Supporting Material for:

A Focused Library of Protein Tyrosine Phosphatase Inhibitors

Anthony B. Comeau,[†] David A. Critton,[‡] Rebecca Page,[‡] and Christopher T. Seto^{*,†}

[†]Department of Chemistry, Brown University, 324 Brook Street Box H, Providence, Rhode Island 02912, and [‡]Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-E4, Providence, RI 02912 christopher seto@brown.edu.

Table of Contents

1.	General Methods	S2
2.	Preparation and Characterization of Compounds	S2-S21
3.	Modeling Studies and Protein Expression	S21-22
4.	NMR Spectra	S23-S68
5.	HPLC Traces	S69-S70
6.	Lineweaver-Burk Plots for 2a and 2b	S71
7.	References and Notes	S72

General Methods. NMR spectra were recorded on Bruker Avance-300 or Avance-400 instruments. Spectra were calibrated using TMS ($\delta = 0.00$ ppm) for ¹H NMR, CDCl₃ ($\delta = 77.0$ ppm), acetone- d_6 ($\delta = 29.5$ ppm) or DMSO- d_6 for ¹³C NMR. Mass spectra were recorded using fast atom bombardment or electrospray ionization methods. Methylene chloride and methanol were obtained from a dry solvent dispensing system. HPLC analyses were performed on a Rainin HPLC system with C₁₈ columns and UV detection. All other reagents were used as received. Full characterization for compound **1** and **8** have been previously reported.¹

General Procedure for the Synthesis of 6a-e, h, j, l, m, o. The representative phenol (1.40 mmol), 4-chloronitrobenzene (1.70 mmol), K_2CO_3 (2.80 mmol) and 4 mL of DMSO were combined in a 5 mL microwave reaction vessel. The mixture was heated using microwave irradiation at a temperature of 195 °C for 10 minutes. The reaction was then diluted with EtOAc and the organic phase was washed with water and brine, dried over MgSO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography.

Compound 6a. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (5:95 EtOAc/hexane) to obtain **6a** (0.346 g, 1.19 mmol, 85%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, *J* = 9.4 Hz, 2 H), 7.30 (d, *J* = 8.8 Hz, 2 H), 7.40 (m, 1H), 7.50 (m, 2 H), 7.71 (m, 2 H), 7.81 (d, *J* = 8.8 Hz, 2 H), 8.31 (d, *J* = 9.4 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 117.2, 120.8, 126.0, 127.0, 127.6, 129.0, 138.5, 140.0, 142.7, 154.2, 163.3; HRMS-FAB (M + Na⁺) calcd for C₁₈H₁₃NNaO₃ 314.0793, found 314.0781.

Compound 6b. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (1:9 EtOAc/hexane) to obtain **6b** (0.384

g, 1.22 mmol, 87%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.10 (d, J = 9.2 Hz, 2 H), 7.14 (d, J = 8.5 Hz, 2 H), 7.73 (d, J = 8.6 Hz, 2 H), 8.27 (d, J = 9.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 118.3, 120.2, 121.2, 126.0, 129.4 (d, $J_{CF} = 306$ Hz), 138.7, 143.4, 157.6, 161.8; HRMS-FAB (M + Na⁺) calcd for C₁₃H₈F₃NNaO₃S 338.0075, found 338.0091.

Compound 6c. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (1:9 EtOAc/hexane) to obtain **6c** (0.279 g, 1.15 mmol, 82%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 1.29 (t, *J* = 7.4 Hz, 3 H), 2.70 (q, *J* = 7.9 Hz, 2 H), 6.99 (d, *J* = 9.3 Hz, 2 H), 7.02 (d, *J* = 8.3 Hz, 2 H), 7.27 (d, *J* = 8.3 Hz, 2 H) 8.18 (d, *J* = 9.7 Hz, 2 H); proton coupled ¹³C NMR (75 MHz, CDCl₃) δ 16.0 (q, *J*_{CH} = 123.5 Hz), 28.7 (t, *J*_{CH} = 126.4 Hz), 117.2 (dd, *J*_{CH} = 164.4, 4.9 Hz), 120.9 (dd, *J*_{CH} = 160.7, 4.9 Hz), 126.3 (dd, *J*_{CH} = 167.2, 4.9 Hz), 130.0 (dd, *J*_{CH} = 164.7, 4.9 Hz), 141.9, 142.8, 152.8, 164.2; HRMS-FAB (M + Na⁺) calcd for C₁₄H₁₃NNaO₃ 266.0793, found 266.0781.

Compound 6d. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (5:95 EtOAc/hexane) to obtain **6d** (0.381 g, 1.27 mmol, 91%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 0.92 (m, 3 H), 1.35 (m, 6 H), 1.65 (m, 2 H), 2.65 (t, *J* = 7.5 Hz, 2 H), 7.01 (m, 4 H), 7.25 (d, *J* = 8.6 Hz, 2 H), 8.21 (d, *J* = 9.3 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 22.6, 29.1, 31.6, 31.8, 35.4, 116.7, 120.4, 125.8, 130.1, 140.3, 142.4, 152.4, 163.8; HRMS-FAB (M + Na⁺) calcd for C₁₈H₂₁NNaO₃ 322.1419, found 322.1423.

Compound 6e. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (1:9 EtOAc/hexane) to obtain **6e** (0.285 g, 1.09 mmol, 78%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 2.51 (s, 3 H), 6.99 (d, *J* =

9.2 Hz, 2 H), 7.02 (d, J = 8.7 Hz, 2 H), 7.32 (d, J = 9.2 Hz, 2 H), 8.18 (d, J = 9.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 16.4, 116.9, 121.2, 126.0, 128.6, 135.4, 142.6, 152.2, 163.4; HRMS-FAB (M + Na⁺) calcd for C₁₃H₁₁NNaO₃S 284.0357, found 284.0362.

Compound 6h. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (5:95 EtOAc/hexane) to obtain **6h** (0.353 g, 1.30 mmol, 93%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3 H), 1.40 (tq, *J* = 7.8, 7.3 Hz, 2 H), 1.64 (m, 2 H), 2.66 (t, *J* = 7.8 Hz, 2 H), 7.00 (m, 4 H), 7.25 (d, *J* = 8.4 Hz, 2 H), 8.18 (d, *J* = 9.6 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.0, 22.4, 33.7, 35.0, 116.8, 120.4, 125.9, 130.1, 140.3, 142.4, 152.4, 163.8; HRMS-FAB (M + Na⁺) calcd for C₁₆H₁₇NNaO₃ 294.1106, found 294.1099.

Compound 6j. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (1:9 EtOAc/hexane) to obtain **6j** (0.267 g, 1.15 mmol, 82%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.83 (m, 1 H), 6.90 (m, 1 H), 6.98 (m, 1 H) 7.07 (d, *J* = 8.6 Hz, 2 H), 7.40 (ddd, *J* = 8.6, 7.7, 6.5 Hz, 1 H), 8.24 (d, *J* = 9.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 115.8 (d, *J*_{CF} = 261 Hz), 118.3, 124.2 (d, *J*_{CF} = 115 Hz), 126.1, 129.4 (d, *J*_{CF} = 218 Hz), 143.6, 155.7, 162.1; HRMS-FAB (M + Na⁺) calcd for C₁₂H₈FNNaO₃ 256.0386, found 256.0393.

Compound 61. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (5:95 EtOAc/hexane) to obtain **61** (0.320 g, 1.25 mmol, 89%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 1.28 (d, *J* = 6.9 Hz, 6 H), 2.99 (septet, *J* = 7.5 Hz, 1 H), 7.11 (d, *J* = 9.1 Hz, 4 H), 7.39 (d, *J* = 8.2 Hz, 2 H), 8.26 (d, *J* = 9.1

Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 24.5, 34.0, 117.2, 120.8, 126.3, 128.6, 142.8, 146.6, 152.9, 164.1; HRMS-FAB (M + Na⁺) calcd for C₁₅H₁₅NNaO₃ 280.0950, found 280.0941.

