₃) δ 13.20, 13.82, 24.64, 41.44, 41.77, 83.41, 122.51, 126.99, 127.14, 128.58, 130.78, 134.94, 137.78, 140.63, 154.80, 155.73. A signal for the carbon directly attached to the boron atom was not observed. Anal. Calcd for C₂₃H₃₀BNO₄: C, 69.88%; H, 7.65%; N, 3.54%. Found: C, 69.76; H, 7.75%; N, 3.55%. m.p. 154.7–156.0 °C. The synthesis of known compound [1,1':3',1"-terphenyl]-4'-ol¹⁴ from **4k** by Suzuki–Miyaura coupling followed by deprotection of the carbomate moiety confirmed the assignment for **4k**.

4-Chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (41)

Coloress oil. ¹**H** NMR (CDCl₃) δ 1.17–1.36 (m, 6H), 1.30 (s, 12H), 3.37 (q, *J* = 7.5 Hz, 2H), 3.49 (q, *J* = 7.2 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 1H), 7.38 (dd, *J* = 8.4, 2.7 Hz, 1H), 7.73 (d, *J* = 2.7 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.26, 13.89, 24.74, 41.54, 41.92, 83.82, 123.77, 130.47, 131.98, 135.76, 154.62, 154.69. A signal for the carbon directly attached to the boron atom was not observed. HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₇H₂₆BCINO₄, 354.16434; found, 354.16429.

5-Bromo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-Diethylcarbamate (4m)

Wthie solid. ¹**H NMR** (CDCl₃) δ 1.17–1.33 (m, 6H), 1.29 (s, 12H), 3.37 (q, J = 7.2, Hz, 2H), 3.48 (q, J = 7.2 Hz, 2H), 7.27 (d, J = 1.8 Hz, 1H) , 7.34 (dd, J = 8.1, 1.8 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.22, 13.84, 24.69, 41.55, 41.93, 83.64, 125.65, 125.74, 128.07, 137.19, 154.36, 156.72. A signal for the carbon directly attached to the boron atom was not observed. **Anal.** Calcd for C₁₇H₂₅BBrNO₄: C, 51.29%; H, 6.33%; N, 3.52%. Found: C, 50.97%; H, 6.28%; N, 3.43%. m.p. 84.5–85.4 °C.

4-(Methoxycarbonyl)phenyl N,N-Diethylcarbamate (3n)

Colorress oil. ¹**H NMR** (CDCl₃) δ 1.19–1.28 (m, 6H), 3.36–3.48 (m, 4H), 3.91 (s, 3H), 7.21 (dm, J = 8.7 Hz, 2H), 8.23 (dm, J = 8.7 Hz, 2H). ¹³**C NMR** (CDCl₃) δ 12.79. 13.71, 41.54, 41.88, 51.55, 121.26, 126.46, 130.62, 153.08, 155.10, 166.11. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd for C₁₃H₁₇NO₄Na, 274.10498; found, 274.10497.

4-(Methoxycarbonyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl N,N-Diethylcarbamate (4n) and 4-(Methoxycarbonyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)phenyl N,N-Diethylcarbamate (4n')

Colorress oil. ¹**H NMR** (CDCl₃) **4n**; δ 1.18–1.32 (m, 6H), 1.32 (s, 12H), 3.39 (q, *J* = 7.2 Hz, 2H), 3.51 (q, *J* = 7.2 Hz, 2H), 3.91 (s, 3H), 7.15 (d, *J* = 8.4 Hz, 1H), 8.12 (dd, *J* = 8.4, 2.4 Hz, 1H), 8.45 (d, *J* = 2.4 Hz, 1H). **4n**'; δ 3.90 (s, 3H), 7.21–7.23 (m, 2H), 7.95 (d, *J* = 9.3 Hz, 1H) (only observed peaks). ¹³**C NMR** (CDCl₃) **4n**+**4n**'; δ 13.15, 13.20, 13.86, 14.07, 41.56, 41.84, 41.90, 42.15, 83.76, 84.08, 122.15, 122.34, 125.02, 126.67, 129.96, 130.36, 133.65, 137.94, 154.23, 154.57, 159.87, 166.73 (only observed peaks). **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd for C₁₉H₂₈NO₆BNa, 400.19014; found, 400.19046. The position of the boron atom was determined by comparison of the ¹H NMR chemical shifts with those of the isomer **4n**': the aromatic proton of **4n** at C3 position was observed at a significantly lower magnetic field than the aromatic proton of **4n**' at C2 position, which indicates that the **4n** is a borylated at the ortho position of the carbamate moiety.