Compound 6m. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (1:9 EtOAc/hexane) to obtain **6m** (0.320 g, 1.27 mmol, 91%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.99 (m, 4 H), 7.22 (ddd, J = 6.0, 5.1, 4.7 Hz, 1 H), 8.21 (d, J = 9.4 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 106.5, 112.4, 116.3 (dd, $J_{CF} = 165, 5$ Hz), 124.4 (dd, $J_{CF} = 143, 10$ Hz), 126.5 (dd, $J_{CF} = 168, 5$ Hz), 140.5, 154.9, 160.2, 163.0; HRMS-FAB (M + Na⁺) calcd for C₁₂H₇F₂NNaO₃ 274.0292, found 274.0305.

Compound 60. This compound was prepared according to the general procedure. The crude product was purified by column chromatography (1:9 EtOAc/hexane) to obtain **60** (0.249 g, 1.04 mmol, 74%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 8.6 Hz, 4 H), 7.74 (d, *J* = 8.6 Hz, 2 H), 8.29 (d, *J* = 9.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 108.8, 118.6, 119.4, 120.4, 126.6, 135.0, 144.4, 159.4, 161.3; HRMS-FAB (M + Na⁺) calcd for C₁₃H₈N₂NaO₃ 263.0433, found 263.0430.

General Procedure for the Synthesis of 7a-e, h, j, l, m, o. The nitro diaryl ether was dissolved in EtOH (10 mL) and a catalytic amount of $Pd(OH)_2/C$ corresponding to 10 wt % of the substrate was added. This mixture was stirred under 1 atm of H₂ (balloon) at RT for approximately 2 hrs until TLC analysis indicated complete disappearance of the starting material. The mixture was filtered through a pad of celite using a fritted glass funnel. The solvent was removed at reduced pressure and the crude product was purified by column chromatography.

Compound 7a. According to the general procedure **6a** (0.346 g, 1.19 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7a** (0.292 g, 1.12 mmol, 94%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, J = 9.4 Hz, 2 H), 7.30 (d, J = 8.8 Hz, 2 H), 7.40 (m, 1H), 7.50 (m, 2 H), 7.71 (m, 2 H), 7.81 (d, J = 8.8, 2 H), 8.31 (d, J = 9.4, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 116.3, 117.5, 121.3, 126.9, 127.0, 128.3, 128.9, 135.2, 140.7, 143.0, 148.5, 158.6; HRMS-FAB (M + H⁺) calcd for C₁₈H₁₆NO 262.1232, found 262.1241.

Compound 7b. According to the general procedure **6b** (0.384 g, 1.22 mmol) was reduced and the product was purified by column chromatography (1:3 EtOAc/hexane) to obtain **7b** (0.316 g, 1.11 mmol, 91%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.68 (s, 1H), 6.71 (d, J = 9.2 Hz, 2 H), 6.93 (d, J = 8.4 Hz, 2 H), 6.96 (d, J = 9.5 Hz, 2 H), 7.58 (d, J = 9.5 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 116.0, 117.4, 121.8, 129.7 (d, $J_{CF} = 306$ Hz), 138.3, 143.7, 147.0, 161.8; HRMS-FAB (M + H⁺) calcd for C₁₃H₁₁F₃NOS 286.0513, found 286.0503.

Compound 7c. According to the general procedure **6c** (0.279 g, 1.15 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7c** (0.218 g, 1.02 mmol, 89%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 1.31 (t, *J* = 7.3 Hz, 3 H), 2.68 (q, *J* = 7.5 Hz, 2 H), 3.58 (s, 2 H), 6.71 (d, *J* = 8.7 Hz, 2 H), 6.95 (m, 4 H), 7.19 (d, *J* = 8.7 Hz, 2 H); proton coupled ¹³C NMR (75 MHz, CDCl₃) δ 16.4 (q, *J*_{CH} = 1201 Hz), 28.6 (t, *J*_{CH} = 125 Hz), 116.7 (dd, *J*_{CH} = 158, 5 Hz), 117.9 (dd, *J*_{CH} = 160, 5 Hz), 121.4 (dd, *J*_{CH} = 151, 5 Hz), 129.4 (d, *J*_{CH} = 153 Hz), 138.5 (m), 143.0 (t, *J*_{CH} = 8 Hz), 149.4 (m), 157.2 (m); HRMS-FAB (M + H⁺) calcd for C₁₄H₁₆NO 214.1232, found 214.1345.

Compound 7d. According to the general procedure **6d** (0.381 g, 1.27 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7d** (0.329 g, 1.22 mmol, 96%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 0.95 (m, 3 H), 1.37 (m, 6 H), 1.63 (m, 2 H), 2.62 (t, *J* = 7.6 Hz, 2 H), 3.59 (s, 2 H), 6.69 (d, *J* = 8.9 Hz, 2 H), 6.92 (d, *J* = 8.2 Hz, 4 H), 7.14 (d, *J* = 8.5 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 22.7, 29.1, 31.7, 31.8, 35.2, 116.3, 117.3, 120.9, 129.4, 136.8, 142.5, 149.1, 156.7; HRMS-FAB (M + H⁺) calcd for C₁₈H₂₄NO 270.1858, found 270.1867.

Compound 7e. According to the general procedure **6e** (0.285 g, 1.09 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7e** (0.230 g, 0.99 mmol, 91%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 2.47 (d, J = 1.2 Hz, 3 H), 3.58 (s, 2 H), 6.69 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.7 Hz, 2 H), 6.89 (d, J = 8.6 Hz, 2 H), 7.23 (d, J = 8.9 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 17.6, 116.3, 118.0, 121.0, 129.5, 130.7, 142.8, 148.6, 157.2; HRMS-FAB (M + H⁺) calcd for C₁₃H₁₄NOS 232.0796, found 232.0805.

Compound 7h. According to the general procedure **6h** (0.353 g, 1.30 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7h** (0.301 g, 1.25 mmol, 96%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 1.00 (t, *J* = 7.7 Hz, 3 H), 1.42 (tq, *J* = 7.7, 7.3 Hz, 2 H), 1.65 (septet, *J* = 7.7 Hz, 2 H), 2.63 (t, *J* = 7.3 Hz, 2 H), 3.59 (s, 2 H), 6.70 (d, *J* = 9.0 Hz, 2 H), 6.93 (d, *J* = 8.6 Hz, 4 H), 7.15 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.1, 22.4, 33.9, 34.9, 116.3, 117.3, 120.9, 129.4, 136.7, 142.6, 149.1, 156.8; HRMS-FAB (M + H⁺) calcd for C₁₆H₂₀NO 242.1545, found 242.1561.

Compound 7j. According to the general procedure **6j** (0.267 g, 1.15 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7j** (0.210 g, 1.03 mmol, 90%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.60 (s, 2 H), 6.72, (m, 5 H), 6.92 (d, *J* = 8.6 Hz, 2 H), 7.24 (q, *J* = 8.0 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 106.6 (dd, *J*_{CF} = 316, 25 Hz), 112.6, 116.3, 121.5, 130.3 (d, *J*_{CF} = 10 Hz), 145.5 (d, *J*_{CF} = 316 Hz), 161.2 (d, *J*_{CF} = 98 Hz), 165.2; HRMS-FAB (M + H⁺) calcd for C₁₂H₁₁FNO 204.0825, found 204.0836.