3-(2-Methoxy-2-oxoethyl)phenyl N,N-Diethylcarbamate (30)

Colorress oil. ¹**H** NMR (CDCl₃) δ 1.18–1.27 (m, 6H), 3.37–3.45 (m, 4H), 3.63 (s, 2H), 3.70 (s, 3H), 7.04-7.13 (m, 3H), 7.31 (t, J = 7.5 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.13, 13.98, 40.68, 41.69, 42.03, 51.87, 120.54, 122.63, 125.96, 129.22, 135.15, 151.62, 154.10, 171.71. Anal. Calcd for C₁₄H₁₉NO₄: C, 63.38%; H, 7.22%; N, 5.28%. Found: C, 63.02%; H, 7.21%; N, 5.24%.

5-(2-Methoxy-2-oxoethyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-Diethylcarbamate (40)

Colorress oil. ¹**H NMR** (CDCl₃) δ 1.17–1.35 (m, 6H), 1.29 (s, 12H), 3.38 (q, *J* = 7.2 Hz, 2H), 3.50 (q, *J* = 7.2 Hz, 2H), 3.62 (s, 2H), 3.67 (s, 3H), 7.02 (s, 1H), 7.12 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.28, 13.87, 24.70, 40.93, 41.51, 41.83, 51.99, 83.42, 123.16, 125.80, 136.44, 138.31, 154.78, 156.41, 171.56. **Anal.** Calcd for C₂₀H₃₀BNO₆: C, 61.39%; H, 7.73%; N, 3.58%. Found: C, 61.06%; H, 7.65%; N, 3.59%.

3-[{(*tert*-Butoxycarbonyl)oxy}methyl]phenyl *N*,*N*-Diethylcarbamate (3p)

Colorress oil. ¹**H** NMR (CDCl₃) δ 1.18–1.29 (m, 6H), 1.49 (s, 9H), 3.35–3.47 (m, 4H), 5.08 (s, 2H), 7.10 (dm, J = 7.8 Hz, 1H), 7.15 (s, 1H), 7.20 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.08, 13.94, 27.48 41.65, 42.00, 67.91, 82.12, 121.39, 121.64, 124.63, 129.24, 136.93, 151.60, 153.31, 153.98. Anal. Calcd for C₁₇H₂₅NO₅: C, 63.14%; H, 7.79%; N, 4.33%. Found: C, 62.84; H, 7.80%; N, 4.37%.

5-[{(*tert*-Butoxycarbonyl)oxy}methyl]-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-Diethylcarbamate (4p)

Coloress oil. ¹**H** NMR (CDCl₃) δ 1.17–1.32 (m, 6H), 1.30 (s, 12H), 1.49 (s, 9H), 3.37 (q, *J* = 7.2 Hz, 2H), 3.50 (q, *J* = 6.9 Hz, 2H), 5.08 (s, 2H), 7.09 (d, *J* = 1.2 Hz, 1H), 7.19 (dd, *J* = 7.8, 1.2 Hz, 1H) 7.76 (d, *J* = 7.8 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.24, 13.85, 24.69, 27.60, 41.50, 41.83, 67.81, 82.28, 83.47, 121.57, 124.08, 136.42, 140.07, 153.39, 154.73, 156.40. A signal for the carbon directly attached to the boron atom was not observed. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd for C₂₃H₃₆BO₇NNa, 472.24770; found, 472.24743.

Colorress oil. ¹**H NMR** (CDCl₃) δ 1.19–1.29 (m, 7H), 1.52 (s, 3H), 2.12 (m, 1H), 3.37–3.47 (m, 4H), 3.79–3.87 (m, 4H), 7.09 (ddd, J = 7.8, 2.4, 1.5 Hz, 1H), 7.18 (t, J = 1.5 Hz, 1H), 7.27 (m, 1H), 7.39 (t, J = 7.8 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.18, 14.05, 25.14, 32.12, 41.72, 42.06, 61.18, 100.15, 120.38, 121.00, 123.44, 129.49, 142.84, 152.07, 154.18. **Anal.** Calcd for C₁₆H₂₃NO₄: C, 65.51%; H, 7.90%; N, 4.77%. Found: C, 65.20%; H, 7.94%; N, 4.76%.

5-(2-Methyl-1,3-dioxan-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-Diethylcarbamate (4q)

White solid. ¹**H NMR** (CDCl₃) δ 1.18–1.34 (m, 7H), 1.31 (s, 12H), 1.49 (s, 3H), 2.11 (m, 1H), 3.39 (q, J = 7.2 Hz, 2H), 3.52 (q, J = 7.2 Hz, 2H), 3.77–3.89 (m, 4H), 7.13 (d, J = 1.5 Hz, 1H), 7.27 (m, 1H), 7.82 (d, J = 8.1 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.21, 13.85, 24.66, 25.12, 32.01, 41.43, 41.76, 61.27, 83.42, 100.16, 120.86, 123.19, 136.66, 145.95, 154.74, 156.82. **Anal.** Calcd for C₂₂H₃₄BNO₆: C, 63.02%; H, 8.17%; N, 3.34%. Found: C, 62.74%; H, 8.30%; N, 3.32%. m.p. 105.5–106.5 °C.

5-Fluoro-2-methylphenyl Diethylcarbamate (3r)

Colorress oil. ¹**H** NMR (CDCl₃) δ 1.19–1.29 (m, 6H), 2.17 (s, 3H), 3.36–3.50 (m, 4H), 6.80–6.88 (m, 2H), 7.14 (tm, J = 7.2 Hz, 1H). ¹³**C** NMR (CDCl₃) δ 13.01, 13.89, 15.34, 41.69, 42.07, 109.86 (d, J = 24.0 Hz), 111.88 (d, J = 21.2 Hz), 126.02 (d, J = 3.4 Hz), 131.13 (d, J = 9.2 Hz), 150.42 (d, J = 10.9 Hz), 153.32, 161.03 (d, J = 244.5 Hz). Anal. Calcd for C₁₂H₁₆FNO₂: C, 63.98%; H, 7.16%; N, 6.22%. Found: C, 63.87%; H, 7.18%; N, 6.26%.

5-Fluoro-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N*,*N*-Diethylcarbamate (4r)

Coloress oil. ¹**H NMR** (CDCl₃) δ 1.18–1.35 (m, 6H), 1.33 (s, 12H), 2.15 (s, 3H), 3.39 (q, J = 7.2 Hz, 2H), 3.49 (q, J = 7.2 Hz, 2H), 6.82 (t, J = 8.4 Hz, 1H), 7.21 (m, 1H). ¹³**C NMR** (CDCl₃) δ 13.24, 14.05, 15.72, 24.64, 41.55, 41.93, 83.48, 112.19 (d, J = 24.1 Hz), 126.22 (d, J = 4.0 Hz), 133.67 (d, J = 9.7 Hz), 153.80, 154.22 (d, J = 10.9 Hz), 165.19 (d, J = 247.9 Hz). A signal for the carbon directly attached to the boron atom was not observed. **HRMS–ESI** (m/z): [M+H]⁺ calcd for C₁₈H₂₈O₄NBF, 352.20954; found, 352.21046. m.p. 112.6–115.2 °C. The regioselectivity was assigned on the basis of the J_{C-F} values in the ¹³C NMR spectrum.