Compound 71. According to the general procedure 61 (0.320 g, 1.25 mmol) was reduced and the product was purified by column chromatography (15:85 EtOAc/hexane) to obtain 71 (0.257 g, 1.13 mmol, 91%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 1.27 (d, *J* = 7.0 Hz, 6 H), 2.91 (septet, *J* = 7.0 Hz, 1 H), 6.75 (d, *J* = 8.9 Hz, 2 H), 6.91 (d, *J* = 8.7 Hz, 4 H), 7.18 (d, *J* = 8.6 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 24.6, 33.8, 116.5, 117.7, 121.3, 127.5, 142.6, 143.1, 149.6, 157.1; HRMS-FAB (M + Na⁺) calcd for C₁₅H₁₈NNaO 250.1208, found 250.1203.

Compound 7m. According to the general procedure **6m** (0.320 g, 1.27 mmol) was reduced and the product was purified by column chromatography (2:8 EtOAc/hexane) to obtain **7m** (0.262 g, 1.18 mmol, 93%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 6.7 (m, 2 H), 6.8 (m, 3 H), 6.93 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 105.2, 111.4, 115.6 (d, *J*_{CF} = 6 Hz), 117.1 (dd, *J*_{CF} = 225, 6 Hz), 119.2 (dd, *J*_{CF} = 228, 5 Hz), 121.3 (dd, *J*_{CF} = 88, 10 Hz), 143.0 (t, *J*_{CF} = 8 Hz), 153.9, 158.1; HRMS-FAB (M + H⁺) calcd for C₁₂H₁₀F₂NO 222.0731, found 222.0719.

Compound 70. According to the general procedure **60** (0.249 g, 1.04 mmol) was reduced and the product was purified by column chromatography (1:3 EtOAc/hexane) to obtain **70** (0.183 g, 0.87 mmol, 84%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 3.76 (s, 2 H), 6.71 (d, *J* = 8.6 Hz, 2 H), 6.86 (d, *J* = 9.3 Hz, 2 H), 6.93 (d, *J* = 9.3 Hz, 2 H), 7.54 (d, *J* = 9.0 Hz,

2 H); ¹³C NMR (75 MHz, CDCl₃) δ 104.7, 116.3, 116.9, 119.2, 121.8, 134.1, 144.2, 146.2, 162.9; HRMS-FAB (M + H⁺) calcd for C₁₃H₁₁N₂O 211.0871, found 211.0885.

General Procedure for the Synthesis of 9a-o and 10. To a solution of compound 8 (0.040 g, 0.063 mmol) in benzene (3 mL) was added SOCl₂ (0.5 mL). The mixture was heated at reflux for 3 h under a N₂ atmosphere. The solvent and excess reagent was removed at reduced pressure and the crude material was dried under vacuum. The resulting yellow solid was dissolved in either CH₂Cl₂ or THF, cooled to 0 °C, and the aniline derivative (0.082 mmol) was added to the acid chloride of 8. The reaction progress was monitored by TLC until completion, which required approximately 1 h. The solvent was removed at reduced pressure and the crude material was purified by column chromatography.

Compound 9a. According to the general procedure the acid chloride derivative of **8** was reacted with **7a** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9a** (0.045 g, 0.052 mmol, 82%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 5.36 (s, 2 H), 5.57 (s, 2 H), 6.80 (m, 2 H), 7.09 (d, J = 7.8 Hz, 4 H), 7.32 (m, 5 H), 7.70 (m, 8 H), 7.87 (m, 3 H), 8.37 (d, J = 9.6 Hz, 2 H), 8.43 (d, J = 9.0 Hz, 2 H), 9.90 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 67.6, 69.2, 92.0 (q, $J_{CF} = 35$ Hz), 115.4 (two overlapping resonances), 116.2, 118.2, 119.3, 120.6, 120.7, 121.7, 123.0, 127.1 (d, $J_{CF} = 155$ Hz), 129.5, 130.8, 130.9, 135.2, 136.2, 136.3, 136.8, 138.6, 151.2, 159.4, 161.2, 163.1, 163.2, 163.3, 166.8; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₆F₉N₃NaO₈S 926.1195, found 926.1172.

Compound 9b. According to the general procedure the acid chloride derivative of **8** was reacted with **7b** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9b** (0.043 g, 0.048 mmol, 76%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ

5.38 (s, 2 H), 5.58 (s, 2 H), 6.80 (m, 2 H), 7.10 (d, J = 8.7 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 7.22 (d, J = 9.8 Hz, 2 H), 7.29 (d, J = 9.3 Hz, 2 H), 8.38 (d, J = 9.8 Hz, 2 H), 8.43 (d, J = 9.3 Hz, 2 H), 9.9 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 67.6, 69.2, 92.0 (q, $J_{CF} = 35$ Hz), 115.4 (two overlapping resonances), 116.2, 118.2, 119.3, 120.6, 120.7 121.7, 123.0, 127.1 (d, $J_{CF} = 155$ Hz), 129.5, 130.8, 130.9, 135.2, 136.2, 136.3, 136.8, 138.6, 151.2, 159.4, 161.2, 163.1, 163.2, 163.3, 166.8; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₆F₉N₃NaO₈S 926.1195, found 926.1172.

Compound 9c. According to the general procedure the acid chloride derivative of **8** was reacted with **7c** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9c** (0.041 g, 0.049 mmol, 78%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 1.22 (t, J = 7.6 Hz, 3 H), 2.64 (q, J = 7.6 Hz, 2 H), 5.33 (s, 2 H), 5.55 (s, 2 H), 6.80 (m, 2 H), 6.92 (d, J = 9.0 Hz, 2 H), 6.98 (d, J = 9.0 Hz, 2 H), 7.23 (m, 6 H), 7.70 (m, 2 H), 7.80 (d, J = 8.9 Hz, 2 H), 7.88 (s, 1 H), 8.37 (d, J = 9.0 Hz, 2 H), 8.43 (d, J = 9.0 Hz, 2 H), 9.77 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 15.4, 27.8, 67.6, 69.2, 92.1 (q, $J_{CF} = 33$ Hz), 115.4 (two overlapping resonances), 118.4, 118.9, 119.3, 120.6, 120.7, 121.5, 121.6, 123.0, 126.7, 126.9, 128.9, 129.1, 129.5, 130.8, 130.9, 134.7, 136.3, 136.7, 139.0, 153.6, 155.6, 159.4, 163.1, 163.2, 163.3, 166.7; HRMS-FAB (M + Na⁺) calcd for C₄₃H₃₁F₆N₃NaO₈ 854.1913, found 854.1931.

Compound 9d. According to the general procedure the acid chloride derivative of **8** was reacted with **7d** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9d** (0.045 g, 0.051 mmol, 81%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 0.91 (t, J = 5.1 Hz, 3 H), 1.34 (m, 6 H), 1.63 (m, 2 H), 2.61 (t, J = 5.7 Hz, 2 H), 5.35 (s, 2 H), 5.56 (s, 2 H), 6.80 (m, 2 H), 6.94 (d, J = 8.9 Hz, 2 H), 6.99 (d, J = 7.9 Hz, 2 H), 7.23 (m, 4 H), 7.28 (d, J = 8.9 Hz, 2 H), 7.72 (m, 2 H), 7.81 (d, J = 9.9 Hz, 2 H), 7.89 (s, 1 H), 8.38 (d, J = 8.9 Hz, 2 H), 8.43 (d, J = 9.9 Hz, 2 H), 9.75 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 13.9, 22.8,

28.8, 29.5, 32.0, 35.3, 68.0, 69.7, 92.5 (q, $J_{CF} = 24$ Hz), 115.8 (two overlapping resonances), 118.7, 119.3, 121.0, 121.1, 122.0, 122.9, 127.3, 129.3, 129.8, 130.0, 131.2, 131.3, 135.1, 135.6, 136.7, 137.1, 138.1, 154.1, 156.0, 159.8, 163.5, 163.6, 163.7, 167.1; HRMS-FAB (M + Na⁺) calcd for C₄₇H₃₉F₆N₃NaO₈ 910.2539, found 910.2565.

Compound 10. According to the general procedure the acid chloride derivative of **8** was reacted with 3-benzyloxyaniline and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **10** (0.039 g, 0.047 mmol, 75%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 5.10 (s, 2 H), 5.36 (s, 2 H), 5.55 (s, 2 H), 6.79 (m, 3 H), 7.27 (m, 8 H), 7.48 (m, 2 H), 7.70 (m, 3 H), 7.86 (s, 1 H), 8.36 (d, J = 8.9 Hz, 2 H), 8.41 (d, J = 8.9 Hz, 2 H), 9.68 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 67.6, 69.2, 69.5, 92.0 (q, $J_{CF} = 34$ Hz), 106.8, 110.2, 112.4, 115.4 (two overlapping resonances), 120.6, 120.7, 126.9, 127.6, 127.7, 128.4, 129.0, 129.5, 130.8, 130.9, 135.0, 136.5, 136.8, 137.4, 140.4, 159.3, 159.4, 163.1, 163.2, 163.3, 166.8; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₉F₆N₃NaO₈ 840.1757, found 840.1786.

Compound 9e. According to the general procedure the acid chloride derivative of **8** was reacted with **7e** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9e** (0.043 g, 0.050 mmol, 80%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 2.49 (s, 3 H), 5.37 (s, 2 H), 5.56 (s, 2 H), 6.81 (m, 2 H), 6.97 (d, J = 9.1 Hz, 2 H), 7.00 (d, J = 9.1 Hz, 2 H), 7.28 (m, 6 H), 7.78 (m, 5 H), 8.36 (d, J = 9.0 Hz, 2 H), 8.42 (d, J = 9.0 Hz, 2 H); ¹³C NMR (75 MHz, acetone- d_6) δ 15.8, 67.6, 69.2, 91.9 (q, $J_{CF} = 34$ Hz), 115.4 (two overlapping resonances), 119.2, 119.3, 120.6, 120.7, 121.6, 123.0, 126.9, 128.8, 129.0, 129.3, 130.8, 130.9, 132.4, 135.1, 135.2, 136.4, 136.7, 153.1, 155.7, 159.4, 163.1, 163.2, 163.3, 166.6; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₉F₆N₃NaO₈S 872.1477, found 872.1498.

Compound 9f. According to the general procedure the acid chloride derivative of **8** was reacted with 4-(4-fluorophenoxy)aniline and the product was purified by column chromatography (5:95 EtOAc/hexane) to obtain **9f** (0.036 g, 0.044 mmol, 70%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 5.36 (s, 2 H), 5.56 (s, 2 H), 6.81 (m, 2 H), 7.05 (m, 4 H), 7.15 (d, J = 8.4 Hz, 2 H), 7.21 (t, J = 9 Hz, 2 H), 7.28 (d, J = 9.0 Hz, 2 H), 7.73 (m, 2 H), 7.81 (d, J = 8.9 Hz, 2 H), 7.89 (s, 1 H), 8.37 (d, J = 8.9 Hz, 2 H), 8.42 (d, J = 8.9 Hz, 2 H), 9.75 (s, 1 H); ¹³C NMR (100 MHz, acetone- d_6) δ 67.6, 69.2, 91.9 (q, $J_{CF} = 34$ Hz), 115.4 (two overlapping resonances), 116.2 (d, $J_{CF} = 24$ Hz), 118.9, 119.7, 120.0 (d, $J_{CF} = 8$ Hz), 120.7 (q, $J_{CF} = 9$ Hz), 121.6, 122.5, 126.9, 129.0, 129.5, 130.8, 130.9, 135.0, 135.1, 136.4, 136.8, 153.5, 153.7, 153.8, 157.4, 159.4, 159.8, 163.1, 163.2, 163.3, 166.7; HRMS-FAB (M + Na⁺) calcd for C₄₁H₂₆F₇N₃NaO₈ 844.1506, found 844.1530.

Compound 9g. According to the general procedure the acid chloride derivative of **8** was reacted with 4-(4-methylphenoxy)aniline and the product was purified by column chromatography (5:95 EtOAc/hexane) to obtain **9g** (0.038 g, 0.046 mmol, 73%) as a white solid. ¹H NMR (400 MHz, acetone- d_6) δ 2.32 (s, 3 H), 5.36 (s, 2 H), 5.56 (s, 2 H), 6.81 (m 2 H), 6.91 (d, J = 8.5 Hz, 2 H), 6.98 (d, J = 9.0 Hz, 2 H), 7.21 (t, J = 7.1 Hz, 4 H), 7.28 (d, J = 9.0 Hz, 2 H), 7.72 (m, 2 H), 7.81 (d, J = 8.9 Hz, 2 H), 7.89 (s, 1 H), 8.38 (d, J = 9.0 Hz, 2 H), 8.42 (d, J = 9.0 Hz, 2 H), 9.75 (s, 1 H); ¹³C NMR (100 MHz, acetone- d_6) δ 20.2, 68.1, 69.7, 92.4 (q, $J_{CF} = 8$ Hz), 115.8 (two overlapping resonances), 118.8, 119.2, 121.0, 121.1, 122.0, 127.3, 129.3, 129.8, 130.6, 131.2, 131.3, 132.9, 135.1, 135.5, 136.7, 137.1, 154.1, 155.8, 159.8, 163.5, 163.6, 163.7, 167.1; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₉F₆N₃NaO₈ 840.1757, found 840.1771.

Compound 9h. According to the general procedure the acid chloride derivative of **8** was reacted with **7h** and the product was purified by column chromatography (35:65 EtOAc/hexane)

to obtain **9h** (0.044 g, 0.051 mmol, 82%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 0.93 (t, J = 7.3 Hz, 3 H), 1.33 (m, 2 H), 1.60 (m, 2 H), 2.61 (t, J = 7.6 Hz, 2 H), 5.37 (s, 2 H), 5.57 (s, 2 H), 6.81 (m, 2 H), 6.93 (d, J = 8.7 Hz, 2 H), 7.00 (d, J = 8.1 Hz, 2 H), 7.22 (m, 4 H), 7.29 (d, J = 8.8 Hz, 2 H), 7.76 (m, 4 H), 7.89 (s, 1 H), 8.38 (d, J = 8.7 Hz, 2 H), 8.43 (d, J = 9.4 Hz, 2 H), 9.74 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 13.3, 22.0, 33.8, 34.5, 67.6, 69.2, 91.9 (q, $J_{CF} = 33$ Hz), 115.4 (two overlapping resonances), 118.3, 118.9, 120.6, 120.7, 121.4, 121.5, 126.9, 129.0, 129.4, 129.6, 130.8, 130.9, 134.8, 135.1, 136.4, 136.7, 137.6, 153.6, 155.6, 159.4, 163.1, 163.2, 163.3, 166.6; HRMS-FAB (M + Na⁺) calcd for C₄₅H₃₅F₆N₃NaO₈ 882.2226, found 882.2245.