3,5-Dimethylphenyl Diethylcarbamate (3s)

Colorress oil. ¹**H NMR** (CDCl₃) δ 1.17–1.26 (m, 6H), 2.30 (s, 6H), 3.35–3.45 (m, 4H), 6.74 (t, J = 0.9 Hz, 2H), 6.82 (d, J = 0.9 Hz, 1H). ¹³**C NMR** (CDCl₃) δ 13.01, 13.83, 20.81, 41.51, 41.84, 119.22, 126.62, 138.75, 151.30, 154.32. **Anal.** Calcd for C₁₃H₁₉NO₂: C, 70.56%; H, 8.65%; N, 6.33%. Found: C, 70.47; H, 8.74%; N, 6.26%.

3,5-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl *N,N*-Diethylcarbamate (4s)

White solid. ¹**H** NMR (CDCl₃) δ 1.16–1.35 (m, 6H), 1.31 (s, 12H), 2.27 (s, 3H), 2.44 (s, 3H), 3.37 (q, *J* = 7.2 Hz, 2H), 3.46 (q, *J* = 7.2 Hz, 2H), 6.68 (s, 1H), 6.82 (s, 1H). ¹³**C** NMR (CDCl₃) δ 13.27, 13.97, 21.01, 22.16, 24.74, 41.46, 41.73, 83.13, 119.99, 127.98, 141.09, 144.90, 155.02, 156.11. Anal. Calcd for C₁₉H₃₀BNO₄: C, 65.72; H, 8.71%; N, 4.03%. Found: C, 65.49; H, 8.79%; 3.92%. m.p. 71.5–72.4 °C.

References

- (1) (a) Hamasaka, G.; Ochida, A.; Hara, K.; Sawamura, M. Angew. Chem. Int. Ed. 2007, 46, 5381–5383. (b) Hamasaka, G.; Kawamorita, S.; Ochida, A.; Akiyama, R.; Hara, K.; Fukuoka, A.; Asakura, K.; Chun, W. J.; Ohmiya, H.; Sawamura, M. Organometallics 2008, 27, 6495–6506. (c) Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura, M. J. Am. Chem. Soc. 2009, 131, 5058–5059.
- (2) Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126.
- (3) Ohe, K.; Yokoi, T.; Miki, K.; Nishino, F.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 526–527.
- (4) Antelo Miguez, J. M.; Adrio, L. A.; Sousa-Pdedrares, A.; Vila, J. M.; Hii, K. K. J. Org. Chem.
 2007, 72, 7771–7774.
- (5) Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am. Chem. Soc. 2009, 131, 17748–17749.
- (6) Ryu, S.; Jackson, J. A.; Thompson, C. M. J. Org. Chem. 1991, 56, 4999–5002.
- (7) Azzena, U.; Pisano, L.; Pittalis, M. Appl. Organometal. Chem. 2008, 22, 525-528.
- (8) Bedford, R. B.; Webster, R. L.; Mitchell, C. J. Org. Biomol. Chem. 2009, 7, 4853-4857.
- (9) Sanz, R.; Castroviejo, M. P.; Fernández, Y.; Fañanás, F. J. J. Org. Chem. 2005, 70, 6548-6551.
- (10) Sibi, M. P.; Chattopadhyay, S.; Dankwardt, J. W.; Snieckus, V. J. Am. Chem. Soc. 1985, 107, 6312–6315.
- (11) Zhao, Z.; Snieckus, V. Org. Lett. 2005, 7, 2523–2526.
- (12) Takahashi, K.; Yoshino, A.; Hosokawa, K.; Muramatsu, H. Bull. Chem. Soc. Jpn. 1985, 58, 755–756.
- (13) Ishikawa, S.; Manabe, K.; Org. Lett. 2007, 9, 5593–5595.
- (14) Haga, N.; Takayanagi, H.; J. Org. Chem. 1996, 61, 735-745.
- (15) Kalinowski, H.-O.; Berger, S.; Braun, S. "Carbon-13 NMR Spectroscopy", Wiley-Interscience, New York, N. Y., 1972.