Compound 9i. According to the general procedure the acid chloride derivative of **8** was reacted with 4-(3,4-dichlorophenoxy)aniline and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9i** (0.043 g, 0.049 mmol, 78%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 5.26 (s, 2 H), 5.38 (s, 2 H), 6.80 (m, 2 H), 7.01 (m, 1 H), 7.13 (m, 2 H), 7.27 (m, 4 H), 7.56 (m, 2 H), 7.76 (m, 2 H), 7.90 (m, 3 H), 8.42 (m, 4 H, 9.81 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 68.0, 69.6, 92.3 (q, J_{CF} = 34 Hz), 115.7, 115.8, 118.2, 119.9, 120.5, 121.0, 122.0, 127.3, 129.4, 129.9, 131.2, 131.3, 131.7, 132.2, 132.9, 135.6, 136.5, 136.7, 137.2, 152.1, 158.1, 159.8, 163.5, 163.7, 167.1; LRMS-FAB (M + Na⁺) calcd for C₄₁H₂₅Cl₂F₆N₃NaO₈ 894.1, found 894.1.

Compound 9j. According to the general procedure the acid chloride derivative of **8** was reacted with **7j** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9j** (0.040 g, 0.049 mmol, 79%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 5.37 (s, 2 H), 5.56 (s, 2 H), 6.80 (m, 2 H), 7.03 (m, 5 H), 7.23 (m, 5 H), 7.79 (m, 5 H), 8.36 (d, J = 8.8 Hz, 2 H), 8.41 (d, J = 9.0 Hz, 2 H), 9.74 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 67.6,

69.2, 91.9 (q, $J_{CF} = 33$ Hz), 115.4 (two overlapping resonances), 116.0 (two overlapping resonances), 116.4, 118.9, 119.9, 120.0, 120.6, 120.7, 121.6, 126.9, 129.0, 130.4 (d, $J_{CF} = 122$ Hz), 130.8, 130.9, 135.0, 135.1, 136.4, 136.8, 153.8, 153.5, 159.4, 163.1, 163.2, 163.3, 166.7; HRMS-FAB (M + Na⁺) calcd for C₄₁H₂₆F₇N₃NaO₈ 844.1506, found 844.1530.

Compound 9k. According to the general procedure the acid chloride derivative of **8** was reacted with 4-(2-methylphenoxy)aniline and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9k** (0.039 g, 0.048 mmol, 76%) as a white solid. ¹H NMR (300 MHz, acetone- d_6) δ 2.24 (s, 3 H), 5.36 (s, 2 H), 5.56 (s, 2 H), 6.81 (m, 2 H), 6.89 (m, 5 H), 7.25 (m, 5 H), 7.78 (m, 5 H), 8.37 (d, J = 9.0 Hz, 2 H), 8.41 (d, J = 9.0 Hz, 2 H), 9.72 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 15.4, 67.6, 69.2, 91.9 (q, $J_{CF} = 27$ Hz), 115.4 (two overlapping resonances), 117.6, 119.1, 120.6, 120.7, 121.6, 123.9, 126.9, 127.3, 128.9, 129.3, 129.4, 130.8, 130.9, 131.4, 134.3, 135.1, 136.4, 136.7, 154.0, 154.9, 159.4, 163.1, 163.2, 163.3, 166.6; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₉F₆N₃NaO₈ 840.1757, found 840.1775.

Compound 91. According to the general procedure the acid chloride derivative of **8** was reacted with **71** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **91** (0.044 g, 0.053 mmol, 84%) as a white solid. ¹H NMR (300 MHz acetone- d_6) δ 1.24 (d, J = 5.2 Hz, 6 H), 2.06 (m, 1 H), 5.36 (s, 2 H), 5.56 (s, 2 H), 6.80 (m, 2 H), 6.94 (d, J = 6.4 Hz, 2 H), 6.99 (d, J = 6.7 Hz, 2 H), 7.25 (m, 6 H), 7.76 (m, 5 H), 8.37 (d, J = 6.7 Hz, 2 H), 8.42 (d, J = 6.7 Hz, 2 H), 9.72 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 23.6, 33.3, 67.6, 69.3, 92.0 (q, $J_{CF} = 27$ Hz), 115.4 (two overlapping resonances), 118.3, 119.0, 120.6, 120.7, 121.6, 126.9, 127.6, 128.5, 129.0, 129.4, 130.8, 130.9, 134.8, 135.1, 136.4, 136.7, 143.6, 153.6, 155.6, 159.4, 163.1, 163.2, 163.3, 166.6; HRMS-FAB (M + Na⁺) calcd for C₄₄H₃₃F₆N₃NaO₈ 868.2070, found 868.2093.

Compound 9m. According to the general procedure the acid chloride derivative of **8** was reacted with **7m** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9m** (0.042 g, 0.050 mmol, 79%) as a white solid. ¹H NMR (300 MHz acetone- d_6) δ 5.36 (s, 2 H), 5.56 (s, 2 H), 6.82 (m, 2 H), 6.99 (d, J = 9.0 Hz, 3 H), 7.24 (m, 6 H), 7.80 (m, 5 H), 8.37 (d, J = 9.0 Hz, 2 H), 8.42 (d, J = 9.0 Hz, 2 H), 9.76 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 67.6, 69.2, 92.0 (q, $J_{CF} = 26$ Hz), 105.3 (q, $J_{CF} = 26$ Hz), 111.6 (d, $J_{CF} = 17$ Hz), 115.4 (two overlapping resonances), 117.1, 119.3, 120.7 (d, $J_{CF} = 7$ Hz), 121.6, 122.8, 123.0, 127.9 (d, $J_{CF} = 153$ Hz), 129.5, 130.8, 130.9, 135.0 (d, $J_{CF} = 18$ Hz), 136.3, 136.7, 140.4 (d, $J_{CF} = 4$ Hz), 152.4 (d, $J_{CF} = 11$ Hz), 153.7, 156.5 (dd, $J_{CF} = 95$, 11 Hz), 159.4, 160.1, 163.1, 163.2, 163.3, 166.7; HRMS-FAB (M + Na⁺) calcd for C₄₁H₂₅F₈N₃NaO₈ 862.1412, found 862.1432.

Compound 9n. According to the general procedure the acid chloride derivative of **8** was reacted with 4-(4-methoxyphenoxy)aniline and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **9n** (0.040 g, 0.048 mmol, 77%) as a white solid. ¹H NMR (300 MHz acetone- d_6) δ 3.80 (s, 3 H), 5.36 (s, 2 H), 5.55 (s, 2 H), 6.82 (m, 4 H), 7.01 (m, 2 H), 7.20 (m, 6 H), 7.72 (m, 4 H), 7.88 (s, 1 H), 8.36 (d, J = 9.7 Hz, 2 H), 8.41 (d, J = 9.7 Hz, 2 H), 9.7 (s, 1 H); ¹³C NMR (75 MHz, acetone- d_6) δ 55.2, 67.6, 69.2, 91.9 (q, $J_{CF} = 35$ Hz), 113.2, 115.4 (two overlapping resonances), 116.5, 120.6, 120.7, 121.0, 121.4, 125.2, 126.9, 128.5, 128.9, 129.4, 130.8, 130.9, 133.8, 135.1, 136.4, 136.7, 144.7, 151.9, 154.7, 163.1, 163.2, 163.3, 166.5; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₉F₆N₃NaO₉ 856.1706, found 856.1735.

Compound 90. According to the general procedure the acid chloride derivative of **8** was reacted with **70** and the product was purified by column chromatography (35:65 EtOAc/hexane) to obtain **90** (0.039 g, 0.047 mmol, 75%) as a white solid. ¹H NMR (300 MHz acetone- d_6) δ

5.36 (s, 2 H), 5.56 (s, 2 H), 6.80 (m, 4 H), 6.99 (m, 3 H), 7.25 (m, 5 H), 7.79 (m, 5 H), 8.37 (d, J = 9.8 Hz, 2 H), 8.42 (d, J = 9.4 Hz, 2 H); ¹³C NMR (75 MHz, acetone- d_6) δ 68.0, 69.6, 92.4 (q, $J_{CF} = 33$ Hz), 115.6, 115.8 (two overlapping resonances), 119.1, 119.7, 121.0, 121.1, 122.0, 123.4, 124.1, 127.3, 128.9, 129.8, 129.9, 131.2, 131.3, 135.3, 135.5, 136.7, 137.1, 140.3, 153.6, 158.2, 159.8, 163.5, 163.6, 163.7, 167.1; HRMS-FAB (M + Na⁺) calcd for C₄₂H₂₆F₆N₄NaO₈ 851.1553, found 851.1579.

General **Procedure Synthesis** for the of 2a-d: 4, 4'-[[2-[[(4-(4-**Trifluoromethylthio**)phenoxy phenyl)amino]carbonyl]-1, 4phenylene]bis(methyleneoxy)]bis[α -oxobenzeneacetic acid] (2a). A solution of 0.25 M NaOH (2 mL) was added to compound **9a** (0.045 g, 0.052 mmol) and the mixture was stirred at 25 °C for 1 h. The solution was washed with Et₂O and then acidified with 0.5 M HCl to pH 2. The resulting precipitate was centrifuged, the aqueous phase was separated from the solid, and the solid was dried under vacuum to obtain 2a (28.1 mg, 39.0 µmol, 75 %) as a white solid. A portion of the crude material was purified by reverse phase HPLC using a C-18 column eluted with 50% acetonitrile in water with 0.1% TFA. ¹H NMR (300 MHz, DMSO- d_6) δ 5.33 (s, 2 H), 5.45 (s, 2 H), 7.05 (m, 3 H), 7.09 (m, 5 H), 7.35 (m, 5 H), 7.65 (m, 7 H), 7.87 (d, J = 8.5 Hz, 2 H), 7.93 (d, J = 9.2 Hz, 2 H), 10.61 (s, 1 H); ¹³C NMR (75 MHz, DMSO- d_6) δ 68.0, 69.5, 115.8, 115.9, 118.6, 120.1, 122.1, 126.9, 127.6, 127.8, 128.7, 129.4, 129.6, 129.9, 132.4, 132.5, 134.7, 135.4, 135.6, 136.8 (two overlapping resonances), 140.0, 152.3, 157.6, 163.9, 167.1; LRMS-ESI $(M + H^{+})$ calcd for $C_{43}H_{32}NO_{10}$ 722, found 722.

4, 4'-[[2-[[(4-(4-Trifluoromethylthio)phenoxyphenyl)amino]carbonyl]-1, 4-phenylene]bis (methyleneoxy)]bis[α -oxobenzeneacetic acid] (2b). According to the general procedure 9b (0.043 g, 0.048 mmol) was hydrolyzed to obtain 2b (25.4 mg, 34.1 μ mol, 71 %) as a white solid. A portion of the crude material was purified by reverse phase HPLC using a C-18 column eluted with 55% acetonitrile in water with 0.1% TFA. ¹H NMR (300 MHz, DMSO- d_6) δ 5.33 (s, 2 H), 5.47 (s, 2 H), 7.12 (m, 8 H), 7.72 (m, 7 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.90 (d, J = 8.9 Hz, 2 H), 10.64 (s, 1 H); ¹³C NMR (75 MHz, DMSO- d_6) δ 68.0, 69.5, 115.1, 115.8 (two overlapping resonances), 118.5, 121.2, 122.2, 125.6, 127.8 (d, $J_{CF} = 143$ Hz), 129.7, 129.9, 131.8, 132.1, 132.5, 134.7, 136.5, 136.7, 136.9, 139.0, 150.7, 161.2, 162.2, 163.8, 167.2, 188.3; LRMS-ESI (M + H⁺) calcd for C₃₈H₂₇F₃NO₁₀S 746, found 746.

4, 4'-[[2-[[(4-(4-Ethyl)phenoxyphenyl)amino]carbonyl]-1, 4-phenylene]bis(methylene oxy)]bis[α-oxobenzeneacetic acid] (2c). According to the general procedure 9c (0.041 g, 0.049 mmol) was hydrolyzed to obtain 2c (23.1 mg, 34.3 μ mol, 70 %) as a white solid. A portion of the crude material was purified by reverse phase HPLC using a C-18 column eluted with 55% acetonitrile in water with 0.1% TFA. ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.20 (t, *J* = 6.5 Hz, 3 H), 2.26 (d, *J* = 7.0 Hz, 2 H), 5.32 (s, 2 H), 5.44 (s, 2 H), 7.02 (m, 5 H), 7.16 (m, 3 H), 7.25 (d, *J* = 8.7 Hz, 2 H), 7.78 (m, 5 H), 8.01 (d, *J* = 8.7 Hz, 2 H), 8.07 (d, *J* = 9.5 Hz, 2 H), 10.57 (s, 1 H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 16.2, 27.9, 67.9, 69.5, 115.1 (two overlapping resonances), 115.8 (two overlapping resonances), 118.5, 119.4, 122.1, 123.8, 125.9, 127.7, 129.6 129.8, 131.9, 132.3, 134.7, 135.1, 136.8, 139.0, 153.1, 155.6, 163.7, 167.0, 167.7, 188.8; LRMS-ESI (M + H⁺) calcd for C₁₀H₂, NO₁₀ 674, found 674.

4, 4'-[[2-[[(4-(4-n-Hexyl)phenoxyphenyl)amino]carbonyl]-1, 4-phenylene]bis (methyleneoxy)]bis [a-oxobenzeneacetic acid] (2d). According to the general procedure 9d (0.045 g, 0.051 mmol) was hydrolyzed to obtain 2d (29.4 mg, 40.3 μ mol, 79 %) as a white solid. A portion of the crude material was purified by reverse phase HPLC using a C-18 column eluted with 60% acetonitrile in water with 0.1% TFA. ¹H NMR (400 MHz, DMSO- d_6) δ 0.86 (m, 3 H),

S17

1.28 (m, 8 H), 1.54 (m, 2 H), 5.33 (s, 2 H), 5.43 (s, 2 H), 6.87 (d, J = 8.3 Hz, 2 H), 6.97 (d, J = 8.6 Hz, 2 H), 7.05 (m, 1 H), 7.16 (m, 4 H), 7.28 (d, J = 8.8 Hz, 2 H), 7.67 (m 3 H), 7.75 (s, 1 H), 8.24 (d, J = 8.6 Hz, 2 H), 8.30 (d, J = 8.8 Hz, 2 H), 10.5 (s, 1 H); ¹³C NMR (75 MHz, DMSO- d_6) δ 14.4, 22.5, 28.8, 31.5, 31.6, 34.8, 68.0, 69.5, 115.0, 115.1, 115.8, 118.4, 119.4, 122.1, 125.8, 127.7, 129.5, 129.8, 130.1, 131.9, 132.4 (two overlapping resonances), 134.7, 135.1, 136.8, 137.6, 153.1, 155.6, 163.7, 167.1, 167.4, 167.7, 188.8; LRMS-ESI (M + H⁺) calcd for C₄₃H₄₀NO₁₀ 730, found 730.