9 9 (1955	ObsNuc Hi EXMode NON ObsStrq 299,96 Miz ObsStrq 1.0 Alt ObsStre 995,0047 Hz Point 1534 Promotion 1534 Promotion 1534 Promotion 1534 Promotion 1500,45 Hz Stem 1 Point 1.502 ± Pulsel 6.0 µ ± Temporature 29,0 °C Solvent CDC1 Reference 0.0 ppm Broad, Factor 0.1373 Hz Roint 21 Operator 21
4. 435	2625
	1. 6134 4. 4435
$-\frac{1}{9} + \frac{1}{8} + \frac{1}{6} + \frac{1}{5} + \frac{1}{8} + \frac{1}{9} + \frac{1}{1} + 1$	9 8 7 6 5 5 / ppm 4 3 2 1

	briginal File: ate	Xov 5 09
		304 0 05
- C	onment	
	STANDARD 1	II OBSERVE
0	bsNuc	13
	xMode	NON
	bsFreq	299.96 MH
- 0	bsSet	- 1. 0 kllz
0	bsFine	995, 0047 1
P	oint	16384
F	requecy (Span)	4500, 45 Hz
S	can	16
A	cqTime	3.4983
P	D	1.502 s
P	ulsel	6.0 µ s
	emperature	29.0 °C
s	olvent	CDC1 ₃
R	eference	0.0 ppm
B	road Factor	0.1373

Original File: Date Sep 26 09 Comment STANDARD IH OBSERVE			
ObsNuc	4H		
ExMode	NON		
ObsFreq	299, 96 MHz		
ObsSet	1.0 kllz		
ObsFine	995.0047 llz		
Point	16384		
Frequecy (Span)	4500, 45 IIz		
Scan	16		
AcqTime	3.4983 s		
PD	1.502 s		
Pulsel	6.0 µ s		
Temperature Solvent Reference	29.0 °C CDC13		
Broad. Factor RGain	0.0 ppm 0.1373 Hz 24		
Printed 2010/Ju Operator	n/24 14:34:31		

Original File: Date Jun Comment STANDARD IN OBS	6 09 SERVE
ObeNuc ExMode ObsFreq ObsFreq ObsFreq ObsFreq ObsFreq Sean AcqTime PD Pulsel Temperature Solvent Reference Broad, Factor Resin Printed 2010/May, Operator	$\begin{array}{c} 11\\ \text{NON}\\ 239, 96 \ \text{MHz}\\ 1.0 \ \text{KHZ}\\ 995, 0047 \ \text{Hz}\\ 995, 0047 \ \text{Hz}\\ 16384 \ \text{Hz}\\ 164983 \ \text{Hz}\\ 1.502 \ \text{Hz}\\ 29, 0 \ \text{CCC}\\ 1.0 \ \text{Hz}\\ 29, 0 \ \text{Hz}\\ 29, 0 \ \text{Hz}\\ 1373 \ \text{Hz}\\ 19\\ 19\\ 1415:02:58\end{array}$

S73

Original File: Date Mar 4 10 Comment Cl3 Statdard Observe Stickronne Tune*6.4 Match=0.4 Obskue NC ObsStrep 75.43 MHz ObsStrep 75.43 MHz ObsStrep 75.43 MHz ObsStrep 75.43 MHz ObsStrep 75.43 MHz ObsStrep 75.43 MHz ObsStrep 996.5672 Hz ObsStrep 996.5672 Hz ObsStrep 996.5672 Hz Solvent 128 Reference 77.0 ppm Broad.Factor 0.2853 Hz RGain 30 Printed 2010/May/14 15:18:36 Operator	ĺ	Jaa	JEt ₂		
	128. 1447 121. 7128 121. 7128 121. 7128	100 δ / ppm	80 60 80 60 60	45. 0288 41. 6776 07 07 08 08	20 // 20 // 20 //