General Procedure for the Synthesis of compounds 2e-o and 3: Compound 3. A solution of 0.25 M NaOH (2 mL) was added to compound 10 (0.039 g, 0.047 mmol) and the mixture was stirred at 25 °C for 1 h. The solution was washed with Et₂O and then acidified with 0.5 M HCl to pH 2. The resulting precipitate was centrifuged, the aqueous phase was separated from the solid, and the solid was dried under vacuum to obtain 3 (22.3 mg, 33.8 µmol, 72 %) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.06 (s, 2 H), 5.33 (s, 2 H), 5.43 (s, 2 H), 6.75 (m, 1 H), 7.13 (d, *J* = 9.0 Hz, 2 H), 7.24 (m, 3 H), 7.40 (m, 7 H), 7.70 (m, 3 H), 7.86 (d, *J* = 8.9 Hz, 2 H), 7.92 (d, *J* = 8.9 Hz, 2 H), 10.5 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₈H₃₀NO₁₀ 660, found 660.

Compound 2e. According to the general procedure **9e** (0.043 g, 0.050 mmol) was hydrolyzed to obtain **2e** (28.0 mg, 40.5 μ mol, 81 %) as a white solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.47 (s, 3 H), 5.32 (s, 2 H), 5.43 (s, 2 H), 6.96 (m, 2 H), 6.96 (m, 3 H), 7.25 (m, 5 H), 7.72 (m, 5 H), 7.86 (m, 4 H) 10.56 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₈H₃₀NO₁₀S 692, found 692.

Compound 2f. According to the general procedure **9f** (0.036 g, 0.044 mmol) was hydrolyzed to obtain **2f** (18.7 mg, 28.2 μ mol, 64 %) as a yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 5.32 (s, 2 H), 5.43 (s, 2 H), 7.01 (m, 3 H), 7.12 (d, *J* = 8.9 Hz, 2 H), 7.21 (m, 5 H), 7.69 (m, 5 H), 7.84 (d, *J* = 8.9 Hz, 2 H), 7.90 (d, *J* = 8.9 Hz, 2 H), 10.5 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₇H₂₇FNO₁₀ 664, found 664.

Compound 2g. According to the general procedure **9g** (0.038 g, 0.046 mmol) was hydrolyzed to obtain **2g** (17.6 mg, 27.0 μ mol, 58 %) as a brown solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.27 (s, 3 H), 5.32 (s, 2 H), 5.43 (s, 2 H), 6.87 (d, *J* = 8.3 Hz, 2 H), 6.95 (d, *J* = 8.8 Hz, 2 H), 7.14 (m, 4 H), 7.25 (d, *J* = 8.8 Hz, 2 H), 7.67 (m, 5 H), 7.85 (d, *J* = 8.7 Hz, 2 H), 7.92 (d, *J* = 8.7 Hz, 2 H), 10.5 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₈H₃₀NO₁₀ 660, found 660.

Compound 2h. According to the general procedure **9h** (0.044 g, 0.051 mmol) was hydrolyzed to obtain **2h** (21.8 mg, 31.1 μ mol, 61 %) as a yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.89 (t, *J* = 7.1 Hz, 3 H), 1.28 (m, 2 H), 1.52 (m, 2 H), 2.54 (m, 2 H), 5.33 (s, 2 H), 5.44 (s, 2 H), 6.87 (d, *J* = 7.9 Hz, 2 H), 6.96 (d, *J* = 8.6 Hz, 2 H), 7.15 (m, 3 H), 7.25 (m, 3 H), 7.45 (s, 1 H), 7.68 (m, 4 H), 7.84 (d, *J* = 8.6 Hz, 2 H), 7.90 (d, *J* = 8.2 Hz, 2 H), 10.61 (s, 1 H); LRMS (M + H⁺) calcd for C₄₁H₃₆NO₁₀ 702, found 702.

Compound 2i. According to the general procedure **9i** (0.043 g, 0.049 mmol) was hydrolyzed to obtain **2i** (21.0 mg, 29.4 μ mol, 60 %) as a yellow solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 5.26 (s, 2 H), 5.38 (s, 2 H), 6.98 (m, 2 H), 7.11 (m, 3 H), 7.23 (m, 1 H), 7.63 (m, 4 H), 7.75 (m, 8 H), 10.61 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₇H₂₆Cl₂NO₁₀714, found 714.

Compound 2j. According to the general procedure 9j (0.040 g, 0.049 mmol) was hydrolyzed to obtain 2j (23.7 mg, 35.8 μ mol, 73 %) as a white solid. ¹H NMR (300 MHz,

DMSO- d_6) δ 5.37 (s, 2 H), 5.57 (s, 2 H), 7.03 (m, 3 H), 7.20 (m, 5 H), 7.80 (m, 7 H), 8.01 (d, J = 8.6 Hz, 2 H), 8.06 (d, J = 8.6 Hz, 2 H), 9.71 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₇H₂₇FNO₁₀ 664, found 664.

Compound 2k. According to the general procedure **9k** (0.039 g, 0.048 mmol) was hydrolyzed to obtain **2k** (25.6 mg, 38.8 μ mol, 81 %) as a white solid. ¹H NMR (300 MHz DMSO-*d*₆) δ 1.24 (s, 3 H), 5.34 (s, 2 H), 5.44 (s, 2 H), 6.94 (d, *J* = 2.8 Hz, 1 H), 6.97 (d, *J* = 2.9 Hz, 1 H), 7.11 (m, 3 H), 7.24 (m, 3 H), 7.63 (m, 4 H), 7.75 (m, 3 H), 7.85 (d, *J* = 8.8 Hz, 2 H), 7.93 (d, *J* = 8.8 Hz, 2 H), 10.6 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₈H₃₀NO₁₀ 660, found 660.

Compound 21. According to the general procedure **91** (0.044 g, 0.053 mmol) was hydrolyzed to obtain **21** (30.6 mg, 44.5 μ mol, 84 %) as a yellow solid. ¹H NMR (300 MHz DMSO-*d*₆) δ 1.19 (d, *J* = 6.9 Hz, 6 H), 2.87 (m, 1 H), 5.33 (s, 2 H), 5.44 (s, 2 H), 6.88 (d, *J* = 8.5 Hz, 2 H), 6.97 (d, *J* = 8.9 Hz, 2 H), 7.13 (d, *J* = 8.8 Hz, 2 H), 7.23 (m, 5 H), 7.70 (m, 4 H), 7.85 (d, *J* = 8.7 Hz, 2 H), 7.91 (d, *J* = 8.7 Hz, 2 H), 10.5 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₄₀H₃₄NO₁₀ 688, found 688.

Compound 2m. According to the general procedure **9m** (0.042 g, 0.050 mmol) was hydrolyzed to obtain **2m** (25.9 mg, 38.0 μ mol, 76 %) as a yellow solid. ¹H NMR (300 MHz DMSO-*d*₆) δ 5.32 (s, 2 H), 5.43 (s, 2 H), 6.95 (d, *J* = 8.8 Hz, 2 H), 7.18 (m, 5 H), 7.45 (m, 2 H), 7.67 (m, 5 H), 7.83 (d, *J* = 8.9 Hz, 2 H), 8.10 (d, *J* = 9.0 Hz, 2 H), 10.6 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₇H₂₆F₂NO₁₀ 682, found 682.

Compound 2n. According to the general procedure 9n (0.040 g, 0.048 mmol) was hydrolyzed to obtain 2n (23.3 mg, 34.6 μ mol, 72 %) as a white solid. ¹H NMR (300 MHz

DMSO- d_6) δ 2.19 (s, 3 H), 5.33 (s, 2 H), 5.43 (s, 2 H), 6.85 (m, 3 H), 7.18 (m, 7 H), 7.68 (m, 5 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.91 (d, J = 8.8 Hz, 2 H), 10.5 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₈H₃₀NO₁₁ 676, found 676.