III RINKES

S20

$\begin{array}{c} \text{Comment} \\ \text{STADDARD III OBSERVE} \\ \hline \\ \text{ObsNuc} & \text{III} \\ \text{ExMode} & \text{MUE} \\ \text{GbsNuc} & 299, 96 & \text{MHz} \\ \text{ObsSer} & 299, 96 & \text{MHz} \\ \text{ObsSer} & 0.10 & \text{MHz} \\ \text{ObsNuc} & 16334 & \text{Od-17 IIIz} \\ \text{ObsNuc} & 16334 & \text{Od-17 IIIz} \\ \text{Point} & 16334 & \text{Od-17 IIIz} \\ \text{Point} & 16334 & \text{Od-17 IIIz} \\ \text{Frequecy}(\text{Span}) & 16334 & \text{Span} \\ \text{Point} & 16334 & \text{Span} \\ \text{AcqTime} & 364983 & \text{s} \\ \text{Point} & 16334 & \text{Od-17 IIIz} \\ \text{Scan} & 16 & \text{Od-18 IIIz} \\ \text{Scan} & 16 & \text{Od-18 IIIz} \\ \text{Scan} & 16 & \text{Od-18 IIIz} \\ \text{Point} & 16334 & \text{Od-18 IIIz} \\ \text{Point} & 2900 & \text{C} \\ \text{Solvent} & \text{CDC1s} \\ \text{Reference} & 0.0 & \text{pm} \\ \text{Broad, Factor} & 0.1373 & \text{Hz} \\ \text{KGain} & 2010/May/13 & 21:57:58 \\ \text{Operator} \end{array}$	CI O NEt ₂ 3g	
		6. 5925
	 4. 4435	
 	5 δ / ppm	2. 0486 2. 0486 1. 15660 1. 12000 0. 0000 0. 0000 0

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Original File: Date Se Comment STANDARD III 0	p 26 09 BSERVE
	ExMode ObsFreq ObsFreq ObsFine Point Prequecy(Span) Scan AcqTime PD Pulsel Temperature Temperature Solvent Reference Broad, Factor RGain Printed 2010/ju	NOX 299.96 MHz -1.0 kHz 995.0047 Hz 18384 4500.45 Hz 6.0 μs 29.0 °C CDC1a 0.1373 Hz 24

13C. F1DY

01Nu. 10	Original File: Date Jun 6-09 Comment STANDARD IN OBSERVE	
Doswut Tit Dustreq 299.96 MHz ObsFreq 299.96 MHz ObsFreq 1.0 kHz Scan 16385.0047 Hz Scan 16383 s AcqTime 3.4983 s Philsel 1.6 0 s Solvent CDC1 s Solvent CDC1 s Shraad, Factor 0.1373 Hz Goard 2010/May/14 15:02:58 Operator 2010/May/14 15:02:58	ÖbsFreq 299, 96 Wills ObsSet -1.0 Altr ObsSet -1.0 Altr ObsFine 995,0047 Hz Prequecy(Span) 4500,45 Hz Scan 16 AcqT1mc 3,4983 x P0 1.562 s Pulsel 6,0 µ s Temperature 29,0 C Solvent CDC1x Reference 0,0 pm Broad, Factor 0,1373 Hz Gain 19 Printed 2010/May/14 15:02:58	

Original File: Date Feb 25 10 Comment Cl3 Statdard Observe Stick=none Tun=6.4 Match=0.4 ObsNuc NC ObsPreq 75.43 WHz ObsPreq 1.0 kHz Point 32768 Preptucey(Span) 13761.73 Hz Scan 1.4 992 s PD 1.5 Poil s Pulsel 6.0 μ s Pulsel 6.0 μ s Broad Factor 0.2 863 Hz Road Factor 0.2 863 Hz Roatin 30 Printed 2010/May/02 15:27:38 Operator 15.27:38	MeO	O NEt ₂ O Bpin	
		83. 4223 777. 005 76. 5749 76. 5749 7749 7757 7757 7757 7757 7757 7757	441:8294 441:8294 141:8294 141:8294 141:8294 141:8294 132:8906 132:89

S97