Compound 20. According to the general procedure **90** (0.039 g, 0.047 mmol) was hydrolyzed to obtain **20** (23.9 mg, 35.7 μ mol, 76 %) as a yellow solid. ¹H NMR (300 MHz DMSO-*d*₆) δ 5.31 (s, 2 H), 5.43 (s, 2 H), 6.77 (m, 2 H), 6.84 (m, 2 H), 7.08 (m, 4 H), 7.21 (m, 2 H), 7.38 (m, 2 H), 7.81 (m, 7 H), 10.6 (s, 1 H); LRMS-ESI (M + H⁺) calcd for C₃₈H₂₇N₂O₁₀ 671, found 671.

Modeling Studies. The inhibitor **2a** was modeled into the active site of PTP1B using the X-ray structure of PTP1B (PDB code 1QXK) as the starting point. Modelling studies were performed using Autodock Vina. A ligand file was prepared using Autodock Tools and the bonds of **2a** were set as rotatable, with the exception of the amide bond, which was set as nonrotatable. A gridmap that encompassed the proposed binding site on PTP1B was calculated. Using the Lamarckian Genetic Algorithm in Autodoc Vina and a linear free energy model of molecular dynamics terms, the global minimum of the binding potential was determined.

Cloning, Expression and Purification of HePTP. Wild-type HePTP (residues 44–339) was subcloned into a derivative of the pET28a bacterial expression vector (Novagen) containing an *N*-terminal expression and hexahistidine purification tag (MGSDKIHHHHHH). HePTP was expressed and purified as described.² Briefly, following overnight expression at 18 °C, the protein was purified by immobilized metal affinity chromatography (HisTrap HP column, GE healthcare) followed by size exclusion chromatography (Superdex75 26/60, GE Healthcare).

Monomeric HePTP in protein stabilization buffer (10 mM Tris pH 7.8, 100 mM NaCl, 0.5 mM TCEP) was pooled, concentrated, frozen in liquid nitrogen, and stored at -80 °C until needed.

Figure S1. ¹HNMR spectrum of compound 6a.

Figure S2. ¹³CNMR spectrum of compound 6a.

Figure S3. ¹HNMR spectrum of compound 6b.

Figure S4. ¹³CNMR spectrum of compound 6b.

Figure S5. ¹HNMR spectrum of compound 6c.

Figure S6. ¹³CNMR proton-coupled spectrum of compound **6c**.

Figure S11. ¹HNMR spectrum of compound 6h.

S29

Figure S15. ¹HNMR spectrum of compound 6l.

Figure S17. ¹HNMR spectrum of compound **6m**.

S31

Figure S19. ¹HNMR spectrum of compound 60.

Figure S20. ¹³CNMR spectrum of compound 60.

Figure S22. ¹³CNMR spectrum of compound 7a.

Figure S23. ¹HNMR spectrum of compound 7b.

Figure S24. ¹³CNMR spectrum of compound 7b.

Figure S25. ¹HNMR spectrum of compound 7c.

Figure S27. ¹HNMR spectrum of compound 7d.

Figure S28. ¹³CNMR spectrum of compound 7d.

Figure S29. ¹HNMR spectrum of compound 7e.

Figure S30. ¹³CNMR spectrum of compound 7e.

Figure S31. ¹HNMR spectrum of compound 7h.

S39

Figure S36. ¹³CNMR spectrum of compound 7l.

Figure S39. ¹HNMR spectrum of compound 70.

Figure S42. ¹³CNMR spectrum of compound 9a.

S44

Figure S45. ¹HNMR spectrum of compound 9c.

Figure S53. ¹HNMR spectrum of compound 9f.

Figure S54. ¹³CNMR spectrum of compound 9f.

Figure S55. ¹HNMR spectrum of compound 9g.

Figure S56. ¹³CNMR spectrum of compound 9g.

Figure S57. ¹HNMR spectrum of compound 9h.

Figure S59. ¹HNMR spectrum of compound 9i.

Figure S60. ¹³CNMR spectrum of compound 9i.

Figure S61. ¹HNMR spectrum of compound 9j.

Figure S63. ¹HNMR spectrum of compound 9k.

Figure S65. ¹HNMR spectrum of compound 91.

Figure S70. ¹³CNMR spectrum of compound 9n.

100

50

[ppm]

Figure S73. ¹HNMR spectrum of HPLC purified compound 2a.

Figure S74. ¹³CNMR spectrum of HPLC purified compound 2a.

Figure S75. ¹HNMR spectrum of HPLC purified compound **2b**.

Figure S76. ¹³CNMR spectrum of HPLC purified compound 2b.

Figure S77. ¹HNMR spectrum of HPLC purified compound **2c**.

Figure S78. ¹³CNMR spectrum of HPLC purified compound **2c**.

Figure S79. ¹HNMR spectrum of HPLC purified compound 2d.

Figure S80. ¹³CNMR spectrum of HPLC purified compound 2d.

Figure S81. ¹HNMR spectrum of crude compound **3**.

Figure S82. ¹HNMR spectrum of crude compound 2e.

Figure S83. ¹HNMR spectrum of crude compound 2f.

Figure S84. ¹HNMR spectrum of crude compound 2g.

Figure S85. ¹HNMR spectrum of crude compound 2h.

Figure S86. ¹HNMR spectrum of crude compound 2i.

Figure S87. ¹HNMR spectrum of crude compound 2j.

Figure S88. ¹HNMR spectrum of crude compound **2k**.

Figure S89. ¹HNMR spectrum of crude compound **21**.

Figure S90. ¹HNMR spectrum of crude compound **2m**.

Figure S91. ¹HNMR spectrum of crude compound 2n.

Figure S92. ¹HNMR spectrum of crude compound 20.

Figure S93. HPLC trace of compound **2a** using a reverse phase C-18 analytical column eluted with 50% CH₃CN in water with a total of 0.1% TFA at flow rate of 1 mL/min. Detection was performed at 254 nm.

Figure S94. HPLC trace of compound **2b** using a reverse phase C-18 analytical column eluted with 55% CH₃CN in water with a total of 0.1% TFA at flow rate of 1 mL/min. Detection was performed at 254 nm.

Figure S95. HPLC trace of compound 2c using a reverse phase C-18 analytical column eluted with 55% CH₃CN in water with a total of 0.1% TFA at flow rate of 1 mL/min. Detection was performed at 254 nm.

Figure S96. HPLC trace of compound **2d** using a reverse phase C-18 analytical column eluted with 60% CH₃CN in water with a total of 0.1% TFA at flow rate of 1 mL/min. Detection was performed at 254 nm.

Figure S97. Inhibition of YopH by compound **2b**. The activity of YopH was measured at pH 7.0 as described in the Experimental Section in the presence of the following concentrations of **2b**: (\Box) 0 μ M; (\times) 0.067 μ M; (\diamond) 0.167 μ M; (Δ) 0.333 μ M. Substrate concentrations used in the assays were 1.0, 2.5, 5.0 and 7.5 mM.

Figure S98. Inhibition of PTP1B by compound **2a**. The activity of PTP1B was measured at pH 7.0 as described in the Experimental Section in the presence of the following concentrations of **2a**: (Δ) 0 μ M; (\diamond) 0.25 μ M; (\Box) 0.50 μ M; (\times) 1.0 μ M. Substrate concentrations used in the assays were 1.0, 2.0, 4.0 and 8.0 mM.

References and Notes

 Chen, Y. T.; Seto, C. T. Parallel synthesis of a library of bidentate protein tyrosine phosphatase inhibitors based on the α-ketoacid motif. *Biorg. Med. Chem.* 2004, *12*, 3289-3298.
Critton, D.A., Tortajada, A., Stetson, G., Peti, W., Page, R. Structural basis of substrate recognition by Hematopoietic Tyrosine Phosphatase (HePTP). *Biochemistry* 2008, *47*, 13336-

13345.